
Operating System
ECAP560

Edited by
Ajay Kumar Bansal

Edited By:
Ajay Kumar Bansal

user
Typewritten text
Operating System

CONTENT

Unit 1: 1

Unit 10:

Unit 12: 169

Operating System ServicesUnit 2: 17

ProcessUnit 3: 42

Process ManagementUnit 4: 63

Inter-Process CommunicationUnit 5: 79

CPU SchedulingUnit 6: 93

Scheduling AlgorithmsUnit 7: 115

 Process SynchronizationUnit 8: 129

Memory Management - I 158

Memory Management - IIUnit 11: 167

Memory Management - III

File ManagementUnit 13: 188

Disk ManagementUnit 14: 206

Introduction to Operating System
Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Dr. Amit Sharma, Lovely Professional University

Unit 9: Deadlocks 146

Unit 01: Introduction to Operating System

Notes

Unit 01: Introduction to Operating System

CONTENTS

Objectives

Introduction

1.1 Operating System: Meaning

1.2 Operating System Definitions

1.3 Operations and Functions of OS

1.4 Types of Operating System

1.5 Operating System: Examples

1.6 Components of Operating System:

1.7 Abstract View of System Components

1.8 Viewpoints of OS

1.9 Evolution of OS

Summary

Keywords

Self Assessment

Answers Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the basic organization of computer systems.
 analyzing the major components of operating systems.
 illustrate the viewpoints of operating system.
 understand the evolution of operating system
 illustrate the many types of computing environments
 analyze the several open-source operating systems
 understand the various functions of operating systems
 Describe operations and functions of operating system
 Explain various types of operating system

Introduction
A program that acts as an intermediary between a user of a computer and the computer
hardware.Execute user programs and make solving user problems easier.Make the computer
system convenient to use.Use the computer hardware in an efficient manner.

Operating System is a software, which makes a computer to work.It is the software that enables all
the programs we use.The OS organizes and controls the hardware.OS acts as an interface between
the application programs and the machine hardware.

Lovely Professional University 1

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

Examples:Windows, Linux, Unix and Mac OS, etc.

1.1 Operating System: Meaning
An operating system (sometimes abbreviated as “OS”) is the program that, after being initially
loaded into the computer by a boot program, manages all the other programs in a computer. The
other programs are called applications or application programs. The application programs make
use of the operating system by making requests for services through a defined Application
Program Interface (API). In addition, users can interact directly with the operating system through
a user interface such as a command language or a Graphical User Interface (GUI).

Figure: Operating System Interface

1.2 Operating System Definitions
Operating system is a set of components that manages the hardware and the software resources
and connects them all. Once a computer is switched on, the operating system must be loaded into
the computer system.OS is a resource allocator that manages all resources. It decides between
conflicting requests for efficient and fair resource use.OS is a control program that controls
execution of programs to prevent errors and improper use of the computer.Resource allocator–
manages and allocates resources.

 Control program– controls the execution of user programs and operations of I/O devices.

• Kernel– the one program always running (all else being application programs).

An operating system performs basic tasks such as:

• controlling and allocating memory

• prioritizing system requests

• controlling input and output devices

• facilitating networking

• managing file systems

1.3 Operations and Functions of OS
The main operations and functions of an operating system are as follows:

1. Process Management
2. Memory Management
3. Secondary Storage Management

Operating System

Notes

Examples:Windows, Linux, Unix and Mac OS, etc.

1.1 Operating System: Meaning
An operating system (sometimes abbreviated as “OS”) is the program that, after being initially
loaded into the computer by a boot program, manages all the other programs in a computer. The
other programs are called applications or application programs. The application programs make
use of the operating system by making requests for services through a defined Application
Program Interface (API). In addition, users can interact directly with the operating system through
a user interface such as a command language or a Graphical User Interface (GUI).

Figure: Operating System Interface

1.2 Operating System Definitions
Operating system is a set of components that manages the hardware and the software resources
and connects them all. Once a computer is switched on, the operating system must be loaded into
the computer system.OS is a resource allocator that manages all resources. It decides between
conflicting requests for efficient and fair resource use.OS is a control program that controls
execution of programs to prevent errors and improper use of the computer.Resource allocator–
manages and allocates resources.

 Control program– controls the execution of user programs and operations of I/O devices.

• Kernel– the one program always running (all else being application programs).

An operating system performs basic tasks such as:

• controlling and allocating memory

• prioritizing system requests

• controlling input and output devices

• facilitating networking

• managing file systems

1.3 Operations and Functions of OS
The main operations and functions of an operating system are as follows:

1. Process Management
2. Memory Management
3. Secondary Storage Management

Operating System

Notes

Examples:Windows, Linux, Unix and Mac OS, etc.

1.1 Operating System: Meaning
An operating system (sometimes abbreviated as “OS”) is the program that, after being initially
loaded into the computer by a boot program, manages all the other programs in a computer. The
other programs are called applications or application programs. The application programs make
use of the operating system by making requests for services through a defined Application
Program Interface (API). In addition, users can interact directly with the operating system through
a user interface such as a command language or a Graphical User Interface (GUI).

Figure: Operating System Interface

1.2 Operating System Definitions
Operating system is a set of components that manages the hardware and the software resources
and connects them all. Once a computer is switched on, the operating system must be loaded into
the computer system.OS is a resource allocator that manages all resources. It decides between
conflicting requests for efficient and fair resource use.OS is a control program that controls
execution of programs to prevent errors and improper use of the computer.Resource allocator–
manages and allocates resources.

 Control program– controls the execution of user programs and operations of I/O devices.

• Kernel– the one program always running (all else being application programs).

An operating system performs basic tasks such as:

• controlling and allocating memory

• prioritizing system requests

• controlling input and output devices

• facilitating networking

• managing file systems

1.3 Operations and Functions of OS
The main operations and functions of an operating system are as follows:

1. Process Management
2. Memory Management
3. Secondary Storage Management

Lovely Professional University2

Unit 01: Introduction to Operating System

Notes

4. I/O Management
5. File Management
6. Protection
7. Networking Management
8. Command Interpretation.

1. Process Management

The CPU executes a large number of programs. While its main concern is the execution of user
programs, the CPU is also needed for other system activities. These activities are called processes. A
process is a program in execution. Typically, a batch job is a process. A time-shared user program is
a process. A system task, such as spooling, is also a process. For now, a process may be considered
as a job or a time-shared program, but the concept is actually more general. The operating system is
responsible for the following activities in connection with processes management:

a) The creation and deletion of both user and system processes
b) The suspension and resumption of processes.
c) The provision of mechanisms for process synchronization
d) The provision of mechanisms for deadlock handling.

2. Memory Management

Memory is the most expensive part in the computer system. Memory is a large array of words or
bytes, each with its own address. Interaction is achieved through a sequence of reads or writes of
specific memory address. The CPU fetches from and stores in memory. There are various
algorithms that depend on the particular situation to manage the memory. Selection of a memory
management scheme for a specific system depends upon many factors, but especially upon the
hardware design of the system. Each algorithm requires its own hardware support.

The operating system is responsible for the following activities in connection with memory
management.

a) Keep track of which parts of memory are currently being used and by whom.
b) Decide which processes are to be loaded into memory when memory space becomes

available.
c) Allocate and de-allocate memory space as needed.

3. Secondary Storage Management

The main purpose of a computer system is to execute programs. These programs, together with the
data they access, must be in main memory during execution. Since the main memory is too small to
permanently accommodate all data and program, the computer system must provide secondary
storage to backup main memory. Most modem computer systems use disks as the primary on-line
storage of information, of both programs and data. Most programs, like compilers, assemblers, sort
routines, editors, formatters, and so on, are stored on the disk until loaded into memory, and then
use the disk as both the source and destination of their processing.

Hence the proper management of disk storage is of central importance to a computer system. There
are few alternatives. Magnetic tape systems are generally too slow. In addition, they are limited to
sequential access. Thus, tapes are more suited for storing infrequently used files, where speed is not
a primary concern.

The operating system is responsible for the following activities in connection with disk
management:

a) Free space management
b) Storage allocation
c) Disk scheduling.

4. I/O Management

Lovely Professional University 3

Operating System

Notes

One of the purposes of an operating system is to hide the peculiarities or specific hardware devices
from the user. For example, in UNIX, the peculiarities of I/O devices are hidden from the bulk of
the operating system itself by the I/O system. The operating system is responsible for the following
activities in connection to I/O management:

a) A buffer caching system
b) To activate a general device driver code
c) To run the driver software for specific hardware devices as and when required.

5. File Management

File management is one of the most visible services of an operating system. Computers can store
information in several different physical forms: magnetic tape, disk, and drum are the most
common forms. Each of these devices has its own characteristics and physical organisation. For
convenient use of the computer system, the operating system provides a uniform logical view of
information storage. The operating system abstracts from the physical properties of its storage
devices to define a logical storage unit, the fi le. Files are mapped, by the operating system, onto
physical devices. A file is a collection of related information defined by its creator. Commonly, files
represent programs (both source and object forms) and data. Data files may be numeric, alphabetic,
or alphanumeric. Files may be free form, such as text files, or may be rigidly formatted. In general, a
file is a sequence of bits, bytes, lines or records whose meaning is defined by its creator and user. It
is a very general concept. The operating system implements the abstract concept of the fi le by
managing mass storage device, such as types and disks. Also, files are normally organized into
directories to ease their use. Finally, when multiple users have access to files, it may be desirable to
control by whom andin what ways files may be accessed. The operating system is responsible for
the following activities in connection to the file management:

a) The creation and deletion of files.
b) The creation and deletion of directory.
c) The support of primitives for manipulating files and directories.
d) The mapping of files onto disk storage.
e) Backup of files on stable (non-volatile) storage.
f) Protection and security of the files.

6. Protection

The various processes in an operating system must be protected from each other’s activities. For
that purpose, various mechanisms which can be used to ensure that the fi les, memory segment,
CPU and other resources can be operated on only by those processes that have gained proper
authorization from the operating system.

Example: Memory addressing hardware ensures that a process can only execute within its own
address space. The timer ensures that no process can gain control of the CPU without relinquishing
it. Finally, no process is allowed to do its own I/O, to protect the integrity of the various peripheral
devices. Protection refers to a mechanism for controlling the access of programs, processes, or users
to the resources defined by a computer controls to be imposed, together with some means of
enforcement. Protection can improve reliability by detecting latent errors at the interfaces between
component subsystems. Early detection of interface errors can often prevent contamination of a
healthy subsystem by a subsystem that is malfunctioning. An unprotected resource cannot defend
against use (or misuse) by an unauthorized or incompetent user.

7. Networking Management

A distributed system is a collection of processors that do not share memory or a clock. Instead, each
processor has its own local memory, and the processors communicate with each other through
various communication lines, such as high-speed buses or telephone lines. Distributed systems
vary in size and function. They may involve microprocessors, workstations, minicomputers, and
large general-purpose computer systems. The processors in the system are connected through a
communication network, which can be configured in the number of different ways. The network
may be fully or partially connected. The communication network design must consider routing and
connection strategies and the problems of connection and security. A distributed system provides
the user with access to the various resources the system maintains. Access to a shared resource
allows computation speed-up, data availability, and reliability.

Lovely Professional University4

Unit 01: Introduction to Operating System

Notes

8. Command Interpretation

One of the most important components of an operating system is its command interpreter. The
command interpreter is the primary interface between the user and the rest of the system. Many
commands are given to the operating system by control statements. When a new job is started in a
batch system or when a user logs-in to a time-shared system, a program which reads and interprets
control statements is automatically executed. This program is variously called (1) the control card
interpreter, (2) the command line interpreter, (3) the shell (in Unix), and so on. Its function is quite
simple: get the next command statement and execute it. The command statements themselves deal
with process management, I/O handling, secondary storage management, main memory
management, fi le system access, protection, and networking.

1.4 Types of Operating System
Modern computer operating systems may be classified into three groups, which are
distinguishedby the nature of interaction that takes place between the computer user and his or her
programduring its processing. The three groups are called batch, time-sharing and real-time
operatingsystems.

1. Batch Processing Operating System
In a batch processing operating system environment user submit jobs to a central place wherethese
jobs are collected into a batch, and subsequently placed on an input queue at the computerwhere
they will be run. In this case, the user has no interaction with the job during its processing,and the
computer’s response time is the turnaround time the time from submission of the jobuntil execution
is complete, and the results are ready for return to the person who submitted thejob.

2. Time Sharing
Another mode for delivering computing services is provided by time sharing operatingsystems. In
this environment a computer provides computing services to several or many usersconcurrently
on-line. Here, the various users are sharing the central processor, the memory, andother resources
of the computer system in a manner facilitated, controlled, and monitored by theoperating system.
The user, in this environment, has nearly full interaction with the programduring its execution, and
the computer’s response time may be expected to be no more than afew second.

3. Real-time Operating System (RTOS)
The third class is the real time operating systems, which are designed to service those
applicationswhere response time is of the essence in order to prevent error, misrepresentation or
even disaster.Examples of real time operating systems are those which handle airlines reservations,
machinetool control, and monitoring of a nuclear power station. The systems, in this case, are
designed tobeinterrupted by external signals that require the immediate attention of the computer
system.These real time operating systems are used to control machinery, scientific instruments and
industrial systems. An RTOS typically has very little user-interface capability, and no end-
userutilities. A very important part of an RTOS is managing the resources of the computer so thata
particular operation executes in precisely the same amount of time every time it occurs. In
acomplex machine, having a part move more quickly just because system resources are
availablemay be just as catastrophic as having it not move at all because the system is busy.A
number of other definitions are important to gain an understanding of operating systems:

4. Multiprogramming Operating System
A multiprogramming operating system is a system that allows more than one active user
program(or part of user program) to be stored in main memory simultaneously. Thus, it is evident
that atime-sharing system is a multiprogramming system, but note that a multiprogramming
systemis not necessarily a time-sharing system. A batch or real time operating system could, and
indeedusually does, have more than one active user program simultaneously in main storage.
Anotherimportant, and all too similar, term is “multiprocessing”.

Lovely Professional University 5

Operating System

Notes

Primary Memory

MONITOR
PROGRAM 1
PROGRAM 2

. . .

. . .

PROGRAM N

Figure 2.2: Memory Layout in Multiprogramming Environment

Buffering and Spooling improve system performance by overlapping the input, output
andcomputation of a single job, but both of them have their limitations. A single user cannot
alwayskeep CPU or I10 devices busy at all times. Multiprogramming offers a more efficient
approachto increase system performance. In order to increase the resource utilization, systems
supportingmultiprogramming approach allow more than one job (program) to reside in the
memory toutilize CPU time at any moment. More number of programs competing for system
resourcesbetter will mean better resource utilization.The idea is implemented as follows. The main
memory of a system contains more than oneprogram (Figure 2.2).The operating system picks one of
the programs and starts executing. During execution ofprogram 1 it needs some I/O operation to
complete in a sequential execution environment(Figure 2.3a). The CPU would then sit idle whereas
in a multiprogramming system, (Figure 2.3b)the operating system will simply switch over to the
next program (program 2).
When that program needs to wait for some 110 operation, it switches over to program 3 and soon. If
there is no other new program left in the main memory, the CPU will pass its control backto the
previous programs.
Multiprogramming has traditionally been employed to increase the resources utilization of
acomputer system and to support multiple simultaneously interactive users (terminals).

5. Multiprocessing System
A multiprocessing system is a computer hardware configuration that includes more than
oneindependent processing unit. The term multiprocessing is generally used to refer to
largecomputer hardware complexes found in major scientific c or commercial applications.A
multiprocessor system is simply a computer that has >1 & not <=1 CPU on its motherboard. Ifthe
operating system is built to take advantage of this, it can run different processes (or
differentthreads belonging to the same process) on different CPUs.
Today’s operating systems strive to make the most efficient use of a computer’s resources.Most of
this efficiency is gained by sharing the machine’s resources among several tasks(multi-processing).
Such “large-grain” resource sharing is enabled by operating systems withoutany additional
information from the applications or processes. All these processes can potentiallyexecute
concurrently, with the CPU (or CPUs) multiplexed among them. Newer operatingsystems provide
mechanisms that enable applications to control and share machine resources ata finer grain-, that is,
at the threads level. Just as multiprocessing operating systems can performmore than one task
concurrently by running more than a single process, a process can performmore than one task by
running more than a single thread.

6. Networking Operating System
A networked computing system is a collection of physical interconnected computers. Theoperating
system of each of the interconnected computers must contain, in addition to its ownstand-alone
functionality, provisions for handing communication these additions do not changethe essential
structure of the operating systems.

7. Distributed Operating System
A distributed computing system consists of a number of computers that are connected
andmanaged so that they automatically share the job processing load among the
constituentcomputers, or separate the job load as appropriate particularly configured processors.
Such asystem requires an operating system which, in addition to the typical stand-alone
functionality,provides coordination of the operations and information flow among the component
computers.The networked and distributed computing environments and their respective operating

Lovely Professional University6

Unit 01: Introduction to Operating System

Notes

systemsare designed with more complex functional capabilities. In a network operating system, the
usersare aware of the existence of multiple computers, and can log in to remote machines and
copyfiles from one machine to another. Each machine runs its own local operating system and has
itsown user (or users).A distributed operating system, in contrast, is one that appears to its users as
a traditionaluni-processor system, even though it is actually composed of multiple processors. In a
truedistributed system, users should not be aware of where their programs are being run or
wheretheir files are located; that should all be handled automatically and efficiently by the
operatingsystem.
True distributed operating systems require more than just adding a little code to a uni-
processoroperating system, because distributed and centralized systems differ in critical ways.
Distributedsystems, for example, often allow program to run on several processors at the same
time, thusrequiring more complex processor scheduling algorithms in order to optimize the
amount oparallelism achieved.

8. Operating Systems for Embedded Devices
As embedded systems (PDAs, cellphones, point-of-sale devices, VCR’s, industrial robot control,or
even your toaster) become more complex hardware-wise with every generation, and morefeatures
are put into them day-by-day, applications they run require more and more to run onactual
operating system code in order to keep the development time reasonable. Some of thepopular OS
are:

1. Nexus’s Conic: an embedded operating system for ARM processors.
2. Sun’s Java OS: a standalone virtual machine not running on top of any other

OS;mainlytargeted at embedded systems.
3. Palm Computing’s Palm OS: Currently the leader OS for PDAs, has many

applications andsupporting companies.
4. Microsoft’s Windows CE and Windows NT Embedded OS.

9. Single Processor System
In theory, every computer system may be programmed in its machine language, with no
systemssoftware support. Programming of the “bare-machines” was customary for early
computersystems. A slightly more advanced version of this mode of operating is common for the
simpleevaluation boards that are sometimes used in introductory microprocessor design and
interfacingcourses.Programs for the bare machine can be developed by manually translating
sequences of instructionsinto binary or some other code whose base is usually an integer power of
2. Instructions and dataare then fed into the computer by means of console switches, or perhaps
through a hexadecimalkeyboard. Programs are started by loading the program counter with the
address of the firstinstruction. Results of execution are obtained by examining the contents of the
relevant registersand memory locations. Input/output devices, if any, must be controlled by the
executingprogram directly, say, by reading and writing the related I/O ports. Evidently,
programming ofthe bare machine results in low productivity of both users and hardware. The long
and tediousprocess of program and data entry practically precludes execution of all but very short
programsin such an environment.

The next significant evolutionary step in computer system usage came about with the adventof
input/output devices, such as punched cards and paper tape, and of language
translators.Programs, now coded in a programming language, are translated into executable form
bya computer program, such as compiler or an interpreter. Another program, called the
loader,automates the process of loading executable programs into memory. The user places a
programand its input data on an input device, and the loader transfers information from that input
deviceinto memory. After transferring control to the loaded program by manual or automatic
means,execution of the program commences. The executing program reads its input from the
designatedinput device and may produce some output on an output device, such as a printer or
displayscreen. Once in memory, the program may be rerun with different set of input data.The
mechanics of development and preparation of programs in such environments are quite slowand
cumbersome due to serial execution of programs and numerous manual operations involvedin the
process. In a typical sequence, the editor program is loaded to prepare the source code ofthe user
program. The next step is to load and execute the language translator and to provideit with the
source code of the user program. When serial input devices, such as card readers,are used,
multiple-pass language translators may require the source code to be repositionedfor reading
during each pass. If syntax errors are detected, the whole process must be repeatedfrom the

Lovely Professional University 7

Operating System

Notes

beginning. Eventually, the object code produced from the syntactically correct sourcecode is loaded
and executed. If run-time errors are detected, the state of the machine can beexamined and
modified by means of console switches, or with the assistance of a program calleda debugger. The
mode of operation described here was initially used in late fifties, but it was alsocommon in low-
end microcomputers of early eighties with cassettes as I/O devices.In addition to language
translators, system software includes the loader and possibly editor anddebugger programs. Most
of them use input/output devices and thus must contain some codeto exercise those devices. Since
many user programs also use input/output devices, the logicalrefinement is to provide a collection
of standard I/O routines for the use of all programs.In the described system, I/O routines and the
loader program represent a rudimentary formof an operating system. Although quite crude, it still
provides an environment for execution ofprograms far beyond what is available on the bare
machine. Language translators, editors, anddebuggers are system programs that rely on the
services of, but are not generally regarded aspart of, the operating system.Although a definite
improvement over the bare machine approach, this mode of operation isobviously not very
efficient. Running of the computer system may require frequent manual loadingof programs and
data. This results in low utilization of system resources. User productivity,especially in multiuser
environments, is low as users await their turn at the machine. Even withsuch tools as editors and
debuggers, program development is very slow and is ridden withmanual program and data
loading.

10. Parallel Processing System
Parallel operating systems are primarily concerned with managing the resources of
parallelmachines. This task faces many challenges: application programmers demand all the
performancepossible, many hardware configurations exist and change very rapidly, yet the
operating systemmust increasingly be compatible with the mainstream versions used in personal
computers andworkstations due both to user pressure and to the limited resources available for
developingnew versions of these system. There are several components in an operating system that
can beparallelized. Most operating systems do not approach all of them and do not support
parallelapplications directly. Rather, parallelism is frequently exploited by some additional
softwarelayer such as a distributed fi le system, distributed shared memory support or libraries
andservices that support particular parallel programming languages while the operating
systemmanages concurrent task execution.The convergence in parallel computer architectures has
been accompanied by a reduction in thediversity of operating systems running on them. The
current situation is that most commerciallyavailable machines run a flavor of the UNIX OS (Digital
UNIX, IBM AIX, HP UX, Sun Solaris,Linux).Others run a UNIX based microkernel with reduced
functionality to optimize the use of the CPU,such as Cray Research’s UNICOS. Finally, a number of
shared memories MIMD machines runMicrosoft Windows NT (soon to be superseded by the high-
end variant of Windows 2000).There are a number of core aspects to the characterization of a
parallel computer operatingsystem: general features such as the degrees of coordination, coupling
and transparency; andmore particular aspects such as the type of process management, inter-
process communication,parallelism and synchronization and the programming model.

11. Multitasking
In computing, multitasking is a method where multiple tasks, also known as processes,
sharecommon processing resources such as a CPU. In the case of a computer with a single CPU,
onlyone task is said to be running at any point in time, meaning that the CPU is actively
executinginstructions for that task. Multitasking solves the problem by scheduling which task may
be theone running at any given time, and when another waiting task gets a turn. The act of
reassigninga CPU from one task to another one is called a context switch. When context switches
occurfrequently enough the illusion of parallelism is achieved. Even on computers with more
thanone CPU (called multiprocessor machines), multitasking allows many more tasks to be run
thanthere are CPUs.In the early ages of the computers, they were considered advanced card
machines and thereforethe jobs they performed where like: “find all females in this bunch of cards
(or records)”. Therefore, utilization was high since one delivered a job to the computing
department, which prepared andexecuted the job on the computer, delivering the final result to
you. The advances in electronicengineering increased the processing power several times, now
leaving input/output devices(card readers, line printers) far behind. This means that the CPU had
to wait for the data it requiredto perform a given task. Soon, engineers thought: “what if we could
both prepare, process andoutput data at the same time” and multitasking was born. Now one could
read data for thenext job while executing the current job and outputting the results of a previously
job, therebyincreasing the utilization of the very expensive computer.Cheap terminals allowed the
users themselves to input data to the computer and to execute jobs(having the department do it

Lovely Professional University8

Unit 01: Introduction to Operating System

Notes

often took days) and see results immediately on the screen, whichintroduced what was called
interactive tasks. They required a console to be updated when a key was pressed on the keyboard
(again a task with slow input). Same thing happens today, whereyour computer actually does no
work most of the time - it just waits for your input. Therefore, using multitasking where several
tasks run on the same computer improves performance.Multitasking is the process of letting the
operating system performs multiple task at what seemsto the user simultaneously. In SMP
(Symmetric Multi-Processor systems) this is the case, sincethere are several CPU’s to execute
programs on - in systems with only a single CPU this isdone by switching execution very rapidly
between each program, thus giving the impression of simultaneous execution. This process is also
known as task switching or timesharing. Practicallyall modern OS has this ability.Multitasking is,
on single-processor machines, implemented by letting the running processown the CPU for a while
(a time slice) and when required gets replaced with another process,which then owns the CPU. The
two most common methods for sharing the CPU time is eithercooperative multitasking or
preemptive multitasking.

a) Cooperative Multitasking: The simplest form of multitasking is cooperative multitasking.
It letsthe programs decide when they wish to let other tasks run. This method is not good
since it let some process monopolies the CPU and never let other processes run. This way
a program may be reluctant to give away processing power in the fear of another process
hogging all CPU-time.Early versions of the MacOS (until MacOS 8) and versions of
Windows earlier than Win95/WinNT used cooperative multitasking (Win95 when
running old apps).

b) Preemptive Multitasking: Preemptive multitasking moves the control of the CPU to the
OS,letting each process run for a given amount of time (a time slice) and then switching to
anothertask. This method prevents one process from taking complete control of the system
and therebymaking it seem as if it is crashed. This method is most common today,
implemented by amongothers OS/2, Win95/98, WinNT, Unix, Linux, BeOS, QNX, OS9
and most mainframe OS. Theassignment of CPU time is taken care of by the scheduler.

1.5 Operating System: Examples
Disk Operating System (DOS)
DOS (Disk Operating System) was the first widely-installed operating system for
personalcomputers. It is a master control program that is automatically run when you start your
personalcomputer (PC). DOS stays in the computer all the time letting you run a program and
managefiles. It is a single-user operating system from Microsoft for the PC. It was the firstOS for the
PCand is the underlying control program for Windows 3.1, 95, 98 and ME. Windows NT, 2000
andXP emulate DOS in order to support existing DOS applications.

UNIX
UNIX operating systems are used in widely-sold workstation products from Sun
Microsystems,Silicon Graphics, IBM, and a number of other companies. The UNIX environment
and theclient/server program model were important elements in the development of the Internet
andthe reshaping of computing as centered in networks rather than in individual computers.
Linux,a UNIX derivative available in both “free software” and commercial versions, is increasing
inpopularity as an alternative to proprietary operating systems.UNIX is written in C. Both UNIX
and C were developed by AT&T and freely distributed togovernment and academic institutions,
causing it to be ported to a wider variety of machinefamilies than any other operating system. As a
result, UNIX became synonymous with “opensystems”.
UNIX is made up of the kernel, fi le system and shell (command line interface). The major shells
arethe Bourne shell (original), C shell and Korn shell. The UNIX vocabulary is exhaustive with
morethan 600 commands that manipulate data and text in every way conceivable. Many
commandsare cryptic, but just as Windows hid the DOS prompt, the Motif GUI presents a
friendlier imageto UNIX users. Even with its many versions, UNIX is widely used in mission
critical applicationsfor client/server and transaction processing systems. The UNIX versions that
are widely usedare Sun’s Solaris, Digital’s UNIX, HP’s HP-UX, IBM’s AIX and SCO’s UnixWare. A
large numberof IBM mainframes also run UNIX applications, because the UNIX interfaces were

Lovely Professional University 9

Operating System

Notes

added toMVS and OS/390, which have obtained UNIX branding. Linux, another variant of UNIX,
is alsogaining enormous popularity.

Windows
Windows is a personal computer operating system from Microsoft that, together with
somecommonly used business applications such as Microsoft Word and Excel, has become a de
facto“standard” for individual users in most corporations as well as in most homes. Windows
containsbuilt-in networking, which allows users to share fi les and applications with each other if
theirPC’s are connected to a network. In large enterprises, Windows clients are often connected to
anetwork of UNIX and NetWare servers. The server versions of Windows NT and 2000 are
gainingmarket share, providing a Windows-only solution for both the client and server. Windows
issupported by Microsoft, the largest software company in the world, as well as the
Windowsindustry at large, which includes tens of thousands of software developers.This
networking support is the reason why Windows became successful in the first place.However,
Windows 95, 98, ME, NT, 2000 and XP are complicated operating environments.Certain
combinations of hardware and software running together can cause problems, andtroubleshooting
can be daunting. Each new version of Windows has interface changes thatconstantly confuse users
and keep support people busy, and Installing Windows applicationsis problematic too. Microsoft
has worked hard to make Windows 2000 and Windows XP moreresilient to installation of problems
and crashes in general.

Macintosh
The Macintosh (often called “the Mac”), introduced in 1984 by Apple Computer, was the
firstwidely-sold personal computer with a Graphical User Interface (GUI). The Mac was designedto
provide users with a natural, intuitively understandable, and, in general, “user-friendly”computer
interface. This includes the mouse, the use of icons or small visual images to representobjects or
actions, the point-and-click and click-and-drag actions, and a number of windowoperation ideas.
Microsoft was successful in adapting user interface concepts first made popularby the Mac in its
first Windows operating system. The primary disadvantage of the Mac is thatthere are fewer Mac
applications on the market than for Windows. However, all the fundamentalapplications are
available, and the Macintosh is a perfectly useful machine for almost everybody.Data compatibility
between Windows and Mac is an issue, although it is often overblown andreadily solved.The
Macintosh has its own operating system, Mac OS which, in its latest version is called Mac OSX.
Originally built on Motorola’s 68000 series microprocessors, Mac versions today are poweredby the
PowerPC microprocessor, which was developed jointly by Apple, Motorola, and IBM.While Mac
users represent only about 5% of the total numbers of personal computer users, Macsare highly
popular and almost a cultural necessity among graphic designers and online visualartists and the
companies they work for.Task DOS is a character-based operating system what about Windows
operatingsystem.

1.6 Components of Operating System:

Operating System

Notes

added toMVS and OS/390, which have obtained UNIX branding. Linux, another variant of UNIX,
is alsogaining enormous popularity.

Windows
Windows is a personal computer operating system from Microsoft that, together with
somecommonly used business applications such as Microsoft Word and Excel, has become a de
facto“standard” for individual users in most corporations as well as in most homes. Windows
containsbuilt-in networking, which allows users to share fi les and applications with each other if
theirPC’s are connected to a network. In large enterprises, Windows clients are often connected to
anetwork of UNIX and NetWare servers. The server versions of Windows NT and 2000 are
gainingmarket share, providing a Windows-only solution for both the client and server. Windows
issupported by Microsoft, the largest software company in the world, as well as the
Windowsindustry at large, which includes tens of thousands of software developers.This
networking support is the reason why Windows became successful in the first place.However,
Windows 95, 98, ME, NT, 2000 and XP are complicated operating environments.Certain
combinations of hardware and software running together can cause problems, andtroubleshooting
can be daunting. Each new version of Windows has interface changes thatconstantly confuse users
and keep support people busy, and Installing Windows applicationsis problematic too. Microsoft
has worked hard to make Windows 2000 and Windows XP moreresilient to installation of problems
and crashes in general.

Macintosh
The Macintosh (often called “the Mac”), introduced in 1984 by Apple Computer, was the
firstwidely-sold personal computer with a Graphical User Interface (GUI). The Mac was designedto
provide users with a natural, intuitively understandable, and, in general, “user-friendly”computer
interface. This includes the mouse, the use of icons or small visual images to representobjects or
actions, the point-and-click and click-and-drag actions, and a number of windowoperation ideas.
Microsoft was successful in adapting user interface concepts first made popularby the Mac in its
first Windows operating system. The primary disadvantage of the Mac is thatthere are fewer Mac
applications on the market than for Windows. However, all the fundamentalapplications are
available, and the Macintosh is a perfectly useful machine for almost everybody.Data compatibility
between Windows and Mac is an issue, although it is often overblown andreadily solved.The
Macintosh has its own operating system, Mac OS which, in its latest version is called Mac OSX.
Originally built on Motorola’s 68000 series microprocessors, Mac versions today are poweredby the
PowerPC microprocessor, which was developed jointly by Apple, Motorola, and IBM.While Mac
users represent only about 5% of the total numbers of personal computer users, Macsare highly
popular and almost a cultural necessity among graphic designers and online visualartists and the
companies they work for.Task DOS is a character-based operating system what about Windows
operatingsystem.

1.6 Components of Operating System:

Operating System

Notes

added toMVS and OS/390, which have obtained UNIX branding. Linux, another variant of UNIX,
is alsogaining enormous popularity.

Windows
Windows is a personal computer operating system from Microsoft that, together with
somecommonly used business applications such as Microsoft Word and Excel, has become a de
facto“standard” for individual users in most corporations as well as in most homes. Windows
containsbuilt-in networking, which allows users to share fi les and applications with each other if
theirPC’s are connected to a network. In large enterprises, Windows clients are often connected to
anetwork of UNIX and NetWare servers. The server versions of Windows NT and 2000 are
gainingmarket share, providing a Windows-only solution for both the client and server. Windows
issupported by Microsoft, the largest software company in the world, as well as the
Windowsindustry at large, which includes tens of thousands of software developers.This
networking support is the reason why Windows became successful in the first place.However,
Windows 95, 98, ME, NT, 2000 and XP are complicated operating environments.Certain
combinations of hardware and software running together can cause problems, andtroubleshooting
can be daunting. Each new version of Windows has interface changes thatconstantly confuse users
and keep support people busy, and Installing Windows applicationsis problematic too. Microsoft
has worked hard to make Windows 2000 and Windows XP moreresilient to installation of problems
and crashes in general.

Macintosh
The Macintosh (often called “the Mac”), introduced in 1984 by Apple Computer, was the
firstwidely-sold personal computer with a Graphical User Interface (GUI). The Mac was designedto
provide users with a natural, intuitively understandable, and, in general, “user-friendly”computer
interface. This includes the mouse, the use of icons or small visual images to representobjects or
actions, the point-and-click and click-and-drag actions, and a number of windowoperation ideas.
Microsoft was successful in adapting user interface concepts first made popularby the Mac in its
first Windows operating system. The primary disadvantage of the Mac is thatthere are fewer Mac
applications on the market than for Windows. However, all the fundamentalapplications are
available, and the Macintosh is a perfectly useful machine for almost everybody.Data compatibility
between Windows and Mac is an issue, although it is often overblown andreadily solved.The
Macintosh has its own operating system, Mac OS which, in its latest version is called Mac OSX.
Originally built on Motorola’s 68000 series microprocessors, Mac versions today are poweredby the
PowerPC microprocessor, which was developed jointly by Apple, Motorola, and IBM.While Mac
users represent only about 5% of the total numbers of personal computer users, Macsare highly
popular and almost a cultural necessity among graphic designers and online visualartists and the
companies they work for.Task DOS is a character-based operating system what about Windows
operatingsystem.

1.6 Components of Operating System:

Lovely Professional University10

Unit 01: Introduction to Operating System

Notes

Figure: Components of Operating System

Modern general-purpose computers, including personal computers and mainframes, have an
operating system to run other programs, such as application software. Examples of operating
systems for personal computers include Microsoft Windows, Mac OS (and Darwin), Unix, and
Linux. The lowest level of any operating system is its kernel. This is the first layer of software
loaded into memory when a system boots or starts up. The kernel provides access to various
common core services to all other system and application programs.

These services include, but are not limited to disk access, memory management, task scheduling,
and access to other hardware devices. As the kernel, an operating system is often distributed with
tools for programs to display and manage a graphical user interface (although Windows and the
Macintosh have these tools built into the operating system), as well as utility programs for tasks
such as managing files and configuring the operating system. They are also often distributed with
application software that does not relate directly to the operating system’s core function, but which
the operating system distributor finds advantageous to supply with the operating system. The
delineation between the operating system and application software is not precise and is
occasionally subject to controversy. From commercial or legal points of view, the delineation can
depend on the contexts of the interests involved. For example, one of the key questions in the
United States v. Microsoft antitrust trial was whether Microsoft’s web browser was part of its
operating system or whether it was a separable piece of application software. Like the term
“operating system” itself, the question of what exactly should form the “kernel” is subject to some
controversy, with debates over whether things like file systems should be included in the kernel.
Various camps advocate microkernels, monolithic kernels, and so on. Operating systems are used
on most, but not all, computer systems. The simplest computers, including the smallest embedded
systems and many of the first computers, did not have operating systems. Instead, they relied on
the application programs to manage the minimal hardware themselves, perhaps with the aid of
libraries developed for the purpose. Commercially supplied operating systems are present on
virtually all modern devices described as computers, from personal computers to mainframes, as
well as mobile computers such as PDAs and mobile phones.

The structure of OS consists of 4 layers

1. Hardware
2. Software (Operating System)
3. System Programs
4. Application Programs

1. Hardware: The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the system.

2. Software (Operating System): The operating system controls and coordinates the use of the
hardware among the various application programs for the various users.

3. System Programs: This layer consists of compilers, Assemblers, linker etc.
4. Application Programs: The application programs—such as word processors, spreadsheets,

compilers, and web browsers—define the ways in which these resources are used to solve
users' computing problems.

We can also view a computer system as consisting of hardware, software, and data. The operating
system provides the means for proper use of these resources in the operation of the computer
system. An operating system is similar to a government. Like a government, it performs no useful
function by itself. It simply provides an environment within which other programs can do useful
work.

1.7 Abstract View of System Components
Computer system can be divided into four components:

1) Hardware: - provides basic computing resources like the CPU, memory, I/O devices etc.

Lovely Professional University 11

Operating System

Notes

2) Operating system: - controls and coordinates use of hardware among various applications
and users.

3) Application programs: - define the ways in which the system resources are used to solve
the computing problems of the users. For example: Word processors, compilers, web
browsers, database systems and video games.

4) Users: – People, machines, other computers

Figure: Abstract View of System Components

Figure: Operating System Concepts

1.8 Viewpoints of OS

1. User View
2. System View

1. User View -The user's view of the computer varies according to the interface being used. Most
computer users sit in front of a PC, consisting of a monitor, keyboard, mouse, and system unit.
Such a system is designed for one user to monopolize its resources. The goal is to maximize the
work (or play) that the user is performing. In this case, the operating system is designed mostly
for ease of use, with some attention paid to performance and none paid to resource
utilization— how various hardware and software resources are shared. Performance is, of
course, important to the user; but rather than resource utilization, such systems are optimized
for a single-user experience. In other cases, a user sits at a terminal connected to a mainframe
or minicomputer. Other users can connect to the same computer via different terminals. These

Hardware

Operating System

Notes

2) Operating system: - controls and coordinates use of hardware among various applications
and users.

3) Application programs: - define the ways in which the system resources are used to solve
the computing problems of the users. For example: Word processors, compilers, web
browsers, database systems and video games.

4) Users: – People, machines, other computers

Figure: Abstract View of System Components

Figure: Operating System Concepts

1.8 Viewpoints of OS

1. User View
2. System View

1. User View -The user's view of the computer varies according to the interface being used. Most
computer users sit in front of a PC, consisting of a monitor, keyboard, mouse, and system unit.
Such a system is designed for one user to monopolize its resources. The goal is to maximize the
work (or play) that the user is performing. In this case, the operating system is designed mostly
for ease of use, with some attention paid to performance and none paid to resource
utilization— how various hardware and software resources are shared. Performance is, of
course, important to the user; but rather than resource utilization, such systems are optimized
for a single-user experience. In other cases, a user sits at a terminal connected to a mainframe
or minicomputer. Other users can connect to the same computer via different terminals. These

Computer
Systems

Hardware Operating
system

Application
programs

Operating System

Notes

2) Operating system: - controls and coordinates use of hardware among various applications
and users.

3) Application programs: - define the ways in which the system resources are used to solve
the computing problems of the users. For example: Word processors, compilers, web
browsers, database systems and video games.

4) Users: – People, machines, other computers

Figure: Abstract View of System Components

Figure: Operating System Concepts

1.8 Viewpoints of OS

1. User View
2. System View

1. User View -The user's view of the computer varies according to the interface being used. Most
computer users sit in front of a PC, consisting of a monitor, keyboard, mouse, and system unit.
Such a system is designed for one user to monopolize its resources. The goal is to maximize the
work (or play) that the user is performing. In this case, the operating system is designed mostly
for ease of use, with some attention paid to performance and none paid to resource
utilization— how various hardware and software resources are shared. Performance is, of
course, important to the user; but rather than resource utilization, such systems are optimized
for a single-user experience. In other cases, a user sits at a terminal connected to a mainframe
or minicomputer. Other users can connect to the same computer via different terminals. These

Application
programs Users

Lovely Professional University12

Unit 01: Introduction to Operating System

Notes

users share resources and may exchange information. The operating system, in such cases, is
designed to maximize resource utilization— to assure that all available CPU time, memory,
and I/O are used efficiently, and that no individual user takes more than her fair share.In still
other cases, users sit at workstations connected to networks of other workstations and servers.
These users have dedicated resources at their disposal, but they also share resources such as
networking and servers—file, compute, and print servers. Therefore, their operating system is
designed to compromise between individual usability and resource utilization.

2. System View - From the computer's point of view, the operating system is the program most
intimately involved with the hardware.In this context, we can view an operating system as a
resource allocator.The operating system acts as the manager of these resources. A computer
system has many resources that may be required to solve a problem, like the CPU time,
memory space, file-storage space, I/O devices, and so on. A slightly different view of an
operating system emphasizes the need to control the various I/O devices and user programs.
An operating system is a control program. A control program manages the execution of user
programs to prevent errors and improper use of the computer. It is especially concerned with
the operation and control of I/O devices.

1.9 Evolution of OS
The evolution of operating systems went through seven major phases.

• Six of them significantly changed the ways in which users accessed computers through the
open shop, batch processing, multiprogramming, timesharing, personal computing, and
distributed systems.

• In the seventh phase the foundations of concurrent programming were developed and
demonstrated in model operating systems.

Table: Phases during the evolution of operating system

Major Phases Technical Innovations Operating Systems
Open Shop The idea of OS IBM 701 open shop (1954)
Batch Processing Tape batching,

First-in, first-out scheduling
BKS system (1961)

Multi-Programming Processor multiplexing,
Indivisible operations, Demand
paging, Input/output spooling,
Priority scheduling, Remote job
entry

Atlas supervisor (1961),
Exec II system (1966)

Timesharing Simultaneous user interaction,
On-line file systems

Multics file system (1965),
Unix (1974)

Concurrent Programming Hierarchical systems, Extensible
kernels, Parallel programming
concepts, Secure parallel
languages

RC 4000 system (1969),
13 Venus system (1972),
14 Boss 2 system (1975).

Personal Computing Graphic user interfaces OS 6 (1972)
Pilot system (1980)

Distributed Systems Remote servers WFS file server (1979) Unix
United RPC (1982)
24 Amoeba system (1990)

Summary
Operating systems may be classified by both how many tasks they can perform“simultaneously”
and by how many users can be using the system “simultaneously”. Thatis: single-user or multi-user
and single-task or multi-tasking.A multi-user system must clearly be multi-tasking.A possible
solution to the external fragmentation problem is to permit the logical addressspace of a process to
be noncontiguous, thus allowing a process to be allocated physicalmemory wherever the latter is
available.Physical memory is broken into fixed-sized blocks called frames. Logical memory is also

Lovely Professional University 13

Operating System

Notes

broken into blocks of the same size called pages.Memory protection in a paged environment is
accomplished by protection bit that areassociated with each frame.Segmentation is a memory-
management scheme that supports this user view of memory.Segmentation may then cause
external fragmentation, when all blocks of free memory are too small to accommodate a segment.

Keywords

 Clustered System: A clustered system is a group of loosely coupled computers that work
togetherclosely so that in many respects they can be viewed as though they are a single
computer.

 Distributed System: A distributed system is a computer system in which the resources
residesin separate units connected by a network, but which presents to the user a uniform
computingenvironment.

 Real-time Operating System: A Real-time Operating System (RTOS) is a multitasking
operatingsystem intended for real-time applications. Such applications include embedded
systems(programmable thermostats, household appliance controllers, mobile telephones),
industrialrobots, spacecraft, industrial control and scientific research equipment.

Self Assessment

1. A is a program in execution.
2. is a large array of words or bytes, each with its own address.
3. A is a collection of related information defined by its creator.
4. A provides the user with access to the various resources the systemmaintains.
5. An RTOS typically has very little user-interface capability, and no
6. A cannot always keep CPU or I10 devices busy at all times.
7. A multiprocessing system is a computer hardware configuration that includes more than
8. independent processing unit.
9. A system is a collection of physical interconnected computers.
10. A system task, such as, is also a process.
11. The process is achieved through a sequence of reads or writes of specific memoryaddress.

12. Which is not the function of the operating system?
A. Memory management
B. Disk management
C. Application management
D. Virus protection

13. Which of the following is a goal of the operating System?
A. Execute user programs and make solving user problems easier.
B. Make the computer system convenient to use.
C. Use the computer hardware in an efficient manner.
D. All of the given choices

14. Which of the following statement is false with respect to the operating systems?
A. Operating System is a software, which makes a computer to work.
B. It is the software that enables all the programs we use.

Lovely Professional University14

Unit 01: Introduction to Operating System

Notes

C. The OS does not organize or control the hardware.
D. OS acts as an interface between the application programs and the machine hardware.

15. Which of the following is not a component of the operating system?
A. Hardware
B. Application Programs
C. Application programs
D. None of the given choices

AnswersSelf Assessment

1. process 2. Memory 3. file 4. distributed
system

5. end-user
utilities

6. single user 7. one 8. networked
computing

9. spooling 10. Interaction

11. Memory
Management
Process

12. D 13. D 14. C 15. D

Review Questions

1. Write short note on Distributed System.
2. Explain the nature of real time system.
3. What is batch system? What are the shortcomings of early batch systems? Explain it.
4. Under what circumstances would a user be better off using a timesharing system rather than a

PC or a single-user workstation?
5. Describe real time operating system. Give an example of it.
6. Explain parallel system with suitable example.
7. Write the differences between the real time system and personal system.
8. “Most modern computer systems use disks as the primary on-line storage of information,of

both programs and data”. Explain.
9. Write short note on networking.
10. “The operating system picks one of the programs and starts executing”. Discuss.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and
Implementation,Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Unit 01: Introduction to Operating System

Notes

C. The OS does not organize or control the hardware.
D. OS acts as an interface between the application programs and the machine hardware.

15. Which of the following is not a component of the operating system?
A. Hardware
B. Application Programs
C. Application programs
D. None of the given choices

AnswersSelf Assessment

1. process 2. Memory 3. file 4. distributed
system

5. end-user
utilities

6. single user 7. one 8. networked
computing

9. spooling 10. Interaction

11. Memory
Management
Process

12. D 13. D 14. C 15. D

Review Questions

1. Write short note on Distributed System.
2. Explain the nature of real time system.
3. What is batch system? What are the shortcomings of early batch systems? Explain it.
4. Under what circumstances would a user be better off using a timesharing system rather than a

PC or a single-user workstation?
5. Describe real time operating system. Give an example of it.
6. Explain parallel system with suitable example.
7. Write the differences between the real time system and personal system.
8. “Most modern computer systems use disks as the primary on-line storage of information,of

both programs and data”. Explain.
9. Write short note on networking.
10. “The operating system picks one of the programs and starts executing”. Discuss.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and
Implementation,Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Unit 01: Introduction to Operating System

Notes

C. The OS does not organize or control the hardware.
D. OS acts as an interface between the application programs and the machine hardware.

15. Which of the following is not a component of the operating system?
A. Hardware
B. Application Programs
C. Application programs
D. None of the given choices

AnswersSelf Assessment

1. process 2. Memory 3. file 4. distributed
system

5. end-user
utilities

6. single user 7. one 8. networked
computing

9. spooling 10. Interaction

11. Memory
Management
Process

12. D 13. D 14. C 15. D

Review Questions

1. Write short note on Distributed System.
2. Explain the nature of real time system.
3. What is batch system? What are the shortcomings of early batch systems? Explain it.
4. Under what circumstances would a user be better off using a timesharing system rather than a

PC or a single-user workstation?
5. Describe real time operating system. Give an example of it.
6. Explain parallel system with suitable example.
7. Write the differences between the real time system and personal system.
8. “Most modern computer systems use disks as the primary on-line storage of information,of

both programs and data”. Explain.
9. Write short note on networking.
10. “The operating system picks one of the programs and starts executing”. Discuss.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and
Implementation,Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Lovely Professional University 15

Operating System

Notes

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley
&Sons,SeventhEdition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley
&Sons,SeventhEdition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley
&Sons,SeventhEdition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University16

Unit 02: Operating System Services

Notes

Unit 02: Operating System Services

CONTENTS

Objectives

Introduction

2.1 Operating System Functions

2.2 System Calls

2.3 Types of System Call

2.4 Standard C Library Example

2.5 Operating System Structure

2.6 Monolithic Systems

2.7 Client-server Model

2.8 Exokernel

2.9 Layered Structure

2.10 Virtual Machine

Keywords

Summary

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 learn the various Operating System Services.
 understand the command-Interpreter system in detail.
 analyze the various Operating System Functions.
 understand the Operating System Functions.
 understand the mechanism and use of OS services
 learn the types of system calls and the methods to invoke them
 Understand the relationship between the process, system calls and the operating system
 Learn the parameter and system call passing in OS.

Introduction
In computing, a system call is the mechanism used by an application program to request service
from the operating system based on the monolithic kernel or to system servers on operating
systems based on the microkernel-structure. Timings of requested service have to be strictly
predictable for application in real time systems — those are most advanced and secure. So far, the
only thing we have done was to use well defined kernel mechanisms to register /proc files and
device handlers. This is fine if you want to do something the kernel programmers thought you had
wanted, such as write a device driver. But what if you want to do something unusual, to change the
behavior of the system in some way? Then, you are mostly on your own.

Lovely Professional University 17

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

Every general-purpose computer must have an operating system to run other programs. Operating
systems perform basic tasks, such as recognizing input from the keyboard, sending output to the
display screen, keeping track of files and directories on the disk, and controlling peripheral devices
such as disk drives and printers. For large systems, the operating system has even greater
responsibilities and powers. It is like a traffic cop – it makes sure that different programs and users
running at the same time do not interfere with each other. The operating system is also responsible
for security, ensuring that unauthorized users do not access the system.

System calls provide an interface between the process and the operating system. System calls allow
user-level processes to request some services from the operating system which process itself is not
allowed to do. It is because of the critical nature of operations that the operating system itself does
them every time they are needed.

Example: For I/O a process involves a system call telling the operating system to read
or write particular area and this request is satisfied by the operating system.

The fact that improper use of the system can easily cause a system crash, thus the operating
systemisintroduced; it executes at the highest level of order and allows the applications to request
for aservice – a system call – which is implemented through hooking interrupt(s). A system call is
themechanism used by an application program to request service from the operating system.
Thereare different types of system call.

2.1 Operating System Functions
The main functions of operating systems are:

1. Process Management
2. Memory Management
3. Secondary Storage Management
4. I/O Management
5. File Management
6. Protection
7. Networking Management
8. Command Interpretation.

Process Management
The CPU executes a large number of programs. While its main concern is the execution of
userprograms, the CPU is also needed for other system activities. These activities are called
processes.A process is a program in execution. Typically, a batch job is a process. A time-shared
userprogram is a process. A system task, such as spooling, is also a process. For now, a process
maybe considered as a job or a time-shared program, but the concept is actually more general.The
operating system is responsible for the following activities in connection with
processesmanagement:

1. The creation and deletion of both user and system processes
2. The suspension and resumption of processes.
3. The provision of mechanisms for process synchronization
4. The provision of mechanisms for deadlock handling.

Memory Management
Memory is the most expensive part in the computer system. Memory is a large array of words
orbytes, each with its own address. Interaction is achieved through a sequence of reads or writes
ofspecific memory address. The CPU fetches from and stores in memory.

There are various algorithms that depend on the particular situation to manage the
memory.Selection of a memory management scheme for a specific system depends upon many
factors, butespecially upon the hardware design of the system. Each algorithm requires its own
hardwaresupport.

Operating System

Notes

Every general-purpose computer must have an operating system to run other programs. Operating
systems perform basic tasks, such as recognizing input from the keyboard, sending output to the
display screen, keeping track of files and directories on the disk, and controlling peripheral devices
such as disk drives and printers. For large systems, the operating system has even greater
responsibilities and powers. It is like a traffic cop – it makes sure that different programs and users
running at the same time do not interfere with each other. The operating system is also responsible
for security, ensuring that unauthorized users do not access the system.

System calls provide an interface between the process and the operating system. System calls allow
user-level processes to request some services from the operating system which process itself is not
allowed to do. It is because of the critical nature of operations that the operating system itself does
them every time they are needed.

Example: For I/O a process involves a system call telling the operating system to read
or write particular area and this request is satisfied by the operating system.

The fact that improper use of the system can easily cause a system crash, thus the operating
systemisintroduced; it executes at the highest level of order and allows the applications to request
for aservice – a system call – which is implemented through hooking interrupt(s). A system call is
themechanism used by an application program to request service from the operating system.
Thereare different types of system call.

2.1 Operating System Functions
The main functions of operating systems are:

1. Process Management
2. Memory Management
3. Secondary Storage Management
4. I/O Management
5. File Management
6. Protection
7. Networking Management
8. Command Interpretation.

Process Management
The CPU executes a large number of programs. While its main concern is the execution of
userprograms, the CPU is also needed for other system activities. These activities are called
processes.A process is a program in execution. Typically, a batch job is a process. A time-shared
userprogram is a process. A system task, such as spooling, is also a process. For now, a process
maybe considered as a job or a time-shared program, but the concept is actually more general.The
operating system is responsible for the following activities in connection with
processesmanagement:

1. The creation and deletion of both user and system processes
2. The suspension and resumption of processes.
3. The provision of mechanisms for process synchronization
4. The provision of mechanisms for deadlock handling.

Memory Management
Memory is the most expensive part in the computer system. Memory is a large array of words
orbytes, each with its own address. Interaction is achieved through a sequence of reads or writes
ofspecific memory address. The CPU fetches from and stores in memory.

There are various algorithms that depend on the particular situation to manage the
memory.Selection of a memory management scheme for a specific system depends upon many
factors, butespecially upon the hardware design of the system. Each algorithm requires its own
hardwaresupport.

Operating System

Notes

Every general-purpose computer must have an operating system to run other programs. Operating
systems perform basic tasks, such as recognizing input from the keyboard, sending output to the
display screen, keeping track of files and directories on the disk, and controlling peripheral devices
such as disk drives and printers. For large systems, the operating system has even greater
responsibilities and powers. It is like a traffic cop – it makes sure that different programs and users
running at the same time do not interfere with each other. The operating system is also responsible
for security, ensuring that unauthorized users do not access the system.

System calls provide an interface between the process and the operating system. System calls allow
user-level processes to request some services from the operating system which process itself is not
allowed to do. It is because of the critical nature of operations that the operating system itself does
them every time they are needed.

Example: For I/O a process involves a system call telling the operating system to read
or write particular area and this request is satisfied by the operating system.

The fact that improper use of the system can easily cause a system crash, thus the operating
systemisintroduced; it executes at the highest level of order and allows the applications to request
for aservice – a system call – which is implemented through hooking interrupt(s). A system call is
themechanism used by an application program to request service from the operating system.
Thereare different types of system call.

2.1 Operating System Functions
The main functions of operating systems are:

1. Process Management
2. Memory Management
3. Secondary Storage Management
4. I/O Management
5. File Management
6. Protection
7. Networking Management
8. Command Interpretation.

Process Management
The CPU executes a large number of programs. While its main concern is the execution of
userprograms, the CPU is also needed for other system activities. These activities are called
processes.A process is a program in execution. Typically, a batch job is a process. A time-shared
userprogram is a process. A system task, such as spooling, is also a process. For now, a process
maybe considered as a job or a time-shared program, but the concept is actually more general.The
operating system is responsible for the following activities in connection with
processesmanagement:

1. The creation and deletion of both user and system processes
2. The suspension and resumption of processes.
3. The provision of mechanisms for process synchronization
4. The provision of mechanisms for deadlock handling.

Memory Management
Memory is the most expensive part in the computer system. Memory is a large array of words
orbytes, each with its own address. Interaction is achieved through a sequence of reads or writes
ofspecific memory address. The CPU fetches from and stores in memory.

There are various algorithms that depend on the particular situation to manage the
memory.Selection of a memory management scheme for a specific system depends upon many
factors, butespecially upon the hardware design of the system. Each algorithm requires its own
hardwaresupport.

Lovely Professional University18

Unit 02: Operating System Services

Notes

The operating system is responsible for the following activities in connection with
memorymanagement.

1. Keep track of which parts of memory are currently being used and by whom.
2. Decide which processes are to be loaded into memory when memory space

becomesavailable.
3. Allocate and deallocate memory space as needed.

Secondary Storage Management
The main purpose of a computer system is to execute programs. These programs, together withthe
data they access, must be in main memory during execution. Since the main memory is toosmall to
permanently accommodate all data and program, the computer system must providesecondary
storage to backup main memory. Most modem computer systems use disks asthe primary on-line
storage of information, of both programs and data. Most programs, likecompilers, assemblers, sort
routines, editors, formatters, and so on, are stored on the disk untilloaded into memory, and then
use the disk as both the source and destination of their processing.Hence the proper management
of disk storage is of central importance to a computer system.There are few alternatives. Magnetic
tape systems are generally too slow. In addition, they arelimited to sequential access. Thus, tapes
are more suited for storing infrequently used fi les, wherespeed is not a primary concern.The
operating system is responsible for the following activities in connection with diskmanagement:

1. Free space management
2. Storage allocation
3. Disk scheduling.

I/O Management
One of the purposes of an operating system is to hide the peculiarities or specific hardwaredevices
from the user. For example, in UNIX, the peculiarities of I/O devices are hidden from thebulk of
the operating system itself by the I/O system. The operating system is responsible for thefollowing
activities in connection to I/O management:

1. A buffer caching system
2. To activate a general device driver code
3. To run the driver software for specific hardware devices as and when required.

File Management
File management is one of the most visible services of an operating system. Computers can
storeinformation in several different physical forms: magnetic tape, disk, and drum are the
mostcommon forms. Each of these devices has its own characteristics and physical organisation.For
convenient use of the computer system, the operating system provides a uniform logical viewof
information storage. The operating system abstracts from the physical properties of its
storagedevices to define a logical storage unit, the fi le. Files are mapped, by the operating system,
ontophysical devices.

A file is a collection of related informationdefined by its creator. Commonly, files
representprograms (both source and object forms) and data. Data files may be numeric, alphabetic
oralphanumeric. Files may be free-form, such as text files, or may be rigidly formatted. In general, a
file is a sequence of bits, bytes, lines or records whose meaning is defined by its creator anduser. It
is a very general concept.

The operating system implements the abstract concept of the file by managing mass storagedevice,
such as types and disks. Also, files are normally organized into directories to ease theiruse. Finally,
when multiple users have access to files, it may be desirable to control by whom andin what ways
files may be accessed.

The operating system is responsible for the following activities in connection to the fi le
management:

1. The creation and deletion of files.
2. The creation and deletion of directory.

Lovely Professional University 19

Operating System

Notes

3. The support of primitives for manipulating files and directories.
4. The mapping of files onto disk storage.
5. Backup of files on stable (non volatile) storage.
6. Protection and security of the files.

Protection
The various processes in an operating system must be protected from each other’s activities. Forthat
purpose, various mechanisms which can be used to ensure that the fi les, memory segment,CPU
and other resources can be operated on only by those processes that have gained proper
authorization from the operating system.

Example: Memory addressing hardware ensures that a process can only execute
withinits own address space. The timer ensures that no process can gain control of the
CPU withoutrelinquishing it. Finally, no process is allowed to do its own I/O, to
protect the integrity ofthe various peripheral devices. Protection refers to a
mechanism for controlling the access ofprograms, processes, or users to the resources
defined by a computer controls to be imposed,together with some means of
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces between
componentsubsystems. Early detection of interface errors can often prevent contamination of a
healthysubsystem by a subsystem that is malfunctioning. An unprotected resource cannot
defendagainst use (or misuse) by an unauthorized or incompetent user.

Networking
A distributed system is a collection of processors that do not share memory or a clock. Instead,
eachprocessor has its own local memory, and the processors communicate with each other
throughvarious communication lines, such as high-speed buses or telephone lines. Distributed
systemsvary in size and function. They may involve microprocessors, workstations,
minicomputers, andlarge general-purpose computer systems.The processors in the system are
connected through a communication network, which can beconfigured in the number of different
ways. The network may be fully or partially connected.The communication network design must
consider routing and connection strategies and theproblems of connection and security.A
distributed system provides the user with access to the various resources the system
maintains.Access to a shared resource allows computation speed-up, data availability, and
reliability.

Command Interpretation
One of the most important components of an operating system is its command interpreter.
Thecommand interpreter is the primary interface between the user and the rest of the system.Many
commands are given to the operating system by control statements. When a new job isstarted in a
batch system or when a user logs-in to a time-shared system, a program which readsand interprets
control statements is automatically executed.

This program is variously called

(1) the control card interpreter,
(2) the command line interpreter,
(3) the shell (in Unix), and so on.

Its function is quite simple: get the next command statement, and execute it.The command
statements themselves deal with process management, I/O handling, secondarystorage
management, main memory management, fi le system access, protection, andnetworking.

The Figure 2.1 depicts the role of the operating system in coordinating all the functions.

Operating System

Notes

3. The support of primitives for manipulating files and directories.
4. The mapping of files onto disk storage.
5. Backup of files on stable (non volatile) storage.
6. Protection and security of the files.

Protection
The various processes in an operating system must be protected from each other’s activities. Forthat
purpose, various mechanisms which can be used to ensure that the fi les, memory segment,CPU
and other resources can be operated on only by those processes that have gained proper
authorization from the operating system.

Example: Memory addressing hardware ensures that a process can only execute
withinits own address space. The timer ensures that no process can gain control of the
CPU withoutrelinquishing it. Finally, no process is allowed to do its own I/O, to
protect the integrity ofthe various peripheral devices. Protection refers to a
mechanism for controlling the access ofprograms, processes, or users to the resources
defined by a computer controls to be imposed,together with some means of
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces between
componentsubsystems. Early detection of interface errors can often prevent contamination of a
healthysubsystem by a subsystem that is malfunctioning. An unprotected resource cannot
defendagainst use (or misuse) by an unauthorized or incompetent user.

Networking
A distributed system is a collection of processors that do not share memory or a clock. Instead,
eachprocessor has its own local memory, and the processors communicate with each other
throughvarious communication lines, such as high-speed buses or telephone lines. Distributed
systemsvary in size and function. They may involve microprocessors, workstations,
minicomputers, andlarge general-purpose computer systems.The processors in the system are
connected through a communication network, which can beconfigured in the number of different
ways. The network may be fully or partially connected.The communication network design must
consider routing and connection strategies and theproblems of connection and security.A
distributed system provides the user with access to the various resources the system
maintains.Access to a shared resource allows computation speed-up, data availability, and
reliability.

Command Interpretation
One of the most important components of an operating system is its command interpreter.
Thecommand interpreter is the primary interface between the user and the rest of the system.Many
commands are given to the operating system by control statements. When a new job isstarted in a
batch system or when a user logs-in to a time-shared system, a program which readsand interprets
control statements is automatically executed.

This program is variously called

(1) the control card interpreter,
(2) the command line interpreter,
(3) the shell (in Unix), and so on.

Its function is quite simple: get the next command statement, and execute it.The command
statements themselves deal with process management, I/O handling, secondarystorage
management, main memory management, fi le system access, protection, andnetworking.

The Figure 2.1 depicts the role of the operating system in coordinating all the functions.

Operating System

Notes

3. The support of primitives for manipulating files and directories.
4. The mapping of files onto disk storage.
5. Backup of files on stable (non volatile) storage.
6. Protection and security of the files.

Protection
The various processes in an operating system must be protected from each other’s activities. Forthat
purpose, various mechanisms which can be used to ensure that the fi les, memory segment,CPU
and other resources can be operated on only by those processes that have gained proper
authorization from the operating system.

Example: Memory addressing hardware ensures that a process can only execute
withinits own address space. The timer ensures that no process can gain control of the
CPU withoutrelinquishing it. Finally, no process is allowed to do its own I/O, to
protect the integrity ofthe various peripheral devices. Protection refers to a
mechanism for controlling the access ofprograms, processes, or users to the resources
defined by a computer controls to be imposed,together with some means of
enforcement.

Protection can improve reliability by detecting latent errors at the interfaces between
componentsubsystems. Early detection of interface errors can often prevent contamination of a
healthysubsystem by a subsystem that is malfunctioning. An unprotected resource cannot
defendagainst use (or misuse) by an unauthorized or incompetent user.

Networking
A distributed system is a collection of processors that do not share memory or a clock. Instead,
eachprocessor has its own local memory, and the processors communicate with each other
throughvarious communication lines, such as high-speed buses or telephone lines. Distributed
systemsvary in size and function. They may involve microprocessors, workstations,
minicomputers, andlarge general-purpose computer systems.The processors in the system are
connected through a communication network, which can beconfigured in the number of different
ways. The network may be fully or partially connected.The communication network design must
consider routing and connection strategies and theproblems of connection and security.A
distributed system provides the user with access to the various resources the system
maintains.Access to a shared resource allows computation speed-up, data availability, and
reliability.

Command Interpretation
One of the most important components of an operating system is its command interpreter.
Thecommand interpreter is the primary interface between the user and the rest of the system.Many
commands are given to the operating system by control statements. When a new job isstarted in a
batch system or when a user logs-in to a time-shared system, a program which readsand interprets
control statements is automatically executed.

This program is variously called

(1) the control card interpreter,
(2) the command line interpreter,
(3) the shell (in Unix), and so on.

Its function is quite simple: get the next command statement, and execute it.The command
statements themselves deal with process management, I/O handling, secondarystorage
management, main memory management, fi le system access, protection, andnetworking.

The Figure 2.1 depicts the role of the operating system in coordinating all the functions.

Lovely Professional University20

Unit 02: Operating System Services

Notes

Figure 2.1:Functions Coordinated by the Operating System

2.2 System Calls
System calls provide an interface between a running program and operating system. System calls
are generally available as assembly language instructions. Several higher-level languages such as C
also allow to make system calls directly. In UNIX operating system the system call interface layer
contains entry point in kernel code. All system resources are managed by the kernel. Any request
from user or application that involves access to any system resource must be handled by kernel
code. The user process must not be given open access to kernel code for security reason. Many
openings into kernel code called system calls are provided to user so that the user processes can
invoke the execution of kernel code. System calls allow processes and users to manipulate system
resources.

In general, a process is not supposed to be able to access the kernel. It can’t access kernel memory
and it can’t call kernel functions. The hardware of the CPU enforces this (that is the reason why it is
called ‘protected mode’).System calls are an exception to this general rule. What happens is that the
process fillsthe registers with the appropriate values and then calls a special instruction which
jumpsto a previously defined location in the kernel (of course, that location is readable by
userprocesses, it is not writable by them)? Under Intel CPUs, this is done by means of
interrupt0x80. The hardware knows that once you jump to this location, you are no longer
runningin restricted user mode, but as the operating system kernel and, therefore, you are
allowedto do whatever you want.

The location in the kernel a process can jump to is called system call. The procedure at that
locationchecks the system call number, which tells the kernel what service the process requested.
Then, itlooks at the table of system calls (sys_call_table) to see the address of the kernel function to
call.Then it calls the function, and after it returns, does a few system checks and then return back
tothe process (or to a different process, if the process time ran out). If you want to read this code,
itis at the source file arch/$<$architecture$>$/kernel/entry.So, after the line
ENTRY(systemically).So, if we want to change the way a certain system call works, what we need
to do is to writeour own function to implement it (usually by adding a bit of our own code, and
then callingthe original function) and then change the pointer at sys_call_table to point to our
function.Because we might be removed later and we don’t want to leave the system in an unstable
state,it is important for cleanup_module to restore the table to its original state.

The source code here is an example of such a kernel module. We want to ‘spy’ on a certain user,and
to printk() a message whenever that user opens a file. Towards this end, we replace thesystem call
to open a file with our own function, called our_sys_open. This function checks theuid (user’s id) of
the current process, and if it is equal to the uid we spy on, it calls printk() todisplay the name of the
file to be opened. Then, either way, it calls the original open() functionwith the same parameters, to
actually open the file.

The init_module function replaces the appropriate location in sys_call_table and keeps the
originalpointer in a variable. The cleanup module function uses that variable to restore everything
backto normal. This approach is dangerous, because of the possibility of two kernel modules
changingthe same system call. Imagine we have two kernel modules, A and B. A’s open system call
willbe A open and B’s will be B_open. Now, when A is inserted into the kernel, the system call

Unit 02: Operating System Services

Notes

Figure 2.1:Functions Coordinated by the Operating System

2.2 System Calls
System calls provide an interface between a running program and operating system. System calls
are generally available as assembly language instructions. Several higher-level languages such as C
also allow to make system calls directly. In UNIX operating system the system call interface layer
contains entry point in kernel code. All system resources are managed by the kernel. Any request
from user or application that involves access to any system resource must be handled by kernel
code. The user process must not be given open access to kernel code for security reason. Many
openings into kernel code called system calls are provided to user so that the user processes can
invoke the execution of kernel code. System calls allow processes and users to manipulate system
resources.

In general, a process is not supposed to be able to access the kernel. It can’t access kernel memory
and it can’t call kernel functions. The hardware of the CPU enforces this (that is the reason why it is
called ‘protected mode’).System calls are an exception to this general rule. What happens is that the
process fillsthe registers with the appropriate values and then calls a special instruction which
jumpsto a previously defined location in the kernel (of course, that location is readable by
userprocesses, it is not writable by them)? Under Intel CPUs, this is done by means of
interrupt0x80. The hardware knows that once you jump to this location, you are no longer
runningin restricted user mode, but as the operating system kernel and, therefore, you are
allowedto do whatever you want.

The location in the kernel a process can jump to is called system call. The procedure at that
locationchecks the system call number, which tells the kernel what service the process requested.
Then, itlooks at the table of system calls (sys_call_table) to see the address of the kernel function to
call.Then it calls the function, and after it returns, does a few system checks and then return back
tothe process (or to a different process, if the process time ran out). If you want to read this code,
itis at the source file arch/$<$architecture$>$/kernel/entry.So, after the line
ENTRY(systemically).So, if we want to change the way a certain system call works, what we need
to do is to writeour own function to implement it (usually by adding a bit of our own code, and
then callingthe original function) and then change the pointer at sys_call_table to point to our
function.Because we might be removed later and we don’t want to leave the system in an unstable
state,it is important for cleanup_module to restore the table to its original state.

The source code here is an example of such a kernel module. We want to ‘spy’ on a certain user,and
to printk() a message whenever that user opens a file. Towards this end, we replace thesystem call
to open a file with our own function, called our_sys_open. This function checks theuid (user’s id) of
the current process, and if it is equal to the uid we spy on, it calls printk() todisplay the name of the
file to be opened. Then, either way, it calls the original open() functionwith the same parameters, to
actually open the file.

The init_module function replaces the appropriate location in sys_call_table and keeps the
originalpointer in a variable. The cleanup module function uses that variable to restore everything
backto normal. This approach is dangerous, because of the possibility of two kernel modules
changingthe same system call. Imagine we have two kernel modules, A and B. A’s open system call
willbe A open and B’s will be B_open. Now, when A is inserted into the kernel, the system call

Unit 02: Operating System Services

Notes

Figure 2.1:Functions Coordinated by the Operating System

2.2 System Calls
System calls provide an interface between a running program and operating system. System calls
are generally available as assembly language instructions. Several higher-level languages such as C
also allow to make system calls directly. In UNIX operating system the system call interface layer
contains entry point in kernel code. All system resources are managed by the kernel. Any request
from user or application that involves access to any system resource must be handled by kernel
code. The user process must not be given open access to kernel code for security reason. Many
openings into kernel code called system calls are provided to user so that the user processes can
invoke the execution of kernel code. System calls allow processes and users to manipulate system
resources.

In general, a process is not supposed to be able to access the kernel. It can’t access kernel memory
and it can’t call kernel functions. The hardware of the CPU enforces this (that is the reason why it is
called ‘protected mode’).System calls are an exception to this general rule. What happens is that the
process fillsthe registers with the appropriate values and then calls a special instruction which
jumpsto a previously defined location in the kernel (of course, that location is readable by
userprocesses, it is not writable by them)? Under Intel CPUs, this is done by means of
interrupt0x80. The hardware knows that once you jump to this location, you are no longer
runningin restricted user mode, but as the operating system kernel and, therefore, you are
allowedto do whatever you want.

The location in the kernel a process can jump to is called system call. The procedure at that
locationchecks the system call number, which tells the kernel what service the process requested.
Then, itlooks at the table of system calls (sys_call_table) to see the address of the kernel function to
call.Then it calls the function, and after it returns, does a few system checks and then return back
tothe process (or to a different process, if the process time ran out). If you want to read this code,
itis at the source file arch/$<$architecture$>$/kernel/entry.So, after the line
ENTRY(systemically).So, if we want to change the way a certain system call works, what we need
to do is to writeour own function to implement it (usually by adding a bit of our own code, and
then callingthe original function) and then change the pointer at sys_call_table to point to our
function.Because we might be removed later and we don’t want to leave the system in an unstable
state,it is important for cleanup_module to restore the table to its original state.

The source code here is an example of such a kernel module. We want to ‘spy’ on a certain user,and
to printk() a message whenever that user opens a file. Towards this end, we replace thesystem call
to open a file with our own function, called our_sys_open. This function checks theuid (user’s id) of
the current process, and if it is equal to the uid we spy on, it calls printk() todisplay the name of the
file to be opened. Then, either way, it calls the original open() functionwith the same parameters, to
actually open the file.

The init_module function replaces the appropriate location in sys_call_table and keeps the
originalpointer in a variable. The cleanup module function uses that variable to restore everything
backto normal. This approach is dangerous, because of the possibility of two kernel modules
changingthe same system call. Imagine we have two kernel modules, A and B. A’s open system call
willbe A open and B’s will be B_open. Now, when A is inserted into the kernel, the system call

Lovely Professional University 21

Operating System

Notes

isreplaced with A open, which will call the original sys_open when it is done. Next, B is
insertedinto the kernel, which replaces the system call with B_open, which will call what it thinks is
theoriginal system call, A open, when it is done.

Now, if B is removed first, everything will be well it will simply restore the system call to Aopen,
which calls the original. However, if A is removed and then B is removed, the systemwill crash. A’s
removal will restore the system call to the original, sys_open, cutting B out of theloop. Then, when
B is removed, it will restore the system call to what it thinks is the original,A open, which is no
longer in memory. At first glance, it appears we could solve this particularproblem by checking if
the system call is equal to our open function and if so not changing itat all (so that B won’t change
the system call when it is removed), but that will cause an evenworse problem. When A is
removed, it sees that the system call was changed to B_open so thatit is no longer pointing to A
open, so it won’t restore it to sys_open before it is removed from memory. Unfortunately, B_open
will still try to call A open which is no longer there, so that even without removing B the system
would crash.

There are two ways to prevent this problem. The first is to restore the call to the original value,
sys_open. Unfortunately, sys_open is not part of the kernel system table in /proc/ksyms, so we
can’t access it. The other solution is to use the reference count to prevent root from rmmod’ing the
module once it is loaded. This is good for production modules, but bad for an educational sample
which is why I didn’t do it here.

it is no longer pointing to A open, so it won’t restore it to sys_open before it is removed from
memory. Unfortunately, B_open will still try to call A open which is no longer there, so thateven
without removing B the system would crash.

There are two ways to prevent this problem. The first is to restore the call to the original
value,sys_open. Unfortunately, sys_open is not part of the kernel system table in /proc/ksyms, so
wecan’t access it. The other solution is to use the reference count to prevent root from rmmodingthe
module once it is loaded. This is good for production modules, but bad for an educationalsample
which is why I didn’t do it here.

The Library as an Intermediary

Generally, systems provide a library that sits between normal programs and the operating
system,usually an implementation of the C library (libc), such as glibc. This library exists between
theOS and the application, and increases portability.On exokernel based systems, the library is
especially important as an intermediary. On exokernels,libraries shield user applications from the
very low-level kernel API, and provide abstractionsand resource management.

Examples and Tools

On Unix, Unix-like and other POSIX-compatible Operating Systems, popular system calls areopen,
read, write, close, wait, exec, fork, exit, and kill. Many of today’s operating systems havehundreds
of system calls. For example, Linux has 319 different system calls. Similarly, FreeBSDhas almost
330.Tools such as Strace and Truss allow a process to execute from start and report all system
callsthe process invokes, or can attach to an already running process and intercept any system
callmade by said process if the operation does not violate the permissions of the user. This
specialability of the program is usually also implemented with a system call, e.g. the GNU’s Strace
isimplemented with ptrace().

Typical Implementations

Implementing system calls requires a control transfer which involves some sort of
architecturespecificfeature. A typical way to implement this is to use a software interrupt or trap.
Interruptstransfer control to the OS so software simply needs to set up some register with the
system callnumber they want and execute the software interrupt.For many RISC processors this is
the only feasible implementation, but CISC architectures suchas x86support additional techniques.
One example is SYSCALL/SYSENTER, SYSRET/SYSEXIT(the two mechanisms were
independently created by AMD and Intel, respectively, but in essencedo the same thing). These are
“fast” control transfer instructions that are designed to quicklytransfer control to the OS for a
system call without the overhead of an interrupt. Linux 2.5 beganusing this on the x86, where
available; formerly it used the INT instruction, where the systemcall number was placed in the EAX
register before interrupt 0x80 was executed.An older x86 mechanism is called a call gate and is a
way for a program to literally call akernel function directly using a safe control transfer mechanism
the OS sets up in advance. Thisapproach has been unpopular, presumably due to the requirement

Lovely Professional University22

Unit 02: Operating System Services

Notes

of a far call which uses x86memory segmentation and the resulting lack of portability it causes, and
existence of the fasterinstructions mentioned above.For IA64 architecture, EPC (Enter Privileged
Mode) instruction is used. The first eight systemcall arguments are passed in registers, and the rest
are passed on the stack.A timer can be set to interrupt the computer after a specified period.
Theperiod may be fixed or variable.

2.3 Types of System Call
System calls can be roughly grouped into five major categories:

1) Process Control – this involves system calls like end, abort, load, execute, create process,
terminate process, get process attributes, set process attributes, wait for time, wait event,
signal event, allocate and free memory

2) File Management – this involves system calls like create file, delete file, open, close, read,
write, reposition, get file attributes and set file attributes

3) Device Management – this involves system calls like, request device, release device, read,
write, reposition, get device attributes, set device attributes, logically attach or detach
devices

4) Information Maintenance – this involves system calls like get time or date, set time or date,
get system data, set system data, get process, file, or device attributes, set process, file, or
device attributes

5) Communication – this involves system calls like create, delete communication connection
send, receive messages, transfer status information, attach or detach remote devices

There are three general methods that are used to pass information (parameters) between a running
program and the operating system.

1. One method is to store parameters in registers.
2. Another is to store parameters in a table in memory and pass the address of table.
3. The third method is to push parameters on stack and allow operating system to pop the

parameters off the stack.

System Calls for Process Management
These types of system calls are used to control the processes. Some examples are end, abort, load,
execute, create process, terminate process etc.

Example: The exit() system call ends a process and returns a value to its parent

In UNIX every process has an alarm clock stored in its system-data segment. When the alarm goes
off, signal SIGALRM is sent to the calling process. A child inherits its parent’s alarm clock value,
but the actual clock isn’t shared. The alarm clock remains set across an exec.

System Calls for Signaling
A signal is a limited form of inter-process communication used in UNIX, UNIX-like, and other
POSIX-compliant operating systems. Essentially it is an asynchronous notification sent to a process
in order to notify it of an event that occurred. The number of signals available is system dependent.
When a signal is sent to a process, the operating system interrupts the process’ normal flow of
execution. Execution can be interrupted during any non-atomic instruction. If the process has
previously registered a signal handler, that routine is executed. Otherwise the default signal
handler is executed.

Programs can respond to signals three different ways. These are:

1. Ignore the signal: This means that the program will never be informed of the signal no matter
how many times it occurs.

Unit 02: Operating System Services

Notes

of a far call which uses x86memory segmentation and the resulting lack of portability it causes, and
existence of the fasterinstructions mentioned above.For IA64 architecture, EPC (Enter Privileged
Mode) instruction is used. The first eight systemcall arguments are passed in registers, and the rest
are passed on the stack.A timer can be set to interrupt the computer after a specified period.
Theperiod may be fixed or variable.

2.3 Types of System Call
System calls can be roughly grouped into five major categories:

1) Process Control – this involves system calls like end, abort, load, execute, create process,
terminate process, get process attributes, set process attributes, wait for time, wait event,
signal event, allocate and free memory

2) File Management – this involves system calls like create file, delete file, open, close, read,
write, reposition, get file attributes and set file attributes

3) Device Management – this involves system calls like, request device, release device, read,
write, reposition, get device attributes, set device attributes, logically attach or detach
devices

4) Information Maintenance – this involves system calls like get time or date, set time or date,
get system data, set system data, get process, file, or device attributes, set process, file, or
device attributes

5) Communication – this involves system calls like create, delete communication connection
send, receive messages, transfer status information, attach or detach remote devices

There are three general methods that are used to pass information (parameters) between a running
program and the operating system.

1. One method is to store parameters in registers.
2. Another is to store parameters in a table in memory and pass the address of table.
3. The third method is to push parameters on stack and allow operating system to pop the

parameters off the stack.

System Calls for Process Management
These types of system calls are used to control the processes. Some examples are end, abort, load,
execute, create process, terminate process etc.

Example: The exit() system call ends a process and returns a value to its parent

In UNIX every process has an alarm clock stored in its system-data segment. When the alarm goes
off, signal SIGALRM is sent to the calling process. A child inherits its parent’s alarm clock value,
but the actual clock isn’t shared. The alarm clock remains set across an exec.

System Calls for Signaling
A signal is a limited form of inter-process communication used in UNIX, UNIX-like, and other
POSIX-compliant operating systems. Essentially it is an asynchronous notification sent to a process
in order to notify it of an event that occurred. The number of signals available is system dependent.
When a signal is sent to a process, the operating system interrupts the process’ normal flow of
execution. Execution can be interrupted during any non-atomic instruction. If the process has
previously registered a signal handler, that routine is executed. Otherwise the default signal
handler is executed.

Programs can respond to signals three different ways. These are:

1. Ignore the signal: This means that the program will never be informed of the signal no matter
how many times it occurs.

Unit 02: Operating System Services

Notes

of a far call which uses x86memory segmentation and the resulting lack of portability it causes, and
existence of the fasterinstructions mentioned above.For IA64 architecture, EPC (Enter Privileged
Mode) instruction is used. The first eight systemcall arguments are passed in registers, and the rest
are passed on the stack.A timer can be set to interrupt the computer after a specified period.
Theperiod may be fixed or variable.

2.3 Types of System Call
System calls can be roughly grouped into five major categories:

1) Process Control – this involves system calls like end, abort, load, execute, create process,
terminate process, get process attributes, set process attributes, wait for time, wait event,
signal event, allocate and free memory

2) File Management – this involves system calls like create file, delete file, open, close, read,
write, reposition, get file attributes and set file attributes

3) Device Management – this involves system calls like, request device, release device, read,
write, reposition, get device attributes, set device attributes, logically attach or detach
devices

4) Information Maintenance – this involves system calls like get time or date, set time or date,
get system data, set system data, get process, file, or device attributes, set process, file, or
device attributes

5) Communication – this involves system calls like create, delete communication connection
send, receive messages, transfer status information, attach or detach remote devices

There are three general methods that are used to pass information (parameters) between a running
program and the operating system.

1. One method is to store parameters in registers.
2. Another is to store parameters in a table in memory and pass the address of table.
3. The third method is to push parameters on stack and allow operating system to pop the

parameters off the stack.

System Calls for Process Management
These types of system calls are used to control the processes. Some examples are end, abort, load,
execute, create process, terminate process etc.

Example: The exit() system call ends a process and returns a value to its parent

In UNIX every process has an alarm clock stored in its system-data segment. When the alarm goes
off, signal SIGALRM is sent to the calling process. A child inherits its parent’s alarm clock value,
but the actual clock isn’t shared. The alarm clock remains set across an exec.

System Calls for Signaling
A signal is a limited form of inter-process communication used in UNIX, UNIX-like, and other
POSIX-compliant operating systems. Essentially it is an asynchronous notification sent to a process
in order to notify it of an event that occurred. The number of signals available is system dependent.
When a signal is sent to a process, the operating system interrupts the process’ normal flow of
execution. Execution can be interrupted during any non-atomic instruction. If the process has
previously registered a signal handler, that routine is executed. Otherwise the default signal
handler is executed.

Programs can respond to signals three different ways. These are:

1. Ignore the signal: This means that the program will never be informed of the signal no matter
how many times it occurs.

Lovely Professional University 23

Operating System

Notes

A signal can be set to its default state, which means that the process will be ended when it receives
that signal.

2. Catch the signal: When the signal occurs, the system will transfer control to a previously
defined subroutine where it can respond to the signal as is appropriate for the program.

System Calls for File Management
The fi le structure related system calls available in some operating system like UNIX let youcreate,
open, and close files, read and write files, randomly access files, alias and remove files,
getinformation about files, check the accessibility of files, change protections, owner, and group
offiles, and control devices. These operations either use a character string that defines the
absoluteor relative path name of a file, or a small integer called a file descriptor that identifies the
I/Ochannel. When doing I/O, a process specifies the fi le descriptor for an I/O channel, a bufferto
be filled or emptied, and the maximum size of data to be transferred. An I/O channel mayallow
input, output, or both. Furthermore, each channel has a read/write pointer. Each I/Ooperation
starts where the last operation finished and advances the pointer by the number ofbytes
transferred. A process can access a channel’s data randomly by changing the
read/writepointer.These types of system calls are used to manage files.

Example: Create file, delete fi le, open, close, read, write etc.

System Calls for Directory Management
You may need the same sets of operations as for fi le management for directories also. If youhave a
directory structure for organizing files in the fi le system. In addition, for either files ordirectories,
you need to be able to determine the values of various attributes, and perhaps to resetthem if
necessary. File attributes include the fi le name, a fi le type, protection codes,
accountinginformation, and so on. At least two system calls, get fi le attribute and set fi le attribute,
arerequired for this function. Some operating systems provide many more calls.

System Calls for Protection
Improper use of the system can easily cause a system crash. Therefore, some level of control
isrequired; the design of the microprocessor architecture on basically all modern systems
(exceptembedded systems) offers several levels of control - the (low privilege) level of which
normal applications execute limits the address space of the program to not be able to access nor
modify other running applications nor the operating system itself (called “protected mode” on x86),
it also prevents the application from using any system devices (i.e. the frame buffer, network
devices - any I/O mapped device). But obviously any normal application needs this ability, thus
the operating system is introduced, it executes at the highest level of order and allows the
applications to request for a service - a system call - which is implemented through hooking
interrupt(s). If allowed the system enters a higher privileged state, executes a specific set of
instructions which the interrupting program has no direct control over, then returns control to the
former flow of execution. This concept also serves as a way to implement security. With the
development of separate operating modes with varying levels of privilege, a mechanism was
needed for transferring control safely from lesser privileged modes to higher privileged modes.
Less privileged code could not simply transfer control to more privileged code at any arbitrary
point and with any arbitrary processor state. To allow it to do so could allow it to break security.
For instance, the less privileged code could cause the higher privileged code to execute in the
wrong order, or provide it with a bad stack.

System Calls for Time Management
Many operating systems provide a time profile of a program. It indicates the amount of time that
the program executes at a particular location or set of locations. A time profile requires either a
tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value of
the program counter is recorded. With sufficiently frequent timer interrupts, a statistical pictureof
the time spent on various parts of the program can be obtained.

System Calls for Device Management

Operating System

Notes

A signal can be set to its default state, which means that the process will be ended when it receives
that signal.

2. Catch the signal: When the signal occurs, the system will transfer control to a previously
defined subroutine where it can respond to the signal as is appropriate for the program.

System Calls for File Management
The fi le structure related system calls available in some operating system like UNIX let youcreate,
open, and close files, read and write files, randomly access files, alias and remove files,
getinformation about files, check the accessibility of files, change protections, owner, and group
offiles, and control devices. These operations either use a character string that defines the
absoluteor relative path name of a file, or a small integer called a file descriptor that identifies the
I/Ochannel. When doing I/O, a process specifies the fi le descriptor for an I/O channel, a bufferto
be filled or emptied, and the maximum size of data to be transferred. An I/O channel mayallow
input, output, or both. Furthermore, each channel has a read/write pointer. Each I/Ooperation
starts where the last operation finished and advances the pointer by the number ofbytes
transferred. A process can access a channel’s data randomly by changing the
read/writepointer.These types of system calls are used to manage files.

Example: Create file, delete fi le, open, close, read, write etc.

System Calls for Directory Management
You may need the same sets of operations as for fi le management for directories also. If youhave a
directory structure for organizing files in the fi le system. In addition, for either files ordirectories,
you need to be able to determine the values of various attributes, and perhaps to resetthem if
necessary. File attributes include the fi le name, a fi le type, protection codes,
accountinginformation, and so on. At least two system calls, get fi le attribute and set fi le attribute,
arerequired for this function. Some operating systems provide many more calls.

System Calls for Protection
Improper use of the system can easily cause a system crash. Therefore, some level of control
isrequired; the design of the microprocessor architecture on basically all modern systems
(exceptembedded systems) offers several levels of control - the (low privilege) level of which
normal applications execute limits the address space of the program to not be able to access nor
modify other running applications nor the operating system itself (called “protected mode” on x86),
it also prevents the application from using any system devices (i.e. the frame buffer, network
devices - any I/O mapped device). But obviously any normal application needs this ability, thus
the operating system is introduced, it executes at the highest level of order and allows the
applications to request for a service - a system call - which is implemented through hooking
interrupt(s). If allowed the system enters a higher privileged state, executes a specific set of
instructions which the interrupting program has no direct control over, then returns control to the
former flow of execution. This concept also serves as a way to implement security. With the
development of separate operating modes with varying levels of privilege, a mechanism was
needed for transferring control safely from lesser privileged modes to higher privileged modes.
Less privileged code could not simply transfer control to more privileged code at any arbitrary
point and with any arbitrary processor state. To allow it to do so could allow it to break security.
For instance, the less privileged code could cause the higher privileged code to execute in the
wrong order, or provide it with a bad stack.

System Calls for Time Management
Many operating systems provide a time profile of a program. It indicates the amount of time that
the program executes at a particular location or set of locations. A time profile requires either a
tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value of
the program counter is recorded. With sufficiently frequent timer interrupts, a statistical pictureof
the time spent on various parts of the program can be obtained.

System Calls for Device Management

Operating System

Notes

A signal can be set to its default state, which means that the process will be ended when it receives
that signal.

2. Catch the signal: When the signal occurs, the system will transfer control to a previously
defined subroutine where it can respond to the signal as is appropriate for the program.

System Calls for File Management
The fi le structure related system calls available in some operating system like UNIX let youcreate,
open, and close files, read and write files, randomly access files, alias and remove files,
getinformation about files, check the accessibility of files, change protections, owner, and group
offiles, and control devices. These operations either use a character string that defines the
absoluteor relative path name of a file, or a small integer called a file descriptor that identifies the
I/Ochannel. When doing I/O, a process specifies the fi le descriptor for an I/O channel, a bufferto
be filled or emptied, and the maximum size of data to be transferred. An I/O channel mayallow
input, output, or both. Furthermore, each channel has a read/write pointer. Each I/Ooperation
starts where the last operation finished and advances the pointer by the number ofbytes
transferred. A process can access a channel’s data randomly by changing the
read/writepointer.These types of system calls are used to manage files.

Example: Create file, delete fi le, open, close, read, write etc.

System Calls for Directory Management
You may need the same sets of operations as for fi le management for directories also. If youhave a
directory structure for organizing files in the fi le system. In addition, for either files ordirectories,
you need to be able to determine the values of various attributes, and perhaps to resetthem if
necessary. File attributes include the fi le name, a fi le type, protection codes,
accountinginformation, and so on. At least two system calls, get fi le attribute and set fi le attribute,
arerequired for this function. Some operating systems provide many more calls.

System Calls for Protection
Improper use of the system can easily cause a system crash. Therefore, some level of control
isrequired; the design of the microprocessor architecture on basically all modern systems
(exceptembedded systems) offers several levels of control - the (low privilege) level of which
normal applications execute limits the address space of the program to not be able to access nor
modify other running applications nor the operating system itself (called “protected mode” on x86),
it also prevents the application from using any system devices (i.e. the frame buffer, network
devices - any I/O mapped device). But obviously any normal application needs this ability, thus
the operating system is introduced, it executes at the highest level of order and allows the
applications to request for a service - a system call - which is implemented through hooking
interrupt(s). If allowed the system enters a higher privileged state, executes a specific set of
instructions which the interrupting program has no direct control over, then returns control to the
former flow of execution. This concept also serves as a way to implement security. With the
development of separate operating modes with varying levels of privilege, a mechanism was
needed for transferring control safely from lesser privileged modes to higher privileged modes.
Less privileged code could not simply transfer control to more privileged code at any arbitrary
point and with any arbitrary processor state. To allow it to do so could allow it to break security.
For instance, the less privileged code could cause the higher privileged code to execute in the
wrong order, or provide it with a bad stack.

System Calls for Time Management
Many operating systems provide a time profile of a program. It indicates the amount of time that
the program executes at a particular location or set of locations. A time profile requires either a
tracing facility or regular timer interrupts. At every occurrence of the timer interrupt, the value of
the program counter is recorded. With sufficiently frequent timer interrupts, a statistical pictureof
the time spent on various parts of the program can be obtained.

System Calls for Device Management

Lovely Professional University24

Unit 02: Operating System Services

Notes

A program, as it is running, may need additional resources to proceed. Additional resources may
be more memory, tape drives, access to files, and so on. If the resources are available, they can be
granted, and control can be returned to the user program; otherwise, the program will have to wait
until sufficient resources are available. These types of system calls are used to manage devices.

Example: Request device, release device, read, write, get device attributes etc.

A system call is the programmatic way in which a computer program requests a service from the
kernel of the operating system it is executed on. A system call is a way for programs to interact
with the operating system. A computer program makes a system call when it makes a request to
the operating system’s kernel. System call provides the services of the operating system to the user
programs via Application Program Interface (API). It provides an interface between a process and
operating system to allow user-level processes to request services of the operating system. System
calls are the only entry points into the kernel system. All programs needing resources must use
system calls.

Mechanism to Use OS Services
The OS services act as an interface between a process and Operating system Example: System call
sequence to copy the contents of one file to another file

Methods to Invoke System Call
System calls are invoked directly from a high-level language program. For example: C / C++
program can invoke a Unix system call.

Invoke a call to a special routine that makes a system call. In MS Windows, system calls are part of
Win32 API (Application Programming Interface) which is available for use by all compilers written
for MS Windows

Process – System Call – OS Relationship

Figure 2.2: Relationship between process, system call and Operating system.

2.4 Standard C Library Example
The C program invoking printf() library call, which calls write() system call

Unit 02: Operating System Services

Notes

A program, as it is running, may need additional resources to proceed. Additional resources may
be more memory, tape drives, access to files, and so on. If the resources are available, they can be
granted, and control can be returned to the user program; otherwise, the program will have to wait
until sufficient resources are available. These types of system calls are used to manage devices.

Example: Request device, release device, read, write, get device attributes etc.

A system call is the programmatic way in which a computer program requests a service from the
kernel of the operating system it is executed on. A system call is a way for programs to interact
with the operating system. A computer program makes a system call when it makes a request to
the operating system’s kernel. System call provides the services of the operating system to the user
programs via Application Program Interface (API). It provides an interface between a process and
operating system to allow user-level processes to request services of the operating system. System
calls are the only entry points into the kernel system. All programs needing resources must use
system calls.

Mechanism to Use OS Services
The OS services act as an interface between a process and Operating system Example: System call
sequence to copy the contents of one file to another file

Methods to Invoke System Call
System calls are invoked directly from a high-level language program. For example: C / C++
program can invoke a Unix system call.

Invoke a call to a special routine that makes a system call. In MS Windows, system calls are part of
Win32 API (Application Programming Interface) which is available for use by all compilers written
for MS Windows

Process – System Call – OS Relationship

Figure 2.2: Relationship between process, system call and Operating system.

2.4 Standard C Library Example
The C program invoking printf() library call, which calls write() system call

Unit 02: Operating System Services

Notes

A program, as it is running, may need additional resources to proceed. Additional resources may
be more memory, tape drives, access to files, and so on. If the resources are available, they can be
granted, and control can be returned to the user program; otherwise, the program will have to wait
until sufficient resources are available. These types of system calls are used to manage devices.

Example: Request device, release device, read, write, get device attributes etc.

A system call is the programmatic way in which a computer program requests a service from the
kernel of the operating system it is executed on. A system call is a way for programs to interact
with the operating system. A computer program makes a system call when it makes a request to
the operating system’s kernel. System call provides the services of the operating system to the user
programs via Application Program Interface (API). It provides an interface between a process and
operating system to allow user-level processes to request services of the operating system. System
calls are the only entry points into the kernel system. All programs needing resources must use
system calls.

Mechanism to Use OS Services
The OS services act as an interface between a process and Operating system Example: System call
sequence to copy the contents of one file to another file

Methods to Invoke System Call
System calls are invoked directly from a high-level language program. For example: C / C++
program can invoke a Unix system call.

Invoke a call to a special routine that makes a system call. In MS Windows, system calls are part of
Win32 API (Application Programming Interface) which is available for use by all compilers written
for MS Windows

Process – System Call – OS Relationship

Figure 2.2: Relationship between process, system call and Operating system.

2.4 Standard C Library Example
The C program invoking printf() library call, which calls write() system call

Lovely Professional University 25

Operating System

Notes

Figure 2.3: C program invoking printf() library call, which calls write() system call

Example of Standard API

Consider the ReadFile() function in the Win32 API—a function for reading from a file

Example of Standard API

A description of the parameters passed to ReadFile()

• HANDLE file—the file to be read

• LPVOID buffer—a buffer where the data will be read into and written from

• DWORD bytesToRead—the number of bytes to be read into the buffer

• LPDWORD bytesRead—the number of bytes read during the last read

• LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call. System-call interface maintains a table
indexed according to these numbers. The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values. The caller need not to know
nothing about how the system call is implemented. Just needs to obey API and understand what
OS will do as a result call. Most details of OS interface hidden from programmer by API. It is
managed by run-time support library (set of functions built into libraries included with compiler).

System Call Parameter Passing

Information required to invoke system call includes the system call name and other parameters
depending on the task to perform

Operating System

Notes

Figure 2.3: C program invoking printf() library call, which calls write() system call

Example of Standard API

Consider the ReadFile() function in the Win32 API—a function for reading from a file

Example of Standard API

A description of the parameters passed to ReadFile()

• HANDLE file—the file to be read

• LPVOID buffer—a buffer where the data will be read into and written from

• DWORD bytesToRead—the number of bytes to be read into the buffer

• LPDWORD bytesRead—the number of bytes read during the last read

• LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call. System-call interface maintains a table
indexed according to these numbers. The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values. The caller need not to know
nothing about how the system call is implemented. Just needs to obey API and understand what
OS will do as a result call. Most details of OS interface hidden from programmer by API. It is
managed by run-time support library (set of functions built into libraries included with compiler).

System Call Parameter Passing

Information required to invoke system call includes the system call name and other parameters
depending on the task to perform

Operating System

Notes

Figure 2.3: C program invoking printf() library call, which calls write() system call

Example of Standard API

Consider the ReadFile() function in the Win32 API—a function for reading from a file

Example of Standard API

A description of the parameters passed to ReadFile()

• HANDLE file—the file to be read

• LPVOID buffer—a buffer where the data will be read into and written from

• DWORD bytesToRead—the number of bytes to be read into the buffer

• LPDWORD bytesRead—the number of bytes read during the last read

• LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

Typically, a number associated with each system call. System-call interface maintains a table
indexed according to these numbers. The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values. The caller need not to know
nothing about how the system call is implemented. Just needs to obey API and understand what
OS will do as a result call. Most details of OS interface hidden from programmer by API. It is
managed by run-time support library (set of functions built into libraries included with compiler).

System Call Parameter Passing

Information required to invoke system call includes the system call name and other parameters
depending on the task to perform

Lovely Professional University26

Unit 02: Operating System Services

Notes

Methods used to pass parameters to the OS include:

1. Using registers (Simplest) – it should be noted that this method is not useful when more
parameters than registers

2. Stored in a block, or table, in memory, and address of block passed as a parameter in a register.
This approach taken by Linux and Solaris

3. Parameters pushed onto the stack by the program and popped off the stack by the operating
system

4. Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

Figure 2.4: Parameter passing via table.

Types of System Calls

Figure 2.5: Types of System Calls

1. Process control

These system calls deal with processes such as process creation, process termination etc.Examples
of process control system calls are: end, abort, create, terminate, allocate and free memory.

2. File Management

These system calls are responsible for file manipulation such as creating a file, reading a file,
writing into a file etc.Examples of file management system calls are: create, open, close, delete, read
file etc.

Unit 02: Operating System Services

Notes

Methods used to pass parameters to the OS include:

1. Using registers (Simplest) – it should be noted that this method is not useful when more
parameters than registers

2. Stored in a block, or table, in memory, and address of block passed as a parameter in a register.
This approach taken by Linux and Solaris

3. Parameters pushed onto the stack by the program and popped off the stack by the operating
system

4. Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

Figure 2.4: Parameter passing via table.

Types of System Calls

Figure 2.5: Types of System Calls

1. Process control

These system calls deal with processes such as process creation, process termination etc.Examples
of process control system calls are: end, abort, create, terminate, allocate and free memory.

2. File Management

These system calls are responsible for file manipulation such as creating a file, reading a file,
writing into a file etc.Examples of file management system calls are: create, open, close, delete, read
file etc.

Unit 02: Operating System Services

Notes

Methods used to pass parameters to the OS include:

1. Using registers (Simplest) – it should be noted that this method is not useful when more
parameters than registers

2. Stored in a block, or table, in memory, and address of block passed as a parameter in a register.
This approach taken by Linux and Solaris

3. Parameters pushed onto the stack by the program and popped off the stack by the operating
system

4. Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

Figure 2.4: Parameter passing via table.

Types of System Calls

Figure 2.5: Types of System Calls

1. Process control

These system calls deal with processes such as process creation, process termination etc.Examples
of process control system calls are: end, abort, create, terminate, allocate and free memory.

2. File Management

These system calls are responsible for file manipulation such as creating a file, reading a file,
writing into a file etc.Examples of file management system calls are: create, open, close, delete, read
file etc.

Lovely Professional University 27

Operating System

Notes

3. Device Management

These system calls are responsible for device manipulation such as reading from device buffers,
writing into device buffers etc.

4. Information Maintenance

These system calls handle information and its transfer between the operating system and the user
program.

5. Communications

These system calls are useful for inter-process communication. They also deal with creating and
deleting a communication connection.Some of the examples of all the above types of system calls in
Windows and Unix are given are given in the following table:

Table 2.1: Types of System Calls in Windows and Linux

Types of System Calls Windows Linux

Process Control
CreateProcess()
ExitProcess()
WaitForSingleObject()

fork()
exit()
wait()

File Management CreateFile()
ReadFile()
WriteFile()
CloseHandle()

open()
read()
write()
close()

Device Management
SetConsoleMode()
ReadConsole()
WriteConsole()

ioctl()
read()
write()

Information Maintenance GetCurrentProcessID()
SetTimer()
Sleep()

getpid()
alarm()
sleep()

Communication CreatePipe()
CreateFileMapping()
MapViewOfFile()

pipe()
shmget()
mmap()

There are many different system calls as shown above. Details of some of those system calls are as
follows −

wait(), exec(), fork(), exit() and kill()

wait()

In some systems, a process may wait for another process to complete its execution. This happens
when a parent process creates a child process and the execution of the parent process is suspended
until the child process executes. The suspending of the parent process occurs with a wait() system
call. When the child process completes execution, the control is returned back to the parent process.

exec()

This system call runs an executable file in the context of an already running process. It replaces the
previous executable file. This is known as an overlay. The original process identifier remains since a
new process is not created but data, heap, stack etc. of the process are replaced by the new process.

fork()

Processes use the fork() system call to create processes that are a copy of themselves. This is one of
the major methods of process creation in operating systems. When a parent process creates a child
process and the execution of the parent process is suspended until the child process executes. When
the child process completes execution, the control is returned back to the parent process.

Lovely Professional University28

Unit 02: Operating System Services

Notes

exit()

The exit() system call is used by a program to terminate its execution. In a multithreaded
environment, this means that the thread execution is complete. The operating system reclaims
resources that were used by the process after the exit() system call.

kill()

The kill() system call is used by the operating system to send a termination signal to a process that
urges the process to exit.However, kill system call does not necessary mean killing the process and
can have various meanings.

System Programs

Another aspect of a modern system is the collection of system programs. In the logical
computerhierarchy the lowest level is hardware. Next is the operating system, then the system
programs,and finally the application programs. System programs provide a convenient
environment forprogram development and execution. Some of them are simply user interfaces to
system calls;others are considerably more complex.

They can be divided into these categories:

1. File management: These programs create, delete, copy, rename, print, dump, list, andgenerally
manipulate fi les and directories.

2. Status information: Some programs simply ask the system for the date, time, amountof available
memory or disk space, number of users, or similar status information. Thatinformation is then
formatted, and is printed to the terminal or other output device orfi le.

3. File modification: Several text editors may be available to create and modify the content
offilesstored on disk or tape.

4. Programming-language support: Compilers, assemblers, and interpreters for
commonprogramming languages (such as C, C++, Java, Visual Basic, and PERL) are often
providedto the user with the operating system. Some of these programs are now priced and
providedseparately.

5. Program loading and execution: Once a program is assembled or compiled, it must beloaded
into memory to be executed. The system may provide absolute loaders, relocatableloaders, linkage
editors, and overlay loaders. Debugging systems for either higher-levellanguages or machine
language are needed also.

6. Communications: These programs provide the mechanism for creating virtual connectionsamong
processes, users, and different computer systems. They allow users to send messagesto one
another’s screens, to browse web pages, to send electronic-mail messages, to loginremotely, or to
transfer files from one machine to another.

Most operating systems are supplied with programs that solve common problems, or
performcommon operations. Such programs include web browsers, word processors and text
formatters,spreadsheets, database systems, compiler compilers, plotting and statistical-analysis
packages,and games. These programs are known as system utilities or application programs.

Perhaps the most important system program for an operating system is the command
interpreter,the main function of which is to get and execute the next user-specified command.Many
of the commands given at this level manipulate fi les: create, delete, list, print, copy,execute, and so
on. These commands can be implemented in two general ways. In one approach,the command
interpreter itself contains the code to execute the command.

Example: A command to delete a fi le may cause the command interpreter to jump to asection of its
code that sets up the parameters and makes the appropriate system call. In this case,the number of
commands that can be given determines the size of the command interpreter, sinceeach command
requires its own implementing code.An alternative approach-used by UNIX, among other
operating systems implements mostcommands by system programs. In this case, the command
interpreter does not understand thecommand in any way; it merely uses the command to identify a
fi le to be loaded into memoryand executed. Thus, the UNIX command to delete a file.

Lovely Professional University 29

Operating System

Notes

2.5 Operating System Structure
The operating system structure is a container for a collection of structures for interacting withthe
operating system’s fi le system, directory paths, processes, and I/O subsystem. The typesand
functions provided by the operating system substructures are meant to present a model
forhandling these resources that is largely independent of the operating system. There are
differenttypes of structure as described in Figure 3.1.

Figure 2.6: UNIX Operating System

It’s very common to find pictures like Figure 3.2 below that describe the basic structure of an
operating system.

Figure 2.7: Operating System Structure Concepts

You might find that some versions of this have different numbers of rings. What does each
partrepresent?

1. Hardware: The hardware is, obviously, the physical hardware and not particularlyinteresting to
us in this module.

2. Kernel: The kernel of an operating system is the bottom-most layer of software present ona
machine and the only one with direct access to the hardware. The code in the kernel isthe most

Operating System

Notes

2.5 Operating System Structure
The operating system structure is a container for a collection of structures for interacting withthe
operating system’s fi le system, directory paths, processes, and I/O subsystem. The typesand
functions provided by the operating system substructures are meant to present a model
forhandling these resources that is largely independent of the operating system. There are
differenttypes of structure as described in Figure 3.1.

Figure 2.6: UNIX Operating System

It’s very common to find pictures like Figure 3.2 below that describe the basic structure of an
operating system.

Figure 2.7: Operating System Structure Concepts

You might find that some versions of this have different numbers of rings. What does each
partrepresent?

1. Hardware: The hardware is, obviously, the physical hardware and not particularlyinteresting to
us in this module.

2. Kernel: The kernel of an operating system is the bottom-most layer of software present ona
machine and the only one with direct access to the hardware. The code in the kernel isthe most

Operating System

Notes

2.5 Operating System Structure
The operating system structure is a container for a collection of structures for interacting withthe
operating system’s fi le system, directory paths, processes, and I/O subsystem. The typesand
functions provided by the operating system substructures are meant to present a model
forhandling these resources that is largely independent of the operating system. There are
differenttypes of structure as described in Figure 3.1.

Figure 2.6: UNIX Operating System

It’s very common to find pictures like Figure 3.2 below that describe the basic structure of an
operating system.

Figure 2.7: Operating System Structure Concepts

You might find that some versions of this have different numbers of rings. What does each
partrepresent?

1. Hardware: The hardware is, obviously, the physical hardware and not particularlyinteresting to
us in this module.

2. Kernel: The kernel of an operating system is the bottom-most layer of software present ona
machine and the only one with direct access to the hardware. The code in the kernel isthe most

Lovely Professional University30

Unit 02: Operating System Services

Notes

‘trusted’ in the system - and all requests to do anything significant must go via thekernel. It
provides the most key facilities and functions of the system.

3. Outer OS: Surrounding the kernel are other parts of the operating system. These performless
critical functions - for example, the graphics system which is ultimately responsible forwhat you see
on the screen.

4. Interface: The interface provides a mechanism for you to interact with the computer.

5. Applications: There are what do the actual work - they can be complex (for example Office)or
simple (for example the is command commonly found on UNIX and Linux systems thatlists fi les in
a directory (or folder).

2.6 Monolithic Systems
This approach is well known as “The Big Mess”. The operating system is written as a collection
ofprocedures, each of which can call any of the other ones whenever it needs to. When this
techniqueis used, each procedure in the system has a well-defined interface in terms of parameters
andresults, and each one is free to call any other one, if the latter provides some useful
computationthat the former needs.

For constructing the actual object program of the operating system when this approach is used,one
compiles all the individual procedures, or fi les containing the procedures, and then bindsthem all
together into a single object fi le with the linker. In terms of information hiding, thereis essentially
none- every procedure is visible to every other one i.e. opposed to a structurecontaining modules or
packages, in which much of the information is local to module, and onlyofficially designated entry
points can be called from outside the module.

However, even in Monolithic systems, it is possible to have at least a little structure. The
serviceslike system calls provide by the operating system are requested by putting the parameters
inwell-defined places, such as in registers or on the stack, and then executing a special
trapinstruction known as a kernel call or supervisor call.

Figure 2.8: Monolithic Systems

2.7 Client-server Model
A trend in modern operating systems is to take this idea of moving code up into higher layerseven
further, and remove as much as possible from the operating system, leaving a minimalkernel. The
usual approach is to implement most of the operating system functions in userprocesses. To request
a service, such as reading a block of a fi le, a user process (presently knownas the client process)
sends the request to a server process, which then does the work and sendsback the answer.

Unit 02: Operating System Services

Notes

‘trusted’ in the system - and all requests to do anything significant must go via thekernel. It
provides the most key facilities and functions of the system.

3. Outer OS: Surrounding the kernel are other parts of the operating system. These performless
critical functions - for example, the graphics system which is ultimately responsible forwhat you see
on the screen.

4. Interface: The interface provides a mechanism for you to interact with the computer.

5. Applications: There are what do the actual work - they can be complex (for example Office)or
simple (for example the is command commonly found on UNIX and Linux systems thatlists fi les in
a directory (or folder).

2.6 Monolithic Systems
This approach is well known as “The Big Mess”. The operating system is written as a collection
ofprocedures, each of which can call any of the other ones whenever it needs to. When this
techniqueis used, each procedure in the system has a well-defined interface in terms of parameters
andresults, and each one is free to call any other one, if the latter provides some useful
computationthat the former needs.

For constructing the actual object program of the operating system when this approach is used,one
compiles all the individual procedures, or fi les containing the procedures, and then bindsthem all
together into a single object fi le with the linker. In terms of information hiding, thereis essentially
none- every procedure is visible to every other one i.e. opposed to a structurecontaining modules or
packages, in which much of the information is local to module, and onlyofficially designated entry
points can be called from outside the module.

However, even in Monolithic systems, it is possible to have at least a little structure. The
serviceslike system calls provide by the operating system are requested by putting the parameters
inwell-defined places, such as in registers or on the stack, and then executing a special
trapinstruction known as a kernel call or supervisor call.

Figure 2.8: Monolithic Systems

2.7 Client-server Model
A trend in modern operating systems is to take this idea of moving code up into higher layerseven
further, and remove as much as possible from the operating system, leaving a minimalkernel. The
usual approach is to implement most of the operating system functions in userprocesses. To request
a service, such as reading a block of a fi le, a user process (presently knownas the client process)
sends the request to a server process, which then does the work and sendsback the answer.

Unit 02: Operating System Services

Notes

‘trusted’ in the system - and all requests to do anything significant must go via thekernel. It
provides the most key facilities and functions of the system.

3. Outer OS: Surrounding the kernel are other parts of the operating system. These performless
critical functions - for example, the graphics system which is ultimately responsible forwhat you see
on the screen.

4. Interface: The interface provides a mechanism for you to interact with the computer.

5. Applications: There are what do the actual work - they can be complex (for example Office)or
simple (for example the is command commonly found on UNIX and Linux systems thatlists fi les in
a directory (or folder).

2.6 Monolithic Systems
This approach is well known as “The Big Mess”. The operating system is written as a collection
ofprocedures, each of which can call any of the other ones whenever it needs to. When this
techniqueis used, each procedure in the system has a well-defined interface in terms of parameters
andresults, and each one is free to call any other one, if the latter provides some useful
computationthat the former needs.

For constructing the actual object program of the operating system when this approach is used,one
compiles all the individual procedures, or fi les containing the procedures, and then bindsthem all
together into a single object fi le with the linker. In terms of information hiding, thereis essentially
none- every procedure is visible to every other one i.e. opposed to a structurecontaining modules or
packages, in which much of the information is local to module, and onlyofficially designated entry
points can be called from outside the module.

However, even in Monolithic systems, it is possible to have at least a little structure. The
serviceslike system calls provide by the operating system are requested by putting the parameters
inwell-defined places, such as in registers or on the stack, and then executing a special
trapinstruction known as a kernel call or supervisor call.

Figure 2.8: Monolithic Systems

2.7 Client-server Model
A trend in modern operating systems is to take this idea of moving code up into higher layerseven
further, and remove as much as possible from the operating system, leaving a minimalkernel. The
usual approach is to implement most of the operating system functions in userprocesses. To request
a service, such as reading a block of a fi le, a user process (presently knownas the client process)
sends the request to a server process, which then does the work and sendsback the answer.

Lovely Professional University 31

Operating System

Notes

In Client-server Model, all the kernel does is handle the communication between clients andservers.
By splitting the operating system up into parts, each of which only handles one fact ofthe system,
such as fi le service, process service, terminal service, or memory service, each partbecomes small
and manageable; furthermore, because all the servers run as user-mode processes,and not in kernel
mode, they do not have direct access to the hardware. As a consequence, if abug in the fi le server is
triggered, the fi le service may crash, but this will not usually bring thewhole machine down.

Another advantage of the client-server model is its adaptability to use in distributed system. If
aclient communicates with a server by sending it messages, the client need not know whether
themessage is handled locally in its own machine, or whether it was sent across a network to a
serveron a remote machine. As far as the client is concerned, the same thing happens in both cases:
arequest was sent and a reply came back.

Figure 2.9: Client-Server Model

2.8 Exokernel
Exokernel is an operating system kernel developed by the MIT Parallel and Distributed
OperatingSystems group, and also a class of similar operating systems.The idea behind exokernel is
to force as few abstractions as possible on developers, enablingthem to make as many decisions as
possible about hardware abstractions.Applications may request specific memory addresses, disk
blocks, etc. The kernel only ensures thatthe requested resource is free, and the application is
allowed to access it. This low-level hardwareaccess allows the programmer to implement custom
abstractions, and omit unnecessary ones,most commonly to improve a program’s performance. It
also allows programmers to choosewhat level of abstraction they want, high, or low.

Exokernels can be seen as an application of the end-to-end principle to operating systems, in
thatthey do not force an application program to layer its abstractions on top of other abstractions
thatwere designed with different requirements in mind.

Example: In the MIT Exokernel project, the Cheetah web server stores preformatted

Internet Protocol packets on the disk, the kernel provides safe access to the disk by
preventingunauthorized reading and writing, but how the disk is abstracted is up to the application
or thelibraries the application uses.

Operating systems define the interface between applications and physical resources.Unfortunately,
this interface can significantly limit the performance and implementationfreedom of applications.
Traditionally, operating systems hide information about machineresources behind high-level
abstractions such as processes, fi les, address spaces and inter-processcommunication. These
abstractions define a virtual machine on which applications execute; theirimplementation cannot be
replaced or modified by untrusted applications.

Hardcoding the implementations of these abstractions is inappropriate for three main reasons:

1. It denies applications the advantages of domain-specific optimizations,

Operating System

Notes

In Client-server Model, all the kernel does is handle the communication between clients andservers.
By splitting the operating system up into parts, each of which only handles one fact ofthe system,
such as fi le service, process service, terminal service, or memory service, each partbecomes small
and manageable; furthermore, because all the servers run as user-mode processes,and not in kernel
mode, they do not have direct access to the hardware. As a consequence, if abug in the fi le server is
triggered, the fi le service may crash, but this will not usually bring thewhole machine down.

Another advantage of the client-server model is its adaptability to use in distributed system. If
aclient communicates with a server by sending it messages, the client need not know whether
themessage is handled locally in its own machine, or whether it was sent across a network to a
serveron a remote machine. As far as the client is concerned, the same thing happens in both cases:
arequest was sent and a reply came back.

Figure 2.9: Client-Server Model

2.8 Exokernel
Exokernel is an operating system kernel developed by the MIT Parallel and Distributed
OperatingSystems group, and also a class of similar operating systems.The idea behind exokernel is
to force as few abstractions as possible on developers, enablingthem to make as many decisions as
possible about hardware abstractions.Applications may request specific memory addresses, disk
blocks, etc. The kernel only ensures thatthe requested resource is free, and the application is
allowed to access it. This low-level hardwareaccess allows the programmer to implement custom
abstractions, and omit unnecessary ones,most commonly to improve a program’s performance. It
also allows programmers to choosewhat level of abstraction they want, high, or low.

Exokernels can be seen as an application of the end-to-end principle to operating systems, in
thatthey do not force an application program to layer its abstractions on top of other abstractions
thatwere designed with different requirements in mind.

Example: In the MIT Exokernel project, the Cheetah web server stores preformatted

Internet Protocol packets on the disk, the kernel provides safe access to the disk by
preventingunauthorized reading and writing, but how the disk is abstracted is up to the application
or thelibraries the application uses.

Operating systems define the interface between applications and physical resources.Unfortunately,
this interface can significantly limit the performance and implementationfreedom of applications.
Traditionally, operating systems hide information about machineresources behind high-level
abstractions such as processes, fi les, address spaces and inter-processcommunication. These
abstractions define a virtual machine on which applications execute; theirimplementation cannot be
replaced or modified by untrusted applications.

Hardcoding the implementations of these abstractions is inappropriate for three main reasons:

1. It denies applications the advantages of domain-specific optimizations,

Operating System

Notes

In Client-server Model, all the kernel does is handle the communication between clients andservers.
By splitting the operating system up into parts, each of which only handles one fact ofthe system,
such as fi le service, process service, terminal service, or memory service, each partbecomes small
and manageable; furthermore, because all the servers run as user-mode processes,and not in kernel
mode, they do not have direct access to the hardware. As a consequence, if abug in the fi le server is
triggered, the fi le service may crash, but this will not usually bring thewhole machine down.

Another advantage of the client-server model is its adaptability to use in distributed system. If
aclient communicates with a server by sending it messages, the client need not know whether
themessage is handled locally in its own machine, or whether it was sent across a network to a
serveron a remote machine. As far as the client is concerned, the same thing happens in both cases:
arequest was sent and a reply came back.

Figure 2.9: Client-Server Model

2.8 Exokernel
Exokernel is an operating system kernel developed by the MIT Parallel and Distributed
OperatingSystems group, and also a class of similar operating systems.The idea behind exokernel is
to force as few abstractions as possible on developers, enablingthem to make as many decisions as
possible about hardware abstractions.Applications may request specific memory addresses, disk
blocks, etc. The kernel only ensures thatthe requested resource is free, and the application is
allowed to access it. This low-level hardwareaccess allows the programmer to implement custom
abstractions, and omit unnecessary ones,most commonly to improve a program’s performance. It
also allows programmers to choosewhat level of abstraction they want, high, or low.

Exokernels can be seen as an application of the end-to-end principle to operating systems, in
thatthey do not force an application program to layer its abstractions on top of other abstractions
thatwere designed with different requirements in mind.

Example: In the MIT Exokernel project, the Cheetah web server stores preformatted

Internet Protocol packets on the disk, the kernel provides safe access to the disk by
preventingunauthorized reading and writing, but how the disk is abstracted is up to the application
or thelibraries the application uses.

Operating systems define the interface between applications and physical resources.Unfortunately,
this interface can significantly limit the performance and implementationfreedom of applications.
Traditionally, operating systems hide information about machineresources behind high-level
abstractions such as processes, fi les, address spaces and inter-processcommunication. These
abstractions define a virtual machine on which applications execute; theirimplementation cannot be
replaced or modified by untrusted applications.

Hardcoding the implementations of these abstractions is inappropriate for three main reasons:

1. It denies applications the advantages of domain-specific optimizations,

Lovely Professional University32

Unit 02: Operating System Services

Notes

2. It discourages changes to the implementations of existing abstractions, and
3. It restricts the flexibility of application builders, since new abstractions can only be

addedby awkward emulation on top of existing ones (if they can be added at all).

These problems can be solved through application level resource management in which
traditionaloperating system abstractions, such as Virtual Memory (VM) and Inter-process
Communication(IPC), are implemented entirely at application level by untrusted software. In this
architecture, aminimal kernel-called an exokernel-securely multiplexes available hardware
resources. Libraryoperating systems, working above the exokernel interface, implement higher-
level abstractions.Application writers select libraries or implement their own. New
implementations of libraryoperating systems are incorporated by simply relinking application
executables. Applicationscan benefit greatly from having more control over how machine resources
are used to implementhigher-level abstractions. The high cost of general-purpose virtual memory
primitives reducesthe performance of persistent stores, garbage collectors, and distributed shared
memory systems.

Application-level control over fi le caching can reduce application-running time
considerably.Application-specific virtual memory policies can increase application performance.
Theinappropriate fi le-system implementation decisions can have a dramatic impact on
theperformance of databases. The exceptions can be made an order of magnitude faster by
deferringsignal handling to applications.

To provide applications control over machine resources, an exokernel defines a low-levelinterface.
The exokernel architecture is founded on and motivated by a single, simple, and oldobservation
that the lower the level of a primitive, the more efficiently it can be implemented,and the more
latitude it grants to implementors of higher-level abstractions.

To provide an interface that is as low-level as possible (ideally, just the hardware interface),
anexokernel designer has a single overriding goal of separating protection from management.
Forinstance, an exokernel should protect framebuffers without understanding windowing
systemsand disks without understanding file systems.

One approach is to give each application its own virtual machine. Virtual machines can have
severeperformance penalties. Therefore, an exokernel uses a different approach - it exports
hardwareresources rather than emulating them, which allows an efficient and simple
implementation.An exokernel employs three techniques to export resources securely:

1. By using secure bindings, applications can securely bind to machine resources and
handleevents.

2. By using visible re-source revocation, applications participate in a resource revocationprotocol.
3. By using an abort protocol, an exokernel can break secure bindings of

uncooperativeapplications by force.

The advantages of exokernel systems among others are:

1. Exokernels can be made efficient due to the limited number of simple primitives they
mustprovide

2. Low-level secure multiplexing of hardware resources can be provided with low overhead
3. Traditional abstractions, such as VM and IPC, can be implemented efficiently at

applicationlevel, where they can be easily extended, specialized, or replaced
4. Applications can create special-purpose implementations of abstractions, tailored to

theirfunctionality and performance needs.

Finally, many of the hardware resources in microkernel systems, such as the network, screen,
anddisk, are encapsulated in heavyweight servers that cannot be bypassed or tailored to
applicationspecific needs. These heavyweight servers can be viewed as fixed kernel subsystems
that run in the user-space.

Lovely Professional University 33

Operating System

Notes

Figure 2.10: Exokernel

2.9 Layered Structure
A generalization of the approach as shown in the Figure 3.6 for organizing the operating systemas a
hierarchy of layers, each one constructed upon the one below it.

Figure 2.11: An Operating System Layer

The system has 6 layers. Layer 0 dealt with allocation of the processor, switching betweenprocesses
when interrupts occurred or timers expired. Above layer 0, the system consisted ofsequential
processes, each of which could be programmed without having to worry about thefact that multiple
processes were running on a single processor. In other words, layer 0 providedthe basic
multiprogramming of the CPU.

Operating System

Notes

Figure 2.10: Exokernel

2.9 Layered Structure
A generalization of the approach as shown in the Figure 3.6 for organizing the operating systemas a
hierarchy of layers, each one constructed upon the one below it.

Figure 2.11: An Operating System Layer

The system has 6 layers. Layer 0 dealt with allocation of the processor, switching betweenprocesses
when interrupts occurred or timers expired. Above layer 0, the system consisted ofsequential
processes, each of which could be programmed without having to worry about thefact that multiple
processes were running on a single processor. In other words, layer 0 providedthe basic
multiprogramming of the CPU.

Operating System

Notes

Figure 2.10: Exokernel

2.9 Layered Structure
A generalization of the approach as shown in the Figure 3.6 for organizing the operating systemas a
hierarchy of layers, each one constructed upon the one below it.

Figure 2.11: An Operating System Layer

The system has 6 layers. Layer 0 dealt with allocation of the processor, switching betweenprocesses
when interrupts occurred or timers expired. Above layer 0, the system consisted ofsequential
processes, each of which could be programmed without having to worry about thefact that multiple
processes were running on a single processor. In other words, layer 0 providedthe basic
multiprogramming of the CPU.

Lovely Professional University34

Unit 02: Operating System Services

Notes

Figure 2.12: Layered System

Layer 1 did the memory management. It allocated space for processes in main memory and on
a512k word drum used for holding parts of processes (pages) for which there was no room in
mainmemory. Above layer 1, processes did not have to worry about whether they were in
memoryor on the drum; the layer 1 software took care of making sure pages were brought into
memorywhenever they were needed.

Layer 2 handled communication between each process and the operator console. Above thislayer
each process effectively had its own operator console.

Layer 3 took care of managing the I/O devices and buffering the information streams to andfrom
them. Above layer 3 each process could deal with abstract I/O devices with nice properties,instead
of real devices with many peculiarities.

Layer 4 was where the user programs were found. They did not have to worry about
process,memory, console, or I/O management.

The system operator process was located in layer 5.

Figure 2.13: MS – DOS Layer Structure

In MS-DOS, the interfaces and levels of functionality are not well separated. For
instance,application programs are able to access the basic I/O routines to write directly to the
displayand disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious)
programs,causing entire system crashes when user programs fail. Of course, MS-DOS was also
limitedby the hardware of its era. Because the Intel 8088 for which it was written provides no
dualmode and no hardware protection, the designers of MS-DOS had no choice but to leave the
basehardware accessible.

Unit 02: Operating System Services

Notes

Figure 2.12: Layered System

Layer 1 did the memory management. It allocated space for processes in main memory and on
a512k word drum used for holding parts of processes (pages) for which there was no room in
mainmemory. Above layer 1, processes did not have to worry about whether they were in
memoryor on the drum; the layer 1 software took care of making sure pages were brought into
memorywhenever they were needed.

Layer 2 handled communication between each process and the operator console. Above thislayer
each process effectively had its own operator console.

Layer 3 took care of managing the I/O devices and buffering the information streams to andfrom
them. Above layer 3 each process could deal with abstract I/O devices with nice properties,instead
of real devices with many peculiarities.

Layer 4 was where the user programs were found. They did not have to worry about
process,memory, console, or I/O management.

The system operator process was located in layer 5.

Figure 2.13: MS – DOS Layer Structure

In MS-DOS, the interfaces and levels of functionality are not well separated. For
instance,application programs are able to access the basic I/O routines to write directly to the
displayand disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious)
programs,causing entire system crashes when user programs fail. Of course, MS-DOS was also
limitedby the hardware of its era. Because the Intel 8088 for which it was written provides no
dualmode and no hardware protection, the designers of MS-DOS had no choice but to leave the
basehardware accessible.

Unit 02: Operating System Services

Notes

Figure 2.12: Layered System

Layer 1 did the memory management. It allocated space for processes in main memory and on
a512k word drum used for holding parts of processes (pages) for which there was no room in
mainmemory. Above layer 1, processes did not have to worry about whether they were in
memoryor on the drum; the layer 1 software took care of making sure pages were brought into
memorywhenever they were needed.

Layer 2 handled communication between each process and the operator console. Above thislayer
each process effectively had its own operator console.

Layer 3 took care of managing the I/O devices and buffering the information streams to andfrom
them. Above layer 3 each process could deal with abstract I/O devices with nice properties,instead
of real devices with many peculiarities.

Layer 4 was where the user programs were found. They did not have to worry about
process,memory, console, or I/O management.

The system operator process was located in layer 5.

Figure 2.13: MS – DOS Layer Structure

In MS-DOS, the interfaces and levels of functionality are not well separated. For
instance,application programs are able to access the basic I/O routines to write directly to the
displayand disk drives. Such freedom leaves MS-DOS vulnerable to errant (or malicious)
programs,causing entire system crashes when user programs fail. Of course, MS-DOS was also
limitedby the hardware of its era. Because the Intel 8088 for which it was written provides no
dualmode and no hardware protection, the designers of MS-DOS had no choice but to leave the
basehardware accessible.

Lovely Professional University 35

Operating System

Notes

The main advantage of the layered approach is modularity. The layers are selected such thateach
uses functions (operations) and services of only lower level layers. This approach
simplifiesdebugging and system verification. The first layer can be debugged without any concern
forthe rest of the system, because, by definition, it uses only the basic hardware (which is
assumedcorrect) to implement its functions. Once the first layer is debugged, its correct functioning
canbe assumed while the second layer is worked on, and so on. If an error is found during the

debugging of a particular layer, we know that the error must be on that layer, because the
layersbelow it are already debugged. Thus, the design and implementation of the system is
simplifiedwhen the system is broken down into layers.

Each layer is implemented using only those operations provided by lower level layers. A layerdoes
not need to know how these operations are implemented; it needs to know only what
theseoperations do. Hence, each layer hides the existence of certain data structures, operations,
andhardware from higher-level layers.

The layer approach to design was first used in the operating system at the Technische
HogeschoolEindhoven. The system was defined in six layers. The bottom layer was the hardware.
The nextlayer implemented CPU scheduling. The next layer implemented memory management;
thememory-management scheme was virtual memory. Layer 3 contained device driver for
theoperator’s console. Because it and I/O buffering (level 4) were placed above memory
management,the device buffers could be placed in virtual memory. The I/O buffering was also
above theoperator’s console, so that I/O error conditions could be output to the operator’s
console.This approach can be used in many ways. For example, the Venus system was also
designedusing a layered approach. The lower layers (0 to 4), dealing with CPU scheduling and
memorymanagement, were then put into microcode. This decision provided the advantages of
additionalspeed of execution and a clearly defined interface between the microcoded layers and the
higherlayers.

The major difficulty with the layered approach involves the appropriate definition of the
variouslayers. Because a layer can use only those layers that are at a lower level, careful planning
isnecessary.

Example: The device driver for the backing store (disk space used by virtual-memoryalgorithms)
must be at a level lower than that of the memory-management routines, becausememory
management requires the ability to use the backing store.Other requirements may not be so
obvious. The backing-store driver would normally be abovethe CPU scheduler, because the driver
may need to wait for I/O and the CPU can be rescheduledduring this time. However, on a large
system, the CPU scheduler may have more informationabout all the active processes than can fi t in
memory. Therefore, this information may need to beswapped in and out of memory, requiring the
backing-store driver routine to be below the CPUscheduler.

A final problem with layered implementations is that they tend to be less efficient than othertypes.
For instance, for a user program to execute an I/O operation, it executes a system callwhich is
trapped to the I/O layer, which calls the memory-management layer, through to the
CPUscheduling layer, and finally to the hardware. At each layer, the parameters may be
modified,data may need to be passed, and so on. Each layer adds overhead to the system call and
the netresult is a system call that takes longer than one does on a non-layered system.These
limitations have caused a small backlash against layering in recent years. Fewer layerswith more
functionality are being designed, providing most of the advantages of modularizedcode while
avoiding the difficult problems of layer definition and interaction. For instance, OS/2is a
descendant of MS-DOS that adds multitasking and dual-mode operation, as well as othernew
features.

Because of this added complexity and the more powerful hardware for which OS/2 was
designed,the system was implemented in a more layered fashion. Contrast the MS-DOS structure to
that ofthe OS/2. It should be clear that, from both the system-design and implementation
standpoints,OS/2 has the advantage. For instance, direct user access to low-level facilities is not
allowed,providing the operating system with more control over the hardware and more knowledge
ofwhich resources each user program is using.As a further example, consider the history of
Windows NT. The first release had a verylayer-oriented organization. However, this version
suffered low performance compared to thatof Windows 95. Windows NT 4.0 redressed some of
these performance issues by moving layersfrom user space to kernel space and more closely
integrating them.

Lovely Professional University36

Unit 02: Operating System Services

Notes

2.10 Virtual Machine
A virtual machine is a type of computer application used to create a virtual environment, which is
referred to as virtualization. Virtualization allows the user to see the infrastructure of a network
through a process of aggregation. Virtualization may also be used to run multiple operating
systems at the same time. Through the help of a virtual machine, the user can operate software
located on the computer platform.

There are different types of virtual machines. Most commonly, the term is used to refer to hardware
virtual machine software, also known as a hypervisor or virtual machine monitor. This type of
virtual machine software makes it possible to perform multiple identical executions on one
computer. In turn, each of these executions runs an operating system. This allows multiple
applications to be run on different operating systems, even those they were not originally intended
for.

Virtual machine can also refer to application virtual machine software. With this software, the
application is isolated from the computer being used. This software is intended to be used on a
number of computer platforms. This makes it unnecessary to create separate versions of the same
software for different operating systems and computers. Java Virtual Machine is a very well-known
example of an application virtual machine.

A virtual machine can also be a virtual environment, which is also known as a virtual private
server. A virtual environment is used for running programs at the user level. Therefore, it is used
solely for applications and not for drivers or operating system kernels.

A virtual machine may also be a group of computers that work together to create a more powerful
machine. In this type of virtual machine, the software makes it possible for one environment to be
formed throughout several computers. This makes it appear to the end user as if he or she is using a
single computer, when there are actually numerous computers at work.

The heart of the system, known as the virtual machine monitor, runs on the bare hardware and
does the multiprogramming, providing not one, but several virtual machines to the next layer up.
However, unlike all other operating systems, these virtual machines are not extended machines,
with files and other nice features. Instead, they are exact copies of the bare hardware, including
kernel/user mod, I/O, interrupts, and everything else the real machine has.

Each virtual machine is identical to the true hardware; therefore, each one can run any
operatingsystem that will run directly on the hardware. Different virtual machines can, and usually
do, rundifferent operating systems. Some run one of the descendants of OF/360 for batch
processing,while other ones run a single-user, interactive system called CMS (Conversational
MonitorSystem) for timesharing users.

Conceptually, a computer system is made up of layers. The hardware is the lowest level in allsuch
systems. The kernel running at the next level uses the hardware instructions to create a setof system
calls for use by outer layers. The systems programs above the kernel are therefore ableto use either
system calls or hardware instructions, and in some ways these programs do notdifferentiate
between these two. Thus, although they are accessed differently, they both providefunctionality
that the program can use to create even more advanced functions. System programs,in turn, treat
the hardware and the system calls as though they both are at the same level.

Some systems carry this scheme even a step further by allowing the system programs to be
calledeasily by the application programs. As before, although the system programs are at a level
higher than that of the other routines, the application programs may view everything under them
in the hierarchy as though the latter were part of the machine itself. This layered approach is taken
to its logical conclusion in the concept of a virtual machine. The VM operating system for IBM
systems is the best example of the virtual-machine concept, because IBM pioneered the work in this
area. By using CPU scheduling and virtual-memory techniques, an operating system can create the
illusion of multiple processes, each executing on its own processor with its own (virtual) memory.

Of course, normally, the process has additional features, such as system calls and a file system,
which are not provided by the bare hardware. The virtual-machine approach, on the other hand,
does not provide any additional function, but rather provides an interface that is identical to the
underlying bare hardware. Each process is provided with a (virtual) copy of the underlying
computer.

The resources of the physical computer are shared to create the virtual machines. CPU scheduling
can be used to share the CPU and to create the appearance that users have their own processor.

Lovely Professional University 37

Operating System

Notes

Spooling and a fi le system can provide virtual card readers and virtual line printers. A normal user
timesharing terminal provides the function of the virtual machine operator’s console.

Figure 2.14: Virtual Machine

A major difficulty with the virtual-machine approach involves disk systems. Suppose that the
physical machine has three disk drives but wants to support seven virtual machines. Clearly, it
cannot allocate a disk drive to each virtual machine. Remember that the virtual-machine software
itself will need substantial disk space to provide virtual memory and spooling. The solution is to
provide virtual disks, which are identical in all respects except size; these are termed minidisks in
IBM’s VM operating system. The system implements each minidisk by allocating as many tracks as
the minidisk needs on the physical disks. Obviously, the sum of the sizes of all minidisks must be
less than the actual amount of physical disk space available.

Users thus are given their own virtual machine. They can then run any of the operating systems or
software packages that are available on the underlying machine. For the IBM VM system, a user
normally runs CMS, a single-user interactive operating system. The virtual-machine software is
concerned with multiprogramming multiple virtual machines onto a physical machine, but does
not need to consider any user-support software. This arrangement may provide a useful
partitioning of the problem of designing a multiuser interactive system into two smaller pieces.

Summary
The operating system provides an environment by hiding the details of underlying hardware
where the user can conveniently run programs. All the user sees is that the I/O has been performed
without any details. The output of a program may need to be written into new files or input taken
from some files. It involves secondary storage management. The user does not have to worry about
secondary storage management. There are instances where processes need to communicate with
each other to exchange information. It may be between processes running on the same computer or
running on the different computers. By providing this service the operating system relieves the user
of the worry of passing messages between processes.

Keywords
Asymmetric Multiprocessing: Asymmetric hardware systems commonly dedicated individual
processors to specific tasks.

Computer Server System: Computer-server systems provide an interface to which clients can send
requests to perform an action, in response to which they execute the action and send back results to
the client.

Operating System

Notes

Spooling and a fi le system can provide virtual card readers and virtual line printers. A normal user
timesharing terminal provides the function of the virtual machine operator’s console.

Figure 2.14: Virtual Machine

A major difficulty with the virtual-machine approach involves disk systems. Suppose that the
physical machine has three disk drives but wants to support seven virtual machines. Clearly, it
cannot allocate a disk drive to each virtual machine. Remember that the virtual-machine software
itself will need substantial disk space to provide virtual memory and spooling. The solution is to
provide virtual disks, which are identical in all respects except size; these are termed minidisks in
IBM’s VM operating system. The system implements each minidisk by allocating as many tracks as
the minidisk needs on the physical disks. Obviously, the sum of the sizes of all minidisks must be
less than the actual amount of physical disk space available.

Users thus are given their own virtual machine. They can then run any of the operating systems or
software packages that are available on the underlying machine. For the IBM VM system, a user
normally runs CMS, a single-user interactive operating system. The virtual-machine software is
concerned with multiprogramming multiple virtual machines onto a physical machine, but does
not need to consider any user-support software. This arrangement may provide a useful
partitioning of the problem of designing a multiuser interactive system into two smaller pieces.

Summary
The operating system provides an environment by hiding the details of underlying hardware
where the user can conveniently run programs. All the user sees is that the I/O has been performed
without any details. The output of a program may need to be written into new files or input taken
from some files. It involves secondary storage management. The user does not have to worry about
secondary storage management. There are instances where processes need to communicate with
each other to exchange information. It may be between processes running on the same computer or
running on the different computers. By providing this service the operating system relieves the user
of the worry of passing messages between processes.

Keywords
Asymmetric Multiprocessing: Asymmetric hardware systems commonly dedicated individual
processors to specific tasks.

Computer Server System: Computer-server systems provide an interface to which clients can send
requests to perform an action, in response to which they execute the action and send back results to
the client.

Operating System

Notes

Spooling and a fi le system can provide virtual card readers and virtual line printers. A normal user
timesharing terminal provides the function of the virtual machine operator’s console.

Figure 2.14: Virtual Machine

A major difficulty with the virtual-machine approach involves disk systems. Suppose that the
physical machine has three disk drives but wants to support seven virtual machines. Clearly, it
cannot allocate a disk drive to each virtual machine. Remember that the virtual-machine software
itself will need substantial disk space to provide virtual memory and spooling. The solution is to
provide virtual disks, which are identical in all respects except size; these are termed minidisks in
IBM’s VM operating system. The system implements each minidisk by allocating as many tracks as
the minidisk needs on the physical disks. Obviously, the sum of the sizes of all minidisks must be
less than the actual amount of physical disk space available.

Users thus are given their own virtual machine. They can then run any of the operating systems or
software packages that are available on the underlying machine. For the IBM VM system, a user
normally runs CMS, a single-user interactive operating system. The virtual-machine software is
concerned with multiprogramming multiple virtual machines onto a physical machine, but does
not need to consider any user-support software. This arrangement may provide a useful
partitioning of the problem of designing a multiuser interactive system into two smaller pieces.

Summary
The operating system provides an environment by hiding the details of underlying hardware
where the user can conveniently run programs. All the user sees is that the I/O has been performed
without any details. The output of a program may need to be written into new files or input taken
from some files. It involves secondary storage management. The user does not have to worry about
secondary storage management. There are instances where processes need to communicate with
each other to exchange information. It may be between processes running on the same computer or
running on the different computers. By providing this service the operating system relieves the user
of the worry of passing messages between processes.

Keywords
Asymmetric Multiprocessing: Asymmetric hardware systems commonly dedicated individual
processors to specific tasks.

Computer Server System: Computer-server systems provide an interface to which clients can send
requests to perform an action, in response to which they execute the action and send back results to
the client.

Lovely Professional University38

Unit 02: Operating System Services

Notes

Operating System: An operating system (OS) is a software program that manages the hardware and
software resources of a computer.

Peer-to-Peer System: Peer-to-peer (P2P) computing or networking is a distributed application
architecture that partitions tasks or workloads between peers.

Real Time Operating System (RTOS): Real-time operating systems are used to control machinery,
scientific instruments and industrial systems such as embedded systems.

SIMD Multiprocessing: In a single instruction stream, multiple data stream computer one processor
handles a stream of instructions, each one of which can perform calculations in parallel on multiple
data locations.

Symmetric Multiprocessing: SMP involves a multiprocessor computer architecture where two or
more identical processors can connect to a single shared main memory.

System Calls: System call is the mechanism used by an application program to request service from
the operating system.

Self Assessment

1. A/an is a software program that manages the hardware and software
resourcesof a computer.

2. Operating systems can be explored from two viewpoints: the and the system.
3. A manages the execution of user programs.
4. A is the mechanism used by an application program to request service fromthe

operating system.

5. A is a program in execution.
A. process
B. file
C. system
D. None of the choices

6. The operating system is responsible for which of the following activities in connections with
memory management?

I) Keep track of the parts of memory currently being used and by whom.
II) Decide which processes to load when memory space becomes available.
III) Allocate and deallocate memory space as needed.
IV) Support of primitives for manipulating files and directories.
A. I, II and IV
B. I, II and III
C. II, III and IV
D. I, III and IV

7. A is a collection of related information defined by its creator.
A. File
B. Storage
C. Record
D. File

Lovely Professional University 39

Operating System

Notes

8. The operating system manages
A. Memory
B. Processes
C. Disks and I/O devices
D. All of the above

9. The key components of the I/O system do not consist of:
A. A buffer-caching system.
B. A general device-driver interface.
C. Drivers for specific hardware devices.
D. File backup on stable (nonvolatile) storage media.

10. The operating system is not responsible for which of the following activities in connection
with disk management:

A. Free space management
B. Buffer caching system
C. Storage allocation
D. Disk scheduling

11. Which of the following statements is not true?
A. A distributed system is a collection of processors that share memory or a clock.
B. Each processor has its own local memory.
C. The processors in the system are connected through a communication network.
D. Communication takes place using a protocol.

12. is a large array of words or bytes, each with its own address.
A. Storage
B. Memory
C. File
D. Record

13. A provides the user with access to the various resources thesystem maintains.

14. What is a shell?
A. It is a hardware component
B. It is a command interpreter
C. It is a part in compiler
D. It is a tool in CPU scheduling

15. Multiprogramming systems
A. Are easier to develop than single programming systems
B. Execute each job faster
C. Execute more jobs in the same time
D. Are used only on large main frame computers

Lovely Professional University40

Unit 02: Operating System Services

Notes

16. Which of the following operating systems is better for implementing a Client-
Servernetwork?

A. MS DOS
B. Windows 95
C. Windows 98
D. Windows 2000

17. Which of the following is not an example of the multi-programming operating system?
A. Atlas supervisor
B. Multics Operating System
C. Exec II system
D. All of the given choices

Answers for Self Assessment

1. operating
system

2. user 3. control
program

4. system
call

5. A

6. B 7. A 8. D 9. D 10. B

11. A 12. B 13. distributed
system

14. B 15. C

16. D 17. B

Review Questions

1. Discuss the Simple Operating System Structure. Describe the layered approach.
2. What are the services that the operating system provides to both the users and to the

programs?
3. What is system calls in OS? Explain in detail with its types.
4. Explain operating system functions and services in detail.
5. “With the help of a virtual machine, the user can operate software located on the computer

platform”. Do you agree with the statement? Give reasons to support your answer.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Web Links
wiley.com/coolege.silberschatz

Unit 02: Operating System Services

Notes

16. Which of the following operating systems is better for implementing a Client-
Servernetwork?

A. MS DOS
B. Windows 95
C. Windows 98
D. Windows 2000

17. Which of the following is not an example of the multi-programming operating system?
A. Atlas supervisor
B. Multics Operating System
C. Exec II system
D. All of the given choices

Answers for Self Assessment

1. operating
system

2. user 3. control
program

4. system
call

5. A

6. B 7. A 8. D 9. D 10. B

11. A 12. B 13. distributed
system

14. B 15. C

16. D 17. B

Review Questions

1. Discuss the Simple Operating System Structure. Describe the layered approach.
2. What are the services that the operating system provides to both the users and to the

programs?
3. What is system calls in OS? Explain in detail with its types.
4. Explain operating system functions and services in detail.
5. “With the help of a virtual machine, the user can operate software located on the computer

platform”. Do you agree with the statement? Give reasons to support your answer.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Web Links
wiley.com/coolege.silberschatz

Unit 02: Operating System Services

Notes

16. Which of the following operating systems is better for implementing a Client-
Servernetwork?

A. MS DOS
B. Windows 95
C. Windows 98
D. Windows 2000

17. Which of the following is not an example of the multi-programming operating system?
A. Atlas supervisor
B. Multics Operating System
C. Exec II system
D. All of the given choices

Answers for Self Assessment

1. operating
system

2. user 3. control
program

4. system
call

5. A

6. B 7. A 8. D 9. D 10. B

11. A 12. B 13. distributed
system

14. B 15. C

16. D 17. B

Review Questions

1. Discuss the Simple Operating System Structure. Describe the layered approach.
2. What are the services that the operating system provides to both the users and to the

programs?
3. What is system calls in OS? Explain in detail with its types.
4. Explain operating system functions and services in detail.
5. “With the help of a virtual machine, the user can operate software located on the computer

platform”. Do you agree with the statement? Give reasons to support your answer.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Web Links
wiley.com/coolege.silberschatz

Lovely Professional University 41

Unit 03: Process

Notes

Unit 03: Process

CONTENTS

Objectives

Introduction

3.1 Process Concepts

3.2 Processes Creation

3.3 Process State Transitions

3.4 Process Termination

3.5 Inter-Process Communication

3.6 Process Communication in Client-Server Environment

3.7 Concept of Thread

3.8 Multi-threading

3.9 Multi-tasking vs. Multi-threading

3.10 Threading Issues

3.11 Processes vs. Threads

Summary

Keywords

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Explain process concepts

 Define PCB

 Describe operation on processes

 Explain inter-process communication

 Describe concept of thread

Introduction
Earlier a computer was used to be fasten the jobs pertaining to computation diligently
andincessantly for a single person. Soon it was realized that the computer was far more powerful
thanjust carrying out a single man’s single job. Such was the speed of operation that the CPU
wouldsit idle for most of the time awaiting user input. The CPU was certainly capable of carrying
outmany jobs simultaneously. It could also support many users simultaneously. But, the
operatingsystems then available were not capable of this support. The operating systems
facilitating asingle-user support at a time was felt inadequate. Then a mechanism was developed
whichwould prevent the wastage of CPU cycles. Hence multi-tasking systems were developed.In a
multi-tasking system, a job or task is submitted as what is known as a process. Multi-
taskingoperating systems could handle multiple processes on a single processor.Process is a unit of
program execution that enables the systems to implement multi-taskingbehavior. Most of the
operating systems today have multi-processing capabilities. This unit isdedicated to process and

Lovely Professional University42

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

process related issues.In this unit, present and discuss the mechanisms that support or enforce
more structured formsof inter-process communications. Subsequent sections are devoted to
messages, an extremelyversatile and popular mechanism in both centralized and distributed
systems, and to facilitateinter-process communication and synchronization.

3.1 Process Concepts
An operating system manages each hardware resource attached with the computer by representing
it as an abstraction. An abstraction hides the unwanted details from the users and programmers
allowing them to have a view of the resources in the form, which is convenient to them. A process
is an abstract model of a sequential program in execution. The operating system can schedule a
process as a unit of work. The term “process” was first used by the designers of the MULTICS in
1960’s. Since then, the term “process” is used somewhat interchangeably with ‘task’ or ‘job’. The
process has been given many definitions as mentioned below:

1. A program in Execution.
2. An asynchronous activity.
3. The ‘animated spirit’ of a procedure in execution.
4. The entity to which processors are assigned.
5. The ‘dispatchable’ unit.

Though there is no universally agreed upon definition, but the definition “Program in Execution” is
the one that is most frequently used. And this is a concept you will use in the present study of
operating systems.Now the question is - what is the relation between process and program. It is
same beast with different name or when this beast is sleeping (not executing) it is called program
and when it is executing becomes process. Well, to be very precise.

Process is not the same as program.A process is more than a program code. A process is an ‘active’
entity as oppose to programwhich is considered to be a ‘passive’ entity. As you all know that a
program is an algorithmexpressed with the help of a programming language. A program is a
passive entity sitting onsome secondary storage device.

A process is an activity of executing a program. Basically, it is a program under execution. Every
process needs certain resources to complete its task.

Process, on the other hand, includes:

1. Current value of Program Counter (PC)
2. Contents of the processor’s registers
3. Value of the variables
4. The process-stack (SP) which typically contains temporary data such as subroutine

parameter, return address, and temporary variables.
5. A data section that contains global variables.
6. A process is the unit of work in a system.

In Process model, all software on the computer is organized into a number of sequential processes.
A process includes PC, registers, and variables. Conceptually, each process has its own virtual CPU.
In reality, the CPU switches back and forth among processes. (The rapid switching back and forth is
called multi-programming).

A process includes, besides instructions to be executed, the temporary data such as subroutine
parameters, return addresses and variables (stored on the stack), data section having global
variables (if any), program counter value, register values and other associated resources. Although
two processes may be associated with the same program, yet they are treated as two separate
processes having their respective set of resources.

Lovely Professional University 43

Unit 03: Process

Notes

Figure: A Schematic Representation of a Process

Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is
asingle Central Processor (CPU), which execute the instructions of only one program at a time,
theoperating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

Process Control Block (PCB)
It is a data structure (a table) that holds information about aprocess.Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associatedwith
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Unit 03: Process

Notes

Figure: A Schematic Representation of a Process

Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is
asingle Central Processor (CPU), which execute the instructions of only one program at a time,
theoperating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

Process Control Block (PCB)
It is a data structure (a table) that holds information about aprocess.Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associatedwith
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Unit 03: Process

Notes

Figure: A Schematic Representation of a Process

Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is
asingle Central Processor (CPU), which execute the instructions of only one program at a time,
theoperating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

Process Control Block (PCB)
It is a data structure (a table) that holds information about aprocess.Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associatedwith
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Lovely Professional University44

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they vary

across operating systems. The states that they represent are found on all systems, however. Certain

operating systems more finely delineate process states.

Figure: Process States

3.2 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users whichcreate
processes but other processes! That is because anyone using the system must already berunning a
shell or command interpreter in order to be able to talk to the system, and the commandinterpreter
is itself a process.When a user creates a process using the command interpreter, the new process
becomes a childof the command interpreter. Similarly, the command interpreter process becomes
the parent forthe child. Processes therefore form a hierarchy.

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they vary

across operating systems. The states that they represent are found on all systems, however. Certain

operating systems more finely delineate process states.

Figure: Process States

3.2 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users whichcreate
processes but other processes! That is because anyone using the system must already berunning a
shell or command interpreter in order to be able to talk to the system, and the commandinterpreter
is itself a process.When a user creates a process using the command interpreter, the new process
becomes a childof the command interpreter. Similarly, the command interpreter process becomes
the parent forthe child. Processes therefore form a hierarchy.

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they vary

across operating systems. The states that they represent are found on all systems, however. Certain

operating systems more finely delineate process states.

Figure: Process States

3.2 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users whichcreate
processes but other processes! That is because anyone using the system must already berunning a
shell or command interpreter in order to be able to talk to the system, and the commandinterpreter
is itself a process.When a user creates a process using the command interpreter, the new process
becomes a childof the command interpreter. Similarly, the command interpreter process becomes
the parent forthe child. Processes therefore form a hierarchy.

Lovely Professional University 45

Unit 03: Process

Notes

Figure: Process Hierarchies

The processes are linked by a tree structure. If a parent is signaled or killed, usually all its
childrenreceive the same signal or are destroyed with the parent. This doesn’t have to be the case –
it ispossible to detach children from their parents – but in many cases it is useful for processes to
belinked in this way.

When a child is created it may do one of two things.

 Duplicate the parent process.
 Load a completely new program.

Similarly, the parent may do one of two things.

 Continue executing along-side its children.
 Wait for some or all of its children to finish before proceeding.

The specific attributes of the child process that differ from the parent process are:

1. The child process has its own unique process ID.
2. The parent process ID of the child process is the process ID of its parent process.
3. The child process gets its own copies of the parent process’s open file

descriptors.Subsequently changing attributes of the fi le descriptors in the parent process
won’t affectthe file descriptors in the child, and vice versa. However, the file position
associated witheach descriptor is shared by both processes.

4. The elapsed processor times for the child process are set to zero.
5. The child doesn’t inherit fi le locks set by the parent process.
6. The child doesn’t inherit alarms set by the parent process.
7. The set of pending signals for the child process is cleared. (The child process inherits

itsmask of blocked signals and signal actions from the parent process.)

3.3 Process State Transitions
Blocking: It occurs when process discovers that it cannot continue. If running process initiates
anI/O operation before its allotted time expires, the running process voluntarily relinquishes
theCPU.

This state transition is: Block: Running? Block.

Time-Run-Out: It occurs when the scheduler decides that the running process has run longenough
and it is time to let another process have CPU time.

This state transition is: Time-Run-Out: Running? Ready.

Dispatch: It occurs when all other processes have had their share and it is time for the firstprocess
to run again

This state transition is: Dispatch: Ready? Running.

Wakeup: It occurs when the external event for which a process was waiting (such as arrival ofinput)
happens.

This state transition is: Wakeup: Blocked? Ready.

Admitted: It occurs when the process is created.

This state transition is: Admitted: New? Ready.

Exit: It occurs when the process has finished execution.

This state transition is: Exit: Running? Terminated.

Lovely Professional University46

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

3.4 Process Termination
Processes terminate in one of two ways:

1. Normal Termination occurs by a return from main or when requested by an explicit call to
exit.

2. Abnormal Termination occurs as the default action of a signal or when requested by abort.
3. On receiving a signal, a process looks for a signal-handling function. Failure to find a

signal-handling function forces the process to call exit, and therefore to terminate.

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

3.4 Process Termination
Processes terminate in one of two ways:

1. Normal Termination occurs by a return from main or when requested by an explicit call to
exit.

2. Abnormal Termination occurs as the default action of a signal or when requested by abort.
3. On receiving a signal, a process looks for a signal-handling function. Failure to find a

signal-handling function forces the process to call exit, and therefore to terminate.

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

3.4 Process Termination
Processes terminate in one of two ways:

1. Normal Termination occurs by a return from main or when requested by an explicit call to
exit.

2. Abnormal Termination occurs as the default action of a signal or when requested by abort.
3. On receiving a signal, a process looks for a signal-handling function. Failure to find a

signal-handling function forces the process to call exit, and therefore to terminate.

Lovely Professional University 47

Unit 03: Process

Notes

4. A parent may terminate the execution of one of its children for a variety of reasons, such
as these:
a) The child has exceeded its usage of some of the resources that it has been allocated.

This requires the parent to have a mechanism to inspect the state of its children.
b) The task assigned to the child is no longer required.
c) The parent is exiting, and the operating system does not allow a child to continue if its

parent terminates. On such systems, if a process terminates (either normally or
abnormally), then all its children must also be terminated. This phenomenon, referred
to as cascading termination, is normally initiated by the operating system.

Cooperating Processes

The Concurrent processes executing in the operating system allows for the processes to
cooperate(bothmutually or destructively) with other processes. Processes are cooperating if they
can affecteachother. The simplest example of how this can happen is where two processes are using
thesame fi le. One process may be writing to a fi le, while another process is reading from the fi le;
so,what is being read may be affected by what is being written. Processes cooperate by sharing
data.Cooperation is important for several reasons:

 Information Sharing

Several processes may need to access the same data (such as stored in a file.)

 Computation Speedup

A task can often be run faster if it is broken into subtasks and distributed among
differentprocesses. For example, the matrix multiplication code you saw in class. This depends
upon theprocesses sharing data. (Of course, real speedup also required having multiple CPUs
that can beshared as well.) For another example, consider a web server which may be serving
many clients.Each client can have their own process or thread helping them. This allows the
server to use theoperating system to distribute the computer’s resources, including CPU time,
among the manyclients.

 Modularity

It may be easier to organize a complex task into separate subtasks, and then have
differentprocesses or threads running each subtask.Example: A single server process dedicated
to a single client may have multiple threadsrunning – each performing a different task for the
client.

 Convenience

An individual user can run several programs at the same time, to perform some task. Example:
A network browser is open, while the user has a remote terminal program running (such as
telnet), and a word processing program editing data. Cooperation between processes requires
mechanisms that allow processes to communicate data between each other and synchronize
their actions so they do not harmfully interfere with each other. The purpose of this note is to
consider ways that processes can communicate data with each other, called Inter-process
Communication (IPC).

NoteAnother note will discuss process synchronization, and in particular, the most important
means of synchronizing activity, the use of semaphores.

Lovely Professional University48

Operating System

Notes

3.5 Inter-Process Communication
Inter-process Communication (IPC) is a set of techniques for the exchange of data among twoor
more threads in one or more processes. It involves sending information from one processto another.
Processes may be running on one or more computers connected by a network. IPCtechniques are
divided into methods for message passing, synchronization, shared memory, andRemote
Procedure Calls (RPC). The method of IPC used may vary based on the bandwidth andlatency of
communication between the threads, and the type of data being communicated.Two processes
might want to co-operate in performing a particular task. For example, a processmight want to
print to document in response to a user request, so it starts another process tohandle the printing
and sends a message to it to start printing. Once the process handling theprinting request finishes,
it sends a message back to the original process, which reads the messageand uses this to pop up a
dialog box informing the user that the document has been printed.

There are other ways in which processes can communicate with each other, such as using ashared
memory space.

Table: Inter Process Communication

Method Provided by (Operating systems or other environments)

File All operating systems.

Signal Most operating systems; some systems, such as Windows, only
implement signals in the C run-time library and do not actually provide
support for their use as an IPC technique.

Socket Most operating systems.

Pipe All POSIX systems.

Named pipe All POSIX systems.

Semaphore All POSIX systems.

Shared memory All POSIX systems.

Message passing

(shared nothing)

Used in MPI paradigm, Java RMI, CORBA and others.

Memory-mapped file All POSIX systems; may carry race condition risk if a temporary fi le is
used. Windows also supports this technique but the APIs used are
platform specific.

Message queue Most operating systems.

Mailbox Some operating systems.

3.6 Process Communication in Client-Server Environment
Basically, the Client/Server environment is architected to split an application’s processing across
multiple processor to gain the maximum benefit at the least cost while minimizing the network
traffic between machines. The key phase is to split the application processing. In a Client/Server
mode each processing works independently but in cooperation with other processors. Each is
relying on the other to perform an independent activity to complete the application process. A good
example of this would be the Mid-Range computer, normally called a File Server, which is
responsible for holding the customer master fi le while the Client, normally the Personal Computer,
is responsible for requesting an update to a specific customer. Once the Client is authenticated, the
File Server is notified that the Client needs Mr. Smith’s record for an update.

Lovely Professional University 49

Unit 03: Process

Notes

The File Server is responsible for obtaining Mr. Smith’s record and passing it to the Client for the
actual modification. The Client performs the changes and then passes the changed record back to
the File Server which in turn updates the master fi le. As in this scenario, each processor has a
distinct and independent responsibility to complete the update process. The key is to perform this
cooperative task while minimizing the dialog or traffic between the machines over the network.
Networks have a limited capacity to carry data and if overloaded the application’s response time
would increase. To accomplish this goal, static processes such as edits, and menus are usually
designed to reside on the Client. Update and reporting processes usually are designed to reside on
the File Server. In this way, the network traffic to complete the transaction process is minimized. In
addition, this design minimizes the processing cost as the Personal Computer usually is the least
expensive processor, the File Server being the next expensive, and finally the Main Frame the most
expensive.

There are many Client/Server Models. First, one could install all of the application’s object
programs on the personal computer. Secondly, one could install the static object program routines
such as edits and menus on the personal computer and the business logic object programs on the
file server. Thirdly, one could install all the object programs on the fi le server. As another option,
one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

3.7 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Unit 03: Process

Notes

The File Server is responsible for obtaining Mr. Smith’s record and passing it to the Client for the
actual modification. The Client performs the changes and then passes the changed record back to
the File Server which in turn updates the master fi le. As in this scenario, each processor has a
distinct and independent responsibility to complete the update process. The key is to perform this
cooperative task while minimizing the dialog or traffic between the machines over the network.
Networks have a limited capacity to carry data and if overloaded the application’s response time
would increase. To accomplish this goal, static processes such as edits, and menus are usually
designed to reside on the Client. Update and reporting processes usually are designed to reside on
the File Server. In this way, the network traffic to complete the transaction process is minimized. In
addition, this design minimizes the processing cost as the Personal Computer usually is the least
expensive processor, the File Server being the next expensive, and finally the Main Frame the most
expensive.

There are many Client/Server Models. First, one could install all of the application’s object
programs on the personal computer. Secondly, one could install the static object program routines
such as edits and menus on the personal computer and the business logic object programs on the
file server. Thirdly, one could install all the object programs on the fi le server. As another option,
one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

3.7 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Unit 03: Process

Notes

The File Server is responsible for obtaining Mr. Smith’s record and passing it to the Client for the
actual modification. The Client performs the changes and then passes the changed record back to
the File Server which in turn updates the master fi le. As in this scenario, each processor has a
distinct and independent responsibility to complete the update process. The key is to perform this
cooperative task while minimizing the dialog or traffic between the machines over the network.
Networks have a limited capacity to carry data and if overloaded the application’s response time
would increase. To accomplish this goal, static processes such as edits, and menus are usually
designed to reside on the Client. Update and reporting processes usually are designed to reside on
the File Server. In this way, the network traffic to complete the transaction process is minimized. In
addition, this design minimizes the processing cost as the Personal Computer usually is the least
expensive processor, the File Server being the next expensive, and finally the Main Frame the most
expensive.

There are many Client/Server Models. First, one could install all of the application’s object
programs on the personal computer. Secondly, one could install the static object program routines
such as edits and menus on the personal computer and the business logic object programs on the
file server. Thirdly, one could install all the object programs on the fi le server. As another option,
one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

3.7 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Lovely Professional University50

Operating System

Notes

An operating system that has thread facility, the basic unit of CPU utilization is a thread. A thread
has or consists of a program counter (PC), a register set, and a stack space. Threads are not
independent of one other like process as a result threads shares with other threads their code
section, data section, OS resources also known as task, such as open fi les and signals.

Multitasking and multiprogramming, the two techniques that intend to use the
computingresources optimally have been dealt with in the previous unit at length. In this unit you
willlearn about yet another technique that has caused remarkable improvement on the utilization
ofresources - thread.A thread is a finer abstraction of a process.Recall that a process is defined by
the resources it uses and by the location at which it is executingin the memory. There are many
instances, however, in which it would be useful for resourcesto be shared and accessed
concurrently. This concept is so useful that several new operatingsystems are providing mechanism
to support it through a thread facility.

Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization,and
consists of a program counter, a register set, and a stack. It shares with peer threads its codesection,
data section, and operating-system resources such as open fi les and signals, collectivelyknown as a
task.A traditional or heavyweight process is equal to a task with one thread. A task does nothing
ifno threads are in it, and a thread must be in exactly one task. The extensive sharing makes
CPUswitching among peer threads and the creation of threads inexpensive, compared with
contextswitches among heavyweight processes. Although a thread context switch still requires a
registerset switch, no memory-management-related work need be done. Like any parallel
processingenvironment, multithreading a process may introduce concurrency control problems
that requirethe use of critical sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via systemcalls,
so thread switching does not need to call the operating system, and to cause an interruptto the
kernel. Switching between user-level threads can be done independently of the operatingsystem
and, therefore, very quickly. Thus, blocking a thread and switching to another threadis a reasonable
solution to the problem of how a server can handle many requests efficiently.User-level threads do
have disadvantages, however. For instance, if the kernel is single-threaded,then any user-level
thread executing a system call will cause the entire task to wait until thesystem call returns.

You can grasp the functionality of threads by comparing multiple-thread control withmultiple-
process control. With multiple processes, each process operates independently of theothers; each
process has its own program counter, stack register, and address space. This type oforganization is
useful when the jobs performed by the processes are unrelated. Multiple processescan perform the
same task as well. For instance, multiple processes can provide data to remotemachines in a
network fi le system implementation.However, it is more efficient to have one process containing
multiple threads serve the samepurpose. In the multiple process implementation, each process
executes the same code buthas its own memory and file resources. One multi-threaded process uses
fewer resources thanmultiple redundant processes, including memory, open fi les and CPU
scheduling, for example,as Solaris evolves, network daemons are being rewritten as kernel threads
to increase greatly theperformance of those network server functions.Threads operate, in many
respects, in the same manner as processes. Threads can be in one ofseveral states: ready, blocked,
running, or terminated.A thread within a process executes sequentially, and each thread has its
own stack and programcounter. Threads can create child threads, and can block waiting for system
calls to complete; ifone thread is blocked, another can run. However, unlike processes, threads are
not independentof one another. Because all threads can access every address in the task, a thread
can read or writeover any other thread’s stacks. This structure does not provide protection between
threads. Suchprotection, however, should not be necessary. Whereas processes may originate from
differentusers, and may be hostile to one another, only a single user can own an individual task
with

multiple threads. The threads, in this case, probably would be designed to assist one another,
andtherefore would not require mutual protection.

Lovely Professional University 51

Unit 03: Process

Notes

Figure: Thread Structure

Let us return to our example of the blocked fi le-server process in the single-process model.In
thisscenario, no other server process can execute until the first process is unblocked. Bycontrast, in
the case of a task that contains multiple threads, while one server thread is blockedand waiting, a
second thread in the same task could run. In this application, the cooperation ofmultiple threads
that are part of the same job confers the advantages of higher throughput andimproved
performance. Other applications, such as the producer-consumer problem, requiresharing a
common buffer and so also benefit from this feature of thread utilization. The producerand
consumer could be threads in a task. Little overhead is needed to switch between them,and, on a
multiprocessor system, they could execute in parallel on two processors for maximumefficiency.

User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of
controlassociated with several shared resources. There are many alternatives regarding
threads.Threads can be supported by the kernel (as in the Mach and OS/2 operating systems). In
thiscase, a set of system calls similar to those for processes is provided. Alternatively, they can
besupported above the kernel, via a set of library calls at the user level (as is done in Project
Andrewfrom CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Unit 03: Process

Notes

Figure: Thread Structure

Let us return to our example of the blocked fi le-server process in the single-process model.In
thisscenario, no other server process can execute until the first process is unblocked. Bycontrast, in
the case of a task that contains multiple threads, while one server thread is blockedand waiting, a
second thread in the same task could run. In this application, the cooperation ofmultiple threads
that are part of the same job confers the advantages of higher throughput andimproved
performance. Other applications, such as the producer-consumer problem, requiresharing a
common buffer and so also benefit from this feature of thread utilization. The producerand
consumer could be threads in a task. Little overhead is needed to switch between them,and, on a
multiprocessor system, they could execute in parallel on two processors for maximumefficiency.

User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of
controlassociated with several shared resources. There are many alternatives regarding
threads.Threads can be supported by the kernel (as in the Mach and OS/2 operating systems). In
thiscase, a set of system calls similar to those for processes is provided. Alternatively, they can
besupported above the kernel, via a set of library calls at the user level (as is done in Project
Andrewfrom CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Unit 03: Process

Notes

Figure: Thread Structure

Let us return to our example of the blocked fi le-server process in the single-process model.In
thisscenario, no other server process can execute until the first process is unblocked. Bycontrast, in
the case of a task that contains multiple threads, while one server thread is blockedand waiting, a
second thread in the same task could run. In this application, the cooperation ofmultiple threads
that are part of the same job confers the advantages of higher throughput andimproved
performance. Other applications, such as the producer-consumer problem, requiresharing a
common buffer and so also benefit from this feature of thread utilization. The producerand
consumer could be threads in a task. Little overhead is needed to switch between them,and, on a
multiprocessor system, they could execute in parallel on two processors for maximumefficiency.

User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of
controlassociated with several shared resources. There are many alternatives regarding
threads.Threads can be supported by the kernel (as in the Mach and OS/2 operating systems). In
thiscase, a set of system calls similar to those for processes is provided. Alternatively, they can
besupported above the kernel, via a set of library calls at the user level (as is done in Project
Andrewfrom CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Lovely Professional University52

Operating System

Notes

Figure: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure: Diagram of User Threads

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. This
is called many to one, because one kernel thread is associated to several user threads. It has some
advantages: The first is that is independent of the system, thus, it runs faster than context switching
at kernel level. The second comes from the scheduler that can be chosen by the user in order to
manage a better thread execution. Nevertheless, if a thread of a process is jammed, all other threads
of the same process are jammed too. Another disadvantage is the impossibility to execute two
threads of the same process on two processors. So, user level thread is not interesting in multi-
processor architectures.

Operating System

Notes

Figure: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure: Diagram of User Threads

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. This
is called many to one, because one kernel thread is associated to several user threads. It has some
advantages: The first is that is independent of the system, thus, it runs faster than context switching
at kernel level. The second comes from the scheduler that can be chosen by the user in order to
manage a better thread execution. Nevertheless, if a thread of a process is jammed, all other threads
of the same process are jammed too. Another disadvantage is the impossibility to execute two
threads of the same process on two processors. So, user level thread is not interesting in multi-
processor architectures.

Operating System

Notes

Figure: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure: Diagram of User Threads

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. This
is called many to one, because one kernel thread is associated to several user threads. It has some
advantages: The first is that is independent of the system, thus, it runs faster than context switching
at kernel level. The second comes from the scheduler that can be chosen by the user in order to
manage a better thread execution. Nevertheless, if a thread of a process is jammed, all other threads
of the same process are jammed too. Another disadvantage is the impossibility to execute two
threads of the same process on two processors. So, user level thread is not interesting in multi-
processor architectures.

Lovely Professional University 53

Unit 03: Process

Notes

Figure: Detailed diagrammatic representation of User Level Threads

Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time. Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and
the other with 100 threads (process b). Each process generally receives the same number of time
slices, so the thread in process a runs 100 times as fast as a thread in process b. On systems with
kernel-supported threads, switching among the threads is more time-consuming because the kernel
(via an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Unit 03: Process

Notes

Figure: Detailed diagrammatic representation of User Level Threads

Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time. Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and
the other with 100 threads (process b). Each process generally receives the same number of time
slices, so the thread in process a runs 100 times as fast as a thread in process b. On systems with
kernel-supported threads, switching among the threads is more time-consuming because the kernel
(via an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Unit 03: Process

Notes

Figure: Detailed diagrammatic representation of User Level Threads

Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time. Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and
the other with 100 threads (process b). Each process generally receives the same number of time
slices, so the thread in process a runs 100 times as fast as a thread in process b. On systems with
kernel-supported threads, switching among the threads is more time-consuming because the kernel
(via an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Lovely Professional University54

Operating System

Notes

Figure: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure: Hybrid Thread

3.8 Multi-threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and its
own set of variables. One process could spawn another process, but once that occurred the two
behaved independent of each other. Then the next big thing happened. The programs wanted

Operating System

Notes

Figure: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure: Hybrid Thread

3.8 Multi-threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and its
own set of variables. One process could spawn another process, but once that occurred the two
behaved independent of each other. Then the next big thing happened. The programs wanted

Operating System

Notes

Figure: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure: Hybrid Thread

3.8 Multi-threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and its
own set of variables. One process could spawn another process, but once that occurred the two
behaved independent of each other. Then the next big thing happened. The programs wanted

Lovely Professional University 55

Unit 03: Process

Notes

to do more than one thing at the same time (this is called Multi-threading, and you would learn
what it is soon). A browser, for example, might want to download one fi le in one window, while
it is trying to upload another and print some other fi le. This ability of a program to do multiple
things simultaneously is implemented through threads (detailed description on threads follows
soon).

3.9 Multi-tasking vs. Multi-threading
Multi-tasking is the ability of an operating system to execute more than one program
simultaneously. Though I say so but in reality, no two programs on a single processor machine can
be executed at the same time. The CPU switches from one program to the next so quickly that
appears as if all of the programs are executing at the same time. Multi-threading is the ability of an
operating system to execute the different parts of the program, called threads, simultaneously. The
program has to be designed well so that the different threads do not interfere with each other. This
concept helps to create scalable applications because you can add threads as and when needed.
Individual programs are all isolated from each other in terms of their memory and data, but
individual threads are not as they all share the same memory and data variables. Hence,
implementing multi-tasking is relatively easier in an operating system than implementing
multithreading.

Thread Libraries
The threads library allows concurrent programming in Objective Caml. It provides multiple
threads of control (also called lightweight processes) that execute concurrently in the same memory
space. Threads communicate by in-place modification of shared data structures, or by sending and
receiving data on communication channels. The threads library is implemented by time-sharing on
a single processor. It will not take advantage of multi-processor machines. Using this library will
therefore never make programs run faster. However, many programs are easier to write when
structured as several communicating processes.
Two implementations of the thread’s library are available, depending on the capabilities of the
operating system:

1. System threads: This implementation builds on the OS-provided threads facilities: POSIX
1003.1c threads for Unix, and Win32 threads for Windows. When available, system
threadssupport both bytecode and native-code programs.

2. VM-level threads: This implementation performs time-sharing and context switching at
thelevel of the OCaml virtual machine (bytecode interpreter). It is available on Unix
systems,and supports only bytecode programs. It cannot be used with native-code
programs.

Programs that use system threads must be linked as follows:

ocamlc -thread other options unix.cmathreads.cma other files

ocamlopt -thread other options unix.cmxathreads.cmxa other files

3.10 Threading Issues
The threading issues are:

1. System calls form and exec is discussed here. In a multithreaded program environment, form and
exec system calls is changed. Unix system have two version of form system calls. One call
duplicates all threads and another that duplicates only the thread that invoke the form system call
whether to use one or two version of form system call totally depends upon the application.
Duplicating all threads in unnecessary if exec is called immediately after form system call.

2. Thread cancellation is a process of thread terminate before its completion of task. Example: In
multiple thread environment thread concurrently searching through a database. If any thread
return the result, the remaining thread might be cancelled.

3. Thread cancellation is of two types:

Lovely Professional University56

Operating System

Notes

a) Asynchronous cancellation: One thread immediately terminates the target thread.
b) Deferred cancellation: The target thread periodically checks whether it should terminate,

allowing it an opportunity to terminate itself in an orderly fashion.

With deferred cancellation, one thread indicates that a target thread is to be cancelled, but
cancellation occurs only after the target thread has checked a flag to determine if it should be
cancelled or not.

3.11 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

Figure: Diagram on Process with Multi-Thread

Operating System

Notes

a) Asynchronous cancellation: One thread immediately terminates the target thread.
b) Deferred cancellation: The target thread periodically checks whether it should terminate,

allowing it an opportunity to terminate itself in an orderly fashion.

With deferred cancellation, one thread indicates that a target thread is to be cancelled, but
cancellation occurs only after the target thread has checked a flag to determine if it should be
cancelled or not.

3.11 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

Figure: Diagram on Process with Multi-Thread

Operating System

Notes

a) Asynchronous cancellation: One thread immediately terminates the target thread.
b) Deferred cancellation: The target thread periodically checks whether it should terminate,

allowing it an opportunity to terminate itself in an orderly fashion.

With deferred cancellation, one thread indicates that a target thread is to be cancelled, but
cancellation occurs only after the target thread has checked a flag to determine if it should be
cancelled or not.

3.11 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

Figure: Diagram on Process with Multi-Thread

Lovely Professional University 57

Unit 03: Process

Notes

Benefits of Threads
Following are some reasons why threads are used in designing operating systems:

1. A process with multiple threads makes a great server for example printer server.
2. Because threads can share common data, they do not need to use inter-process

communication.
3. Because of the very nature, threads can take advantage of multi-processors.
4. Threads need a stack and storage for registers therefore, threads are cheap to create.
5. Threads do not need new address space, global data, program code or operating system

resources.

Summary

 Process management is an operating system’s way of dealing with running multiple
processes at once.

 A multi-tasking operating system may just switch between processes to give the
appearance of many processes executing concurrently or simultaneously, though in fact
only one process can be executing at any one time on a single-core CPU (unless using
multi-threading or other similar technology).

 Processes are often called tasks in embedded operating systems. Process is the entity to
which processors are assigned. The rapid switching back and forth of CPU among
processes is called multi-programming.

 A thread is a single sequence stream within in a process. A process can have five states
like created, ready, running, blocked and terminated.

 A process control block or PCB is a data structure (a table) that holds information about a
process.

 Time-Run-Out occurs when the scheduler decides that the running process has run long
enough and it is time to let another process have CPU time.

 Dispatch occurs when all other processes have had their share and it is time for the first
process to run again. Wakeup occurs when the external event for which a process was
waiting (such as arrival of input) happens. Admitted occurs when the process is created.

 Exit occurs when the process has finished execution.

Keywords
Admitted: It is a process state transition which occurs when the process is created.

Blocking: It is a process state transition which occurs when process discovers that it cannot
continue.

Dispatch: It is a process state transition which occurs when all other processes have had their share
and it is time for the first process to run again.

Exit: It is a process state transition which occurs when the process has finished execution.

Multiprogramming: The rapid switching back and forth of CPU among processes is called
multiprogramming.

Process control block (PCB): It is a data structure (a table) that holds information about a process.

Process management: It is an operating system’s way of dealing with running multiple processes at
once.

Process: It is the entity to which processors are assigned.

Lovely Professional University58

Operating System

Notes

Thread: A thread is a single sequence stream within in a process.

Time-Run-Out: It is a process state transition which occurs when the scheduler decides that the
running process has run long enough and it is time to let another process have CPU time.

Wakeup: It is a process state transition which occurs when the external event for which a process
was waiting (such as arrival of input) happens.

Self Assessment

1. Interrupt driven processes will normally run at a very priority.
2. Processes are often called in embedded operating systems.
3. The term “process” was first used by the designers of the in
4. In new state, the process awaits admission to the state.
5. The operating system groups all information that it needs about a particular process into a

data structure called a process descriptor or
6. is a set of techniques for the exchange of data among two or more threads

inone or more processes.
7. are a way for a program to fork itself into two or more simultaneouslyrunning

tasks.
8. is the ability of an operating system to execute more than one

programsimultaneously.
9. The threads library is implemented by time-sharing on a
10. A process includes PC, registers, and

11. A process does not include which of the following:
A. program counter
B. stack
C. data section
D. queue

12. Which of the following is true regarding programs and processes?
A. Program is passive entity stored on disk
B. Process is active.
C. Program becomes process when executable file loaded into memory
D. All of the above

13. Which of the following are not the states of a process?
A. New, running, waiting, ready and terminated
B. New, running, waiting and ready
C. New, running, waiting, terminating and terminated
D. New, executing, waiting, ready and terminated

14. Which of the following is not true regarding process creation?
A. Process creation means the construction of a new process for the execution.
B. Process creation might be performed by system, user or old process itself.
C. A process cannot create a new process itself while executing.
D. The system creates several background processes on starting the computer.

Lovely Professional University 59

Unit 03: Process

Notes

15. Which of the following statements is not true?
A. Dispatching is done by operating system when the resources are free or the process has

higher priority than the ongoing process.
B. Scheduling means the operating system puts the process from running state to the ready

state.
C. Block mode is basically a mode where process waits for input-output.

D. All of the given choices

16. The state of a process after it encounters an I/O instruction is
A. Ready
B. Blocked/Waiting
C. Idle
D. Running

17. Identify the incorrect statement with respect to the Blocking Process State
A. When a process invokes an input-output system call, it blocks the process
B. When a process invokes an input-output system call, it puts the operating system in the

block mode.
C. Block mode is basically a mode where process waits for input-output.
D. All of the Above

18. In operating system each process has its own
A. Address space and global variables
B. Open files
C. Pending alarms signals and signal handlers
D. All of the mentioned

19. A process can be terminated due to
A. Normal exit
B. Fatal error
C. Killed by another process
D. All of the mentioned

20. What is the ready state of a process?
A. When process is scheduled to run after some execution
B. When process is unable to run until some task has been completed
C. When process is using the CPU
D. None of the mentioned

21. What is the inter process communication?
A. communication between two processes
B. communication within the process
C. communication between two threads of same process
D. none of the mentioned

Lovely Professional University60

Operating System

Notes

22. A process stack does not contain.
A. Function parameters
B. Local variables
C. Return addresses
D. PID of child process

23. A parent process may terminate the execution of one of its children for which of the
following reasons?

A. The child has exceeded its usage of some of the resources that it has been allocated.
B. The task assigned to the child is no longer required.
C. The parent is exiting, and the operating system does not allow a child to continue
D. All of these

24. In new state, the process awaits admission to the state.
A. Running
B. Ready
C. Waiting
D. Blocked

25. The operating system groups all information that it needs about a particular process into a
data structure called a process descriptor or

A. Process Management
B. Process State
C. Process Control Block
D. None of these

Answers for Self Assessment

1. high priority 2. tasks 3. MULTICS,
1960’s

4. ready 5. Process
Control
Block
(PCB).

6. Inter-process
Communication
(IPC)

7. Threads 8. Multitasking 9. single
processor

10. variables

11. D 12. D 13. A 14. C 15. B

16. B 17. D 18. D 19. D 20. A

21. A 22. D 23. D 24. B 25. C

Review Questions

1. Do you think a single user system requires process communication? Support your answer
with logic.

Lovely Professional University 61

Unit 03: Process

Notes

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example.
11. Why inter-process communication required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 03: Process

Notes

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example.
11. Why inter-process communication required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 03: Process

Notes

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example.
11. Why inter-process communication required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University62

Unit 04: Process Management

Notes

Unit 04: Process Management

CONTENTS

Objectives

Introduction

4.1 Process Concepts

4.2 Operation on Processes

4.3 Process Control Block (PCB)

4.4 Processes Creation

4.5 Process Hierarchy: Children and Parent Processes

4.6 Process State Transitions

4.7 Process Termination

4.8 Scheduling Queues

Self Assessment

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Explain process concepts

 Define PCB

 Describe operation on processes

 Explain inter-process communication

 Describe concept of thread

Introduction
Earlier a computer was used to be fasten the jobs pertaining to computation diligently and
incessantly for a single person. Soon it was realized that the computer was far more powerful than
just carrying out a single man’s single job. Such was the speed of operation that the CPU would sit
idle for most of the time awaiting user input. The CPU was certainly capable of carrying out many
jobs simultaneously. It could also support many users simultaneously. But, the operating systems
then available were not capable of this support. The operating systems facilitating a single-user
support at a time was felt inadequate. Then a mechanism was developed which would prevent the
wastage of CPU cycles. Hence multi-tasking systems were developed. In a multi-tasking system, a
job or task is submitted as what is known as a process. Multi-tasking operating systems could
handle multiple processes on a single processor. Process is a unit of program execution that enables
the systems to implement multi-tasking behavior. Most of the operating systems today have multi-
processing capabilities. This unit is dedicated to process and process related issues. In this unit,
present and discuss the mechanisms that support or enforce more structured forms of inter-process
communications. Subsequent sections are devoted to messages, an extremely versatile and popular

Lovely Professional University 63

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

mechanism in both centralized and distributed systems, and to facilitate inter-process
communication and synchronization.

4.1 Process Concepts
An operating system manages each hardware resource attached with the computer by representing
it as an abstraction. An abstraction hides the unwanted details from the users and programmers
allowing them to have a view of the resources in the form, which is convenient to them. A process
is an abstract model of a sequential program in execution. The operating system can schedule a
process as a unit of work. The term “process” was first used by the designers of the MULTICS in
1960’s. Since then, the term “process” is used somewhat interchangeably with ‘task’ or ‘job’. The
process has been given many definitions as mentioned below:

1. A program in Execution.
2. An asynchronous activity.
3. The ‘animated spirit’ of a procedure in execution.
4. The entity to which processors are assigned.
5. The ‘dispatchable’ unit.

Though there is no universally agreed upon definition, but the definition “Program in Execution” is
the one that is most frequently used. And this is a concept you will use in the present study of
operating systems. Now the question is - what is the relation between process and program. It is
same beast with different name or when this beast is sleeping (not executing) it is called program
and when it is executing becomes process. Well, to be very precise.

Process is not the same as program. A process is more than a program code. A process is an ‘active’
entity as oppose to program which is considered to be a ‘passive’ entity. As you all know that a
program is an algorithm expressed with the help of a programming language. A program is a
passive entity sitting on some secondary storage device.

A process is an activity of executing a program. Basically, it is a program under execution. Every
process needs certain resources to complete its task.

Process, on the other hand, includes:

1. Current value of Program Counter (PC)
2. Contents of the processor’s registers
3. Value of the variables
4. The process-stack (SP) which typically contains temporary data such as subroutine

parameter, return address, and temporary variables.
5. A data section that contains global variables.
6. A process is the unit of work in a system.

In Process model, all software on the computer is organized into a number of sequential processes.
A process includes PC, registers, and variables. Conceptually, each process has its own virtual CPU.
In reality, the CPU switches back and forth among processes. (The rapid switching back and forth is
called multi-programming).

A process includes, besides instructions to be executed, the temporary data such as subroutine
parameters, return addresses and variables (stored on the stack), data section having global
variables (if any), program counter value, register values and other associated resources. Although
two processes may be associated with the same program, yet they are treated as two separate
processes having their respective set of resources.

Lovely Professional University64

Unit 04: Process Management

Notes

Figure: A Schematic Representation of a Process

4.2 Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is a
single Central Processor (CPU), which execute the instructions of only one program at a time, the
operating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

4.3 Process Control Block (PCB)
It is a data structure (a table) that holds information about a process. Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associated with
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Unit 04: Process Management

Notes

Figure: A Schematic Representation of a Process

4.2 Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is a
single Central Processor (CPU), which execute the instructions of only one program at a time, the
operating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

4.3 Process Control Block (PCB)
It is a data structure (a table) that holds information about a process. Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associated with
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Unit 04: Process Management

Notes

Figure: A Schematic Representation of a Process

4.2 Operation on Processes
Modern operating systems, such as UNIX, execute processes concurrently. Although there is a
single Central Processor (CPU), which execute the instructions of only one program at a time, the
operating system rapidly switches the processor between different processes (usually allowing a
single process a few hundred microseconds of CPU time before replacing it with another process.)

Some of these resources (such as memory) are simultaneously shared by all processes. Such
resources are being used in parallel between all running processes on the system. Other resources
must be used by one process at a time, so must be carefully managed so that all processes get access
to the resource. Such resources are being used in concurrently between all running processes on the
system. The most important example of a shared resource is the CPU, although most of the I/O
devices are also shared. For many of these shared resources the operating system distributes the
time a process requires of the resource to ensure reasonable access for all processes. Consider the
CPU: the operating system has a clock which sets an alarm every few hundred microseconds. At
this time the operating system stops the CPU, saves all the relevant information that is needed to
re-start the CPU exactly where it last left off (this will include saving the current instruction being
executed, the state of the memory in the CPUs registers, and other data), and removes the process
from the use of the CPU. The operating system then selects another process to run, returns the state
of the CPU to what it was when it last ran this new process, and starts the CPU again. Let’s take a
moment to see how the operating system manages this. The processes in the system can execute
concurrently, and they must be created and deleted dynamically. Thus, the operating system must
provide a mechanism (or facility) for process creation and termination.

4.3 Process Control Block (PCB)
It is a data structure (a table) that holds information about a process. Whenever a process is
created(initialized, installed), the operating system creates a corresponding process control block
toserve as its run-time description during the lifetime of the process. When the process
terminates,its PCB is released to the pool of free cells from which new PCBs are drawn.

Process States

During the lifespan of a process, its execution status may be in one of four states (associated with
each state is usually a queue on which the process resides):

 Executing: The process is currently running and has control of a CPU.
 Waiting: The process is currently able to run, but must wait until a CPU becomes

available.
 Blocked: The process is currently waiting on I/O, either for input to arrive or output to be

sent.
 Suspended: The process is currently able to run, but for some reason the OS has not placed

the process on the ready queue.
 Ready: The process is in memory, will execute given CPU time.

Lovely Professional University 65

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they
vary across operating systems. The states that they represent are found on all systems,
however. Certain operating systems more finely delineate process states.

Figure: Process States

4.4 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

4.5 Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users which create
processes but other processes! That is because anyone using the system must already be running a
shell or command interpreter in order to be able to talk to the system, and the command interpreter
is itself a process. When a user creates a process using the command interpreter, the new process
becomes a child of the command interpreter. Similarly, the command interpreter process becomes
the parent for the child. Processes therefore form a hierarchy.

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they
vary across operating systems. The states that they represent are found on all systems,
however. Certain operating systems more finely delineate process states.

Figure: Process States

4.4 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

4.5 Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users which create
processes but other processes! That is because anyone using the system must already be running a
shell or command interpreter in order to be able to talk to the system, and the command interpreter
is itself a process. When a user creates a process using the command interpreter, the new process
becomes a child of the command interpreter. Similarly, the command interpreter process becomes
the parent for the child. Processes therefore form a hierarchy.

Operating System

Notes

 Terminated: The process has finished execution. These state names are arbitrary, and they
vary across operating systems. The states that they represent are found on all systems,
however. Certain operating systems more finely delineate process states.

Figure: Process States

4.4 Processes Creation
The creation of a process requires the following steps. The order in which they are carried out is not
necessarily the same in all cases.

1. Name: The name of the program which is to run as the new process must be known.
2. Process ID and Process Control Block: The system creates a new process control block, or

locates an unused block in an array. This block is used to follow the execution of the program
through its course, keeping track of its resources and priority. Each process control block is
labeled by its PID or process identifier.

3. Locate the program to be executed on disk and allocate memory for the code segment in RAM.
4. Load the program into the code segment and initialize the registers of the PCB with the start

address of the program and appropriate starting values for resources.
5. Priority: A priority must be computed for the process, using a default for the type of process

and any value which the user specified as a `nice’ value.
6. Schedule the process for execution.

4.5 Process Hierarchy: Children and Parent Processes
In a democratic system anyone can choose to start a new process, but it is never users which create
processes but other processes! That is because anyone using the system must already be running a
shell or command interpreter in order to be able to talk to the system, and the command interpreter
is itself a process. When a user creates a process using the command interpreter, the new process
becomes a child of the command interpreter. Similarly, the command interpreter process becomes
the parent for the child. Processes therefore form a hierarchy.

Lovely Professional University66

Unit 04: Process Management

Notes

Figure: Process Hierarchies

The processes are linked by a tree structure. If a parent is signaled or killed, usually all its children
receive the same signal or are destroyed with the parent. This doesn’t have to be the case – it is
possible to detach children from their parents – but in many cases it is useful for processes to be
linked in this way.

When a child is created it may do one of two things.

 Duplicate the parent process.
 Load a completely new program.

Similarly, the parent may do one of two things.

 Continue executing along-side its children.
 Wait for some or all of its children to finish before proceeding.

The specific attributes of the child process that differ from the parent process are:

1. The child process has its own unique process ID.
2. The parent process ID of the child process is the process ID of its parent process.
3. The child process gets its own copies of the parent process’s open file descriptors.

Subsequently changing attributes of the fi le descriptors in the parent process won’t affect
the file descriptors in the child, and vice versa. However, the file position associated with
each descriptor is shared by both processes.

4. The elapsed processor times for the child process are set to zero.
5. The child doesn’t inherit fi le locks set by the parent process.
6. The child doesn’t inherit alarms set by the parent process.
7. The set of pending signals for the child process is cleared. (The child process inherits its

mask of blocked signals and signal actions from the parent process.)

4.6 Process State Transitions
Blocking: It occurs when process discovers that it cannot continue. If running process initiates an
I/O operation before its allotted time expires, the running process voluntarily relinquishes the
CPU.

This state transition is: Block: Running? Block.

Time-Run-Out: It occurs when the scheduler decides that the running process has run long enough
and it is time to let another process have CPU time.

This state transition is: Time-Run-Out: Running? Ready.

Dispatch: It occurs when all other processes have had their share and it is time for the first process
to run again

This state transition is: Dispatch: Ready? Running.

Wakeup: It occurs when the external event for which a process was waiting (such as arrival of
input) happens.

This state transition is: Wakeup: Blocked? Ready.

Admitted: It occurs when the process is created.

This state transition is: Admitted: New? Ready.

Exit: It occurs when the process has finished execution.

This state transition is: Exit: Running? Terminated.

Lovely Professional University 67

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

4.7 Process Termination
Processes terminate in one of two ways:

1.Normal Termination occurs by a return from main or when requested by an explicit call to
exit.
2.Abnormal Termination occurs as the default action of a signal or when requested by abort.
3.On receiving a signal, a process looks for a signal-handling function. Failure to find a
signal-handling function forces the process to call exit, and therefore to terminate.

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

4.7 Process Termination
Processes terminate in one of two ways:

1.Normal Termination occurs by a return from main or when requested by an explicit call to
exit.
2.Abnormal Termination occurs as the default action of a signal or when requested by abort.
3.On receiving a signal, a process looks for a signal-handling function. Failure to find a
signal-handling function forces the process to call exit, and therefore to terminate.

Operating System

Notes

Figure (a):

Figure (b): Process State Transitions

Figure (C): Process State Transitions

4.7 Process Termination
Processes terminate in one of two ways:

1.Normal Termination occurs by a return from main or when requested by an explicit call to
exit.
2.Abnormal Termination occurs as the default action of a signal or when requested by abort.
3.On receiving a signal, a process looks for a signal-handling function. Failure to find a
signal-handling function forces the process to call exit, and therefore to terminate.

Lovely Professional University68

Unit 04: Process Management

Notes

4.A parent may terminate the execution of one of its children for a variety of reasons, such
as these:

a) The child has exceeded its usage of some of the resources that it has been allocated. This
requires the parent to have a mechanism to inspect the state of its children.

b) The task assigned to the child is no longer required.
c) The parent is exiting, and the operating system does not allow a child to continue if its

parent terminates. On such systems, if a process terminates (either normally or abnormally),
then all its children must also be terminated. This phenomenon, referred to as cascading
termination, is normally initiated by the operating system.

PCB (Process Control Blocks)
The operating system groups all information that it needs about a particular process into a data
structure called a process descriptor or a Process Control Block (PCB). Whenever a process is created
(initialized, installed), the operating system creates a corresponding process control block to serve
as its run-time description during the lifetime of the process. When the process terminates, its PCB
is released to the pool of free cells from which new PCBs are drawn. The dormant state is
distinguished from other states because a dormant process has no PCB. A process becomes known
to the O.S. and thus eligible to compete for system resources only when it has an active PCB
associate with it.

Information stored in a PCB typically includes some or all of the following:

1. Process name (ID)
2. Priority
3. State (ready, running, suspended)
4. Hardware state.
5. Scheduling information and usage statistics
6. Memory management information (registers, tables)
7. I/O Status (allocated devices, pending operations)
8. File management information
9. Accounting information.

Once constructed for a newly created process, the PCB is filled with the programmer
definedattributes found in the process template or specified as the parameters of the CREATE-
PROCESSoperating system call. Whenever a process is suspended, the contents of the processor
registersare usually saved on the stack, and the pointer to the related stack frame is stored in the
PCB. Inthis way, the hardware state can be restored when the process is scheduled to run again.A
process control block or PCB is a data structure (a table) that holds information about a process.

Every process or program that runs needs a PCB. When a user requests to run a particularprogram,
the operating system constructs a process control block for that program.

Typical information that is stored in a process control block is:

 The location the process in memory
 The priority of the process
 A unique process identification number (called PID)
 The current process state (ready, running, blocked)
 Associated data for the process.

The PCB is a certain store that allows the operating systems to locate key information about
aprocess. Thus, the PCB is the data structure that defines a process to the operating systems.

Lovely Professional University 69

Operating System

Notes

Process state

Process number

Parent process number

Program counter

Register

Memory limits

List of open files

Figure 2: Process Control Block

Each process is represented in the operating system by a process control block (PCB), also called a
task control block. A PCB is shown in Figure 2.2. It contains many pieces of information associated
with a specific process, including these:

Process state: The state may be new, ready, running, waiting, halted, and so on.

Program counter: The counter indicates the address of the next instruction to be executed for this
process.

CPU registers: The registers vary in number and type, depending on the computer architecture.
They include accumulators, index registers, stack pointers, and general-purpose registers, plus any
condition-code information. Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly afterward (Figure.3).

CPU-scheduling information: This information includes a process priority, pointers to scheduling
queues, and any other scheduling parameters. Memory-management information: This information
may include such information as the value of the base and limit registers, the page tables, or the
segment tables, depending on the memory system used by the operating system.

Memory-management information: This information may include such information as the value of
the base and limit registers, the page tables, or the segment tables, depending on the memory
system used by the operating system.

Figure 3: CPU Switching from process to process

Operating System

Notes

Process state

Process number

Parent process number

Program counter

Register

Memory limits

List of open files

Figure 2: Process Control Block

Each process is represented in the operating system by a process control block (PCB), also called a
task control block. A PCB is shown in Figure 2.2. It contains many pieces of information associated
with a specific process, including these:

Process state: The state may be new, ready, running, waiting, halted, and so on.

Program counter: The counter indicates the address of the next instruction to be executed for this
process.

CPU registers: The registers vary in number and type, depending on the computer architecture.
They include accumulators, index registers, stack pointers, and general-purpose registers, plus any
condition-code information. Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly afterward (Figure.3).

CPU-scheduling information: This information includes a process priority, pointers to scheduling
queues, and any other scheduling parameters. Memory-management information: This information
may include such information as the value of the base and limit registers, the page tables, or the
segment tables, depending on the memory system used by the operating system.

Memory-management information: This information may include such information as the value of
the base and limit registers, the page tables, or the segment tables, depending on the memory
system used by the operating system.

Figure 3: CPU Switching from process to process

Operating System

Notes

Process state

Process number

Parent process number

Program counter

Register

Memory limits

List of open files

Figure 2: Process Control Block

Each process is represented in the operating system by a process control block (PCB), also called a
task control block. A PCB is shown in Figure 2.2. It contains many pieces of information associated
with a specific process, including these:

Process state: The state may be new, ready, running, waiting, halted, and so on.

Program counter: The counter indicates the address of the next instruction to be executed for this
process.

CPU registers: The registers vary in number and type, depending on the computer architecture.
They include accumulators, index registers, stack pointers, and general-purpose registers, plus any
condition-code information. Along with the program counter, this state information must be saved
when an interrupt occurs, to allow the process to be continued correctly afterward (Figure.3).

CPU-scheduling information: This information includes a process priority, pointers to scheduling
queues, and any other scheduling parameters. Memory-management information: This information
may include such information as the value of the base and limit registers, the page tables, or the
segment tables, depending on the memory system used by the operating system.

Memory-management information: This information may include such information as the value of
the base and limit registers, the page tables, or the segment tables, depending on the memory
system used by the operating system.

Figure 3: CPU Switching from process to process

Lovely Professional University70

Unit 04: Process Management

Notes

Accounting information: This information includes the amount of CPU and real time used, time
limits, account numbers, job or process numbers, and so on.

Status information: The information includes the list of I/O devices allocated to this process, a list of
open files, and so on. The PCB simply serves as the repository for any information that may vary
from process to process.

Did you know?
Threads: The process model discussed so far has implied that a process is a
program that performs a single thread of execution. For example, if a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one task
at one time.

Process Scheduling

The objective of multiprogramming is to have some process running at all times, so as to maximize
CPU utilization. The objective of time-sharing is to switch the CPU among processes so frequently
that users can interact with each program while it is running. A uniprocessor system can have only
one running process.

If more processes exist, the rest must wait until the CPU is free and can be rescheduled.

4.8 Scheduling Queues
As processes enter the system, they are put into a job queue. This queue consists of all processes in
the system. The processes that are residing in main memory and are ready and waiting to execute
are kept on a list called the ready queue. This queue is generally stored as a linked list. A ready-
queue header contains pointers to the first and final PCBs in the list. We extend each PCB to include
a pointer field that points to the next PCB in the ready queue.

The operating system also has other queues. When a process is allocated the CPU, it executes for a
while and eventually quits, is interrupted, or waits for the occurrence of a particular event, such as
the completion of an I/O request. In the case of a I/O request, such a request may be to a dedicated
tape drive, or to a shared device, such as a disk. Since the system has many processes, the disk may
be busy with the I/O request of some other process. The process therefore may have to wait for the
disk. The list of processes waiting for a particular I/O device is called a device queue. Each device
has its own device queue (Figure 4).

Unit 04: Process Management

Notes

Accounting information: This information includes the amount of CPU and real time used, time
limits, account numbers, job or process numbers, and so on.

Status information: The information includes the list of I/O devices allocated to this process, a list of
open files, and so on. The PCB simply serves as the repository for any information that may vary
from process to process.

Did you know?
Threads: The process model discussed so far has implied that a process is a
program that performs a single thread of execution. For example, if a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one task
at one time.

Process Scheduling

The objective of multiprogramming is to have some process running at all times, so as to maximize
CPU utilization. The objective of time-sharing is to switch the CPU among processes so frequently
that users can interact with each program while it is running. A uniprocessor system can have only
one running process.

If more processes exist, the rest must wait until the CPU is free and can be rescheduled.

4.8 Scheduling Queues
As processes enter the system, they are put into a job queue. This queue consists of all processes in
the system. The processes that are residing in main memory and are ready and waiting to execute
are kept on a list called the ready queue. This queue is generally stored as a linked list. A ready-
queue header contains pointers to the first and final PCBs in the list. We extend each PCB to include
a pointer field that points to the next PCB in the ready queue.

The operating system also has other queues. When a process is allocated the CPU, it executes for a
while and eventually quits, is interrupted, or waits for the occurrence of a particular event, such as
the completion of an I/O request. In the case of a I/O request, such a request may be to a dedicated
tape drive, or to a shared device, such as a disk. Since the system has many processes, the disk may
be busy with the I/O request of some other process. The process therefore may have to wait for the
disk. The list of processes waiting for a particular I/O device is called a device queue. Each device
has its own device queue (Figure 4).

Unit 04: Process Management

Notes

Accounting information: This information includes the amount of CPU and real time used, time
limits, account numbers, job or process numbers, and so on.

Status information: The information includes the list of I/O devices allocated to this process, a list of
open files, and so on. The PCB simply serves as the repository for any information that may vary
from process to process.

Did you know?
Threads: The process model discussed so far has implied that a process is a
program that performs a single thread of execution. For example, if a process is
running a word-processor program, a single thread of instructions is being
executed. This single thread of control allows the process to perform only one task
at one time.

Process Scheduling

The objective of multiprogramming is to have some process running at all times, so as to maximize
CPU utilization. The objective of time-sharing is to switch the CPU among processes so frequently
that users can interact with each program while it is running. A uniprocessor system can have only
one running process.

If more processes exist, the rest must wait until the CPU is free and can be rescheduled.

4.8 Scheduling Queues
As processes enter the system, they are put into a job queue. This queue consists of all processes in
the system. The processes that are residing in main memory and are ready and waiting to execute
are kept on a list called the ready queue. This queue is generally stored as a linked list. A ready-
queue header contains pointers to the first and final PCBs in the list. We extend each PCB to include
a pointer field that points to the next PCB in the ready queue.

The operating system also has other queues. When a process is allocated the CPU, it executes for a
while and eventually quits, is interrupted, or waits for the occurrence of a particular event, such as
the completion of an I/O request. In the case of a I/O request, such a request may be to a dedicated
tape drive, or to a shared device, such as a disk. Since the system has many processes, the disk may
be busy with the I/O request of some other process. The process therefore may have to wait for the
disk. The list of processes waiting for a particular I/O device is called a device queue. Each device
has its own device queue (Figure 4).

Lovely Professional University 71

Operating System

Notes

Figure: The Ready queue as well as the various I/O Device Queues

A common representation of process scheduling is a queueing diagram, such as that in Figure5.
Each rectangular box represents a queue. Two types of queues are present—the ready queue and a
set of device queues. The circles represent the resources that serve the queues, and the arrows
indicate the flow of processes in the system.

Figure 5: Queuing Diagram Representation of Process Scheduling

A new process is initially put in the ready queue. It waits in the ready queue until it is selected for
execution (or dispatched). Once the process is assigned to the CPU and is executing, one of several
events could occur:

• The process could issue an I/O request, and then be placed in an I/O queue.
• The process could create a new sub process and wait for its termination.
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be

put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to the ready state,and
is then put back in the ready queue. A process continues this cycle until it terminates, atwhich time
it is removed from all queues and has its PCB and resources deallocated.

Schedulers

A process migrates between the various scheduling queues throughout its lifetime. The operating
system must select, for scheduling purposes, processes from these queues in some fashion. The
selection process is carried out by the appropriate scheduler.

In a batch system, often more processes are submitted than can be executed immediately. These
processes are spooled to a mass-storage device (typically a disk), where they are kept for later
execution. The long-term scheduler, or job scheduler, selects processes from this pool and loads
them into memory for execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute, and allocates the CPU to one of them. The primary
distinction between these two schedulers is the frequency of their execution. The short-term
scheduler must select a new process for the CPU frequently. A process may execute for only a few
milliseconds before waiting for an I/O request. Often, the short-term scheduler executes at least
once every 100 milliseconds. Because of the brief time between executions, the short-term scheduler
must be fast. If it takes 10 milliseconds to decide to execute a process for 100 milliseconds, then
10/(100 + 10) = 9 percent of the CPU is being used (or wasted) simply for scheduling the work.

The long-term scheduler, on the other hand, executes much less frequently. There may be minutes
between the creation of new processes in the system. The long-term scheduler controls the degree
of multiprogramming—the number of processes in memory. If the degree of multiprogramming is
stable, then the average rate of process creation must be equal to the average departure rate of

Operating System

Notes

Figure: The Ready queue as well as the various I/O Device Queues

A common representation of process scheduling is a queueing diagram, such as that in Figure5.
Each rectangular box represents a queue. Two types of queues are present—the ready queue and a
set of device queues. The circles represent the resources that serve the queues, and the arrows
indicate the flow of processes in the system.

Figure 5: Queuing Diagram Representation of Process Scheduling

A new process is initially put in the ready queue. It waits in the ready queue until it is selected for
execution (or dispatched). Once the process is assigned to the CPU and is executing, one of several
events could occur:

• The process could issue an I/O request, and then be placed in an I/O queue.
• The process could create a new sub process and wait for its termination.
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be

put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to the ready state,and
is then put back in the ready queue. A process continues this cycle until it terminates, atwhich time
it is removed from all queues and has its PCB and resources deallocated.

Schedulers

A process migrates between the various scheduling queues throughout its lifetime. The operating
system must select, for scheduling purposes, processes from these queues in some fashion. The
selection process is carried out by the appropriate scheduler.

In a batch system, often more processes are submitted than can be executed immediately. These
processes are spooled to a mass-storage device (typically a disk), where they are kept for later
execution. The long-term scheduler, or job scheduler, selects processes from this pool and loads
them into memory for execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute, and allocates the CPU to one of them. The primary
distinction between these two schedulers is the frequency of their execution. The short-term
scheduler must select a new process for the CPU frequently. A process may execute for only a few
milliseconds before waiting for an I/O request. Often, the short-term scheduler executes at least
once every 100 milliseconds. Because of the brief time between executions, the short-term scheduler
must be fast. If it takes 10 milliseconds to decide to execute a process for 100 milliseconds, then
10/(100 + 10) = 9 percent of the CPU is being used (or wasted) simply for scheduling the work.

The long-term scheduler, on the other hand, executes much less frequently. There may be minutes
between the creation of new processes in the system. The long-term scheduler controls the degree
of multiprogramming—the number of processes in memory. If the degree of multiprogramming is
stable, then the average rate of process creation must be equal to the average departure rate of

Operating System

Notes

Figure: The Ready queue as well as the various I/O Device Queues

A common representation of process scheduling is a queueing diagram, such as that in Figure5.
Each rectangular box represents a queue. Two types of queues are present—the ready queue and a
set of device queues. The circles represent the resources that serve the queues, and the arrows
indicate the flow of processes in the system.

Figure 5: Queuing Diagram Representation of Process Scheduling

A new process is initially put in the ready queue. It waits in the ready queue until it is selected for
execution (or dispatched). Once the process is assigned to the CPU and is executing, one of several
events could occur:

• The process could issue an I/O request, and then be placed in an I/O queue.
• The process could create a new sub process and wait for its termination.
• The process could be removed forcibly from the CPU, as a result of an interrupt, and be

put back in the ready queue.

In the first two cases, the process eventually switches from the waiting state to the ready state,and
is then put back in the ready queue. A process continues this cycle until it terminates, atwhich time
it is removed from all queues and has its PCB and resources deallocated.

Schedulers

A process migrates between the various scheduling queues throughout its lifetime. The operating
system must select, for scheduling purposes, processes from these queues in some fashion. The
selection process is carried out by the appropriate scheduler.

In a batch system, often more processes are submitted than can be executed immediately. These
processes are spooled to a mass-storage device (typically a disk), where they are kept for later
execution. The long-term scheduler, or job scheduler, selects processes from this pool and loads
them into memory for execution. The short-term scheduler, or CPU scheduler, selects from among
the processes that are ready to execute, and allocates the CPU to one of them. The primary
distinction between these two schedulers is the frequency of their execution. The short-term
scheduler must select a new process for the CPU frequently. A process may execute for only a few
milliseconds before waiting for an I/O request. Often, the short-term scheduler executes at least
once every 100 milliseconds. Because of the brief time between executions, the short-term scheduler
must be fast. If it takes 10 milliseconds to decide to execute a process for 100 milliseconds, then
10/(100 + 10) = 9 percent of the CPU is being used (or wasted) simply for scheduling the work.

The long-term scheduler, on the other hand, executes much less frequently. There may be minutes
between the creation of new processes in the system. The long-term scheduler controls the degree
of multiprogramming—the number of processes in memory. If the degree of multiprogramming is
stable, then the average rate of process creation must be equal to the average departure rate of

Lovely Professional University72

Unit 04: Process Management

Notes

processes leaving the system. Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between executions, the long-term
scheduler can afford to take more time to select a process for execution.

The long-term scheduler must make a careful selection. In general, most processes can be described
as either I/O bound or CPU bound. A 110-bound process spends more of its time doing I/O than it
spends doing computations. A CPU-bound process, on the other hand, generates I/O requests
infrequently, using more of its time doing computation than an I/O bound process uses. The long-
term scheduler should select a good process mix of I/O-bound and CPU-bound processes. If all
processes are I/O bound, the ready queue will almost always be empty, and the short-term
scheduler will have little to do. If all processes are CPU bound, the I/O waiting queue will almost
always be empty, devices will go unused, and again the system will be unbalanced. The system
with the best performance will have a combination of CPU-bound and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal. For example, timesharing
systems such as UNIX often have no long-term scheduler, but simply put every new process in
memory for the short-term scheduler. The stability of these systems depends either on a physical
limitation (such as the number of available terminals) or on the self-adjusting nature of human
users. If the performance declines to unacceptable levels, some users will simply quit. Some
operating systems, such as time-sharing systems, may introduce an additional, intermediate level of
scheduling. This medium-term scheduler, diagrammed in Figure 6, removes processes from
memory (and from active contention for the CPU), and thus reduces the degree of
multiprogramming. At some later time, the process can be reintroduced into memory and its
execution can be continued where it left off. This scheme is called swapping. The process is
swapped out, and is later swapped in, by the medium-term scheduler. Swapping may be necessary
to improve the process mix, or because a change in memory requirements has overcommitted
available memory, requiring memory to be freed up.

Figure: Addition of Medium-term Scheduling to the Queuing Diagram

Context Switch

Switching the CPU to another process requires saving the state of the old process and loading the
saved state for the new process. This task is known as a context switch. The context of a process is
represented in the PCB of a process; it includes the value of the CPU registers, the process state and
memory-management information. When a context switch occurs, the kernel saves the context of
the old process in its PCB and loads the saved context of the new process scheduled to run.
Context-switch time is pure overhead, because the system does no useful work while switching. Its
speed varies from machine to machine, depending on the memory speed, the number of registers
that must be copied, and the existence of special instructions (such as a single instruction to load or
store all registers). Typical speeds range from 1 to 1000 microseconds. Context-switch times are
highly dependent on hardware support. For instance, some processors (such as the Sun
UltraSPARC) provide multiple sets of registers. A context switch simply includes changing the
pointer to the current register set. Of course, if active processes exceed register sets, the system
resorts to copying register data to and from memory, as before. Also, the more complex the
operating system, the more work must be done during a context switch. Advanced memory-
management techniques may require extra data to be switched with each context. For instance, the
address space of the current process must be preserved as the space of the next task is prepared for

Unit 04: Process Management

Notes

processes leaving the system. Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between executions, the long-term
scheduler can afford to take more time to select a process for execution.

The long-term scheduler must make a careful selection. In general, most processes can be described
as either I/O bound or CPU bound. A 110-bound process spends more of its time doing I/O than it
spends doing computations. A CPU-bound process, on the other hand, generates I/O requests
infrequently, using more of its time doing computation than an I/O bound process uses. The long-
term scheduler should select a good process mix of I/O-bound and CPU-bound processes. If all
processes are I/O bound, the ready queue will almost always be empty, and the short-term
scheduler will have little to do. If all processes are CPU bound, the I/O waiting queue will almost
always be empty, devices will go unused, and again the system will be unbalanced. The system
with the best performance will have a combination of CPU-bound and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal. For example, timesharing
systems such as UNIX often have no long-term scheduler, but simply put every new process in
memory for the short-term scheduler. The stability of these systems depends either on a physical
limitation (such as the number of available terminals) or on the self-adjusting nature of human
users. If the performance declines to unacceptable levels, some users will simply quit. Some
operating systems, such as time-sharing systems, may introduce an additional, intermediate level of
scheduling. This medium-term scheduler, diagrammed in Figure 6, removes processes from
memory (and from active contention for the CPU), and thus reduces the degree of
multiprogramming. At some later time, the process can be reintroduced into memory and its
execution can be continued where it left off. This scheme is called swapping. The process is
swapped out, and is later swapped in, by the medium-term scheduler. Swapping may be necessary
to improve the process mix, or because a change in memory requirements has overcommitted
available memory, requiring memory to be freed up.

Figure: Addition of Medium-term Scheduling to the Queuing Diagram

Context Switch

Switching the CPU to another process requires saving the state of the old process and loading the
saved state for the new process. This task is known as a context switch. The context of a process is
represented in the PCB of a process; it includes the value of the CPU registers, the process state and
memory-management information. When a context switch occurs, the kernel saves the context of
the old process in its PCB and loads the saved context of the new process scheduled to run.
Context-switch time is pure overhead, because the system does no useful work while switching. Its
speed varies from machine to machine, depending on the memory speed, the number of registers
that must be copied, and the existence of special instructions (such as a single instruction to load or
store all registers). Typical speeds range from 1 to 1000 microseconds. Context-switch times are
highly dependent on hardware support. For instance, some processors (such as the Sun
UltraSPARC) provide multiple sets of registers. A context switch simply includes changing the
pointer to the current register set. Of course, if active processes exceed register sets, the system
resorts to copying register data to and from memory, as before. Also, the more complex the
operating system, the more work must be done during a context switch. Advanced memory-
management techniques may require extra data to be switched with each context. For instance, the
address space of the current process must be preserved as the space of the next task is prepared for

Unit 04: Process Management

Notes

processes leaving the system. Thus, the long-term scheduler may need to be invoked only when a
process leaves the system. Because of the longer interval between executions, the long-term
scheduler can afford to take more time to select a process for execution.

The long-term scheduler must make a careful selection. In general, most processes can be described
as either I/O bound or CPU bound. A 110-bound process spends more of its time doing I/O than it
spends doing computations. A CPU-bound process, on the other hand, generates I/O requests
infrequently, using more of its time doing computation than an I/O bound process uses. The long-
term scheduler should select a good process mix of I/O-bound and CPU-bound processes. If all
processes are I/O bound, the ready queue will almost always be empty, and the short-term
scheduler will have little to do. If all processes are CPU bound, the I/O waiting queue will almost
always be empty, devices will go unused, and again the system will be unbalanced. The system
with the best performance will have a combination of CPU-bound and I/O-bound processes.

On some systems, the long-term scheduler may be absent or minimal. For example, timesharing
systems such as UNIX often have no long-term scheduler, but simply put every new process in
memory for the short-term scheduler. The stability of these systems depends either on a physical
limitation (such as the number of available terminals) or on the self-adjusting nature of human
users. If the performance declines to unacceptable levels, some users will simply quit. Some
operating systems, such as time-sharing systems, may introduce an additional, intermediate level of
scheduling. This medium-term scheduler, diagrammed in Figure 6, removes processes from
memory (and from active contention for the CPU), and thus reduces the degree of
multiprogramming. At some later time, the process can be reintroduced into memory and its
execution can be continued where it left off. This scheme is called swapping. The process is
swapped out, and is later swapped in, by the medium-term scheduler. Swapping may be necessary
to improve the process mix, or because a change in memory requirements has overcommitted
available memory, requiring memory to be freed up.

Figure: Addition of Medium-term Scheduling to the Queuing Diagram

Context Switch

Switching the CPU to another process requires saving the state of the old process and loading the
saved state for the new process. This task is known as a context switch. The context of a process is
represented in the PCB of a process; it includes the value of the CPU registers, the process state and
memory-management information. When a context switch occurs, the kernel saves the context of
the old process in its PCB and loads the saved context of the new process scheduled to run.
Context-switch time is pure overhead, because the system does no useful work while switching. Its
speed varies from machine to machine, depending on the memory speed, the number of registers
that must be copied, and the existence of special instructions (such as a single instruction to load or
store all registers). Typical speeds range from 1 to 1000 microseconds. Context-switch times are
highly dependent on hardware support. For instance, some processors (such as the Sun
UltraSPARC) provide multiple sets of registers. A context switch simply includes changing the
pointer to the current register set. Of course, if active processes exceed register sets, the system
resorts to copying register data to and from memory, as before. Also, the more complex the
operating system, the more work must be done during a context switch. Advanced memory-
management techniques may require extra data to be switched with each context. For instance, the
address space of the current process must be preserved as the space of the next task is prepared for

Lovely Professional University 73

Operating System

Notes

use. How the address space is preserved, and what amount of work is needed to preserve it,
depend on the memory-management method of the operating system..

Summary

 A process is a sequential program in execution. A process migrates between the
variousscheduling queues throughout its lifetime.

 The operating system must select, for scheduling purposes, processes from these queuesin
some fashion.

 The selection process is carried out by the appropriate scheduler.
 Switching the CPU to another process requires saving the state of the old process

andloading the saved state for the new process. This task is known as a context switch.
Thecontext of a process is represented in the PCB of a process; it includes the value of
theCPU registers, the process state and memory-management information.

 A mailbox can be viewed abstractly as an object into which messages can be placed
byprocesses and from which messages can be removed.

Keywords
Buffering:A buffer is a temporary storage location for data while the data is being transferred.

Context Switch:A context switch (also sometimes referred to as a process switch or a task switch) is
the switching of the CPU (central processing unit) from one process or thread to another.

Cooperating Processes:Processes can cooperate with each other to accomplish a single task.

Cooperating processes can:

 Improve performance by overlapping activities or performing work in parallel.
 Enable an application to achieve a better program structure as a set of cooperating

processes, where each is smaller than a single monolithic program.

CPU Registers:The central processing unit (CPU) contains a number of memory locations which
are individually addressable and reserved for specific purpose. These memory locations are called
registers.

‘Inter-process Communication’ (IPC):In computing, ‘Inter-process communication’ (IPC) is a set of
techniques for the exchange of data among multiple threads in one or more processes.

Message-Passing System:Message passing in computer science is a form of communication used in
parallel computing, object-oriented programming, and inter-process communication.

Process Control Block (PCB): The PCB is a certain store that allows the operating systems to locate
key information about a process.

Process Counter:Program instructions uniquely identified by their program counters (PCs) provide
a convenient and accurate means of recording the context of program execution and PC-based
prediction techniques have been widely used for performance optimizations at the architectural
level.

Process Management: The operating system manages many kinds of activities ranging from user
programs to system programs like printer spooler, name servers, file server, etc. Each of these
activities is encapsulated in a process.

Process Scheduling:The problem of determining when processors should be assigned and to which
processes is called processor scheduling or CPU scheduling.

Process State:The process state consists of everything necessary to resume the process execution if
it is somehow put aside temporarily.

Synchronization:In computer science, especially parallel computing, synchronization means the
coordination of simultaneous threads or processes to complete a task in order to get correct runtime
order and avoid unexpected race conditions.

Lovely Professional University74

Unit 04: Process Management

Notes

Thread:A thread is a single sequence stream within in a process. Because threads have some of the
properties of processes, they are sometimes called lightweight processes. In a process, threads allow
multiple executions of streams.

Self Assessment

1. Any process that shares data with other processes is a process.
2. Message sent by a process can be of either fixed or size.
3. A is associated with more than two processes.
4. A owned by the operating system is independent.
5. The Mach kernel supports the creation and destruction of multiple task.
A. True
B. False

6. Window 2000 uses two types of message passing techniques over a port.
A. True
B. False

7. The Information associated with each process in a Process Control Block does not include
which of the following?

A. Process State
B. CPU Scheduling Information
C. Accounting Information
D. Program-management information

8. Which of the following is not a type of queue maintained in the Process Scheduling Queues?
A. Job Queue
B. Ready Queue
C. Waiting Queue
D. Device Queue

9. In a tightly coupled system or parallel systems, the processor shares________?

A. Memory and clock

B. All of the choices

C. Only memory is shared, not the clock

D. Only clock is shared, memory is not shared

10. In operating system each process has its own

Lovely Professional University 75

Operating System

Notes

A. Address space and global variables

B. Open files

C. Pending alarms signals and signal handlers

D. All of the mentioned

11. To access the services of operating system, the interface is provided by which of the
following?

A. System calls
B. (b)API
C. (c) library
D. (d) assembly instructions

12. The medium-term scheduler can be added if_________?

A. The degree of multiple programming needs to increase

B. Process is removed from memory and brought back to the disk

C. The degree of multiple programming needs to decrease

D. All of the above

13. The iOS provides_________?

A. Multiple background processes running in the memory with limits

B. Single foreground process controlled via user interface

C. Multiple background processes running in the memory but not on the display

D. All of the given choices

14. Which of the following is not true regarding Android?

A. Background process uses a service to perform tasks

B. Service can keep running even if background process is suspended

C. Service has no user interface

D. It requires larger memory use due to the user interface.

15. Which of the following is not true regarding context-switching?

A. Context of a process is represented in the Process Control Block

B. Context-switch time is an overhead for the system

C. Context switching time is independent of the hardware support

D. None of the choices

16. What is operating system?
A. collection of programs that manages hardware resources
B. system service provider to the application programs
C. link to interface the hardware and application programs
D. all of the mentioned

Lovely Professional University76

Unit 04: Process Management

Notes

Answers for Self Assessment

1. Cooperating 2. Variable 3. Link 4. mailbox 5. A

6. B 7. D 8. C 9. B 10. D

11. A 12. C 13. D 14. D 15. C

16. D

Review Questions

1. What is a process?
2. What about process states?
3. What is a process control block?
4. How do processes inter-communicate?
5. How do processes synchronize their activity?
6. How do processes protect critical data (Critical sections)?
7. Consider the inter-process-communication scheme where mailboxes are used:
a) Suppose a process P wants to wait for two messages, one from mailbox A and one from

mailbox B. What sequence of send and receive should it execute?
b) What sequence of send and receive should P execute if P wants to wait for one message from

mailbox A or from mailbox B (or from both)?
8. What are the benefits and the detriments of each of the following? Consider both the

systems and the programmers’ levels.
a) Direct and indirect communication
b) Symmetric and asymmetric communication
c) Automatic and explicit buffering
d) Send by copy and send by reference Notes

e) Fixed-sized and variable-sized messages
9. Describe the actions taken by a kernel to switch context between processes.
10. Write a socket-based Fortune Teller server. Your program should create a server that

listens to a specified port. When a client receives a connection, the server should respond
with a random fortune chosen from its database of fortunes.

11. Describe the actions used in Buffering in the processes.
12. Describe about the process scheduling in the operating system.
13. How do processes inter-process communication?
14. What are the benefits and the detriments of Cooperating process.
15. Describe the Process States in operating system.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Unit 04: Process Management

Notes

Answers for Self Assessment

1. Cooperating 2. Variable 3. Link 4. mailbox 5. A

6. B 7. D 8. C 9. B 10. D

11. A 12. C 13. D 14. D 15. C

16. D

Review Questions

1. What is a process?
2. What about process states?
3. What is a process control block?
4. How do processes inter-communicate?
5. How do processes synchronize their activity?
6. How do processes protect critical data (Critical sections)?
7. Consider the inter-process-communication scheme where mailboxes are used:
a) Suppose a process P wants to wait for two messages, one from mailbox A and one from

mailbox B. What sequence of send and receive should it execute?
b) What sequence of send and receive should P execute if P wants to wait for one message from

mailbox A or from mailbox B (or from both)?
8. What are the benefits and the detriments of each of the following? Consider both the

systems and the programmers’ levels.
a) Direct and indirect communication
b) Symmetric and asymmetric communication
c) Automatic and explicit buffering
d) Send by copy and send by reference Notes

e) Fixed-sized and variable-sized messages
9. Describe the actions taken by a kernel to switch context between processes.
10. Write a socket-based Fortune Teller server. Your program should create a server that

listens to a specified port. When a client receives a connection, the server should respond
with a random fortune chosen from its database of fortunes.

11. Describe the actions used in Buffering in the processes.
12. Describe about the process scheduling in the operating system.
13. How do processes inter-process communication?
14. What are the benefits and the detriments of Cooperating process.
15. Describe the Process States in operating system.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Unit 04: Process Management

Notes

Answers for Self Assessment

1. Cooperating 2. Variable 3. Link 4. mailbox 5. A

6. B 7. D 8. C 9. B 10. D

11. A 12. C 13. D 14. D 15. C

16. D

Review Questions

1. What is a process?
2. What about process states?
3. What is a process control block?
4. How do processes inter-communicate?
5. How do processes synchronize their activity?
6. How do processes protect critical data (Critical sections)?
7. Consider the inter-process-communication scheme where mailboxes are used:
a) Suppose a process P wants to wait for two messages, one from mailbox A and one from

mailbox B. What sequence of send and receive should it execute?
b) What sequence of send and receive should P execute if P wants to wait for one message from

mailbox A or from mailbox B (or from both)?
8. What are the benefits and the detriments of each of the following? Consider both the

systems and the programmers’ levels.
a) Direct and indirect communication
b) Symmetric and asymmetric communication
c) Automatic and explicit buffering
d) Send by copy and send by reference Notes

e) Fixed-sized and variable-sized messages
9. Describe the actions taken by a kernel to switch context between processes.
10. Write a socket-based Fortune Teller server. Your program should create a server that

listens to a specified port. When a client receives a connection, the server should respond
with a random fortune chosen from its database of fortunes.

11. Describe the actions used in Buffering in the processes.
12. Describe about the process scheduling in the operating system.
13. How do processes inter-process communication?
14. What are the benefits and the detriments of Cooperating process.
15. Describe the Process States in operating system.

Further Readings
Operating Systems, by Harvey M. Deitel , Paul J. Deitel, David R. Choffnes.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull

Lovely Professional University 77

Operating System

Notes

Web Links
wiley.com/coolege.silberschatz

Operating System

Notes

Web Links
wiley.com/coolege.silberschatz

Operating System

Notes

Web Links
wiley.com/coolege.silberschatz

Lovely Professional University78

Unit 05: Inter- Process Communication

Notes

Unit 05: Inter-Process Communication

CONTENTS

Objectives

5.1 Cooperating Processes

5.2 Inter-Process Communication

5.3 Process Communication in Client-Server Environment

5.4 Concept of Thread

5.5 User Level and Kernel Level Threads

5.6 Multi-Threading

5.7 Thread Libraries

5.8 Threading Issues

5.9 Processes vs. Threads

5.10 Benefits of Threads

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the Inter-process communication
 understand the concept of cooperating processes
 learn the various communication models
 learn the producer consumer problem
 learn the various types of inter-process communications
 learn the multithreading models
 explore the various threading issues

Introduction
Earlier a computer was used to be fasten the jobs pertaining to computation diligently and
incessantly for a single person. Soon it was realized that the computer was far more powerful than
just carrying out a single man’s single job. Such was the speed of operation that the CPU would sit
idle for most of the time awaiting user input. The CPU was certainly capable of carrying out many
jobs simultaneously. It could also support many users simultaneously. But, the operating systems
then available were not capable of this support. The operating systems facilitating a single-user
support at a time was felt inadequate. Then a mechanism was developed which would prevent the
wastage of CPU cycles. Hence multi-tasking systems were developed. In a multi-tasking system, a
job or task is submitted as what is known as a process. Multi-tasking operating systems could
handle multiple processes on a single processor. Process is a unit of program execution that enables
the systems to implement multi-tasking behavior. Most of the operating systems today have multi-
processing capabilities. This unit is dedicated to process and process related issues. In this unit,

Lovely Professional University 79

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

present and discuss the mechanisms that support or enforce more structured forms of inter-process
communications. Subsequent sections are devoted to messages, an extremely versatile and popular
mechanism in both centralized and distributed systems, and to facilitate inter-process
communication and synchronization.

5.1 Cooperating Processes
The Concurrent processes executing in the operating system allows for the processes to cooperate
(bothmutually or destructively) with other processes. Processes are cooperating if they can affect
eachother. The simplest example of how this can happen is where two processes are using the same
file. One process may be writing to a file, while another process is reading from the file; so, what is
being read may be affected by what is being written. Processes cooperate by sharing data.
Cooperation is important for several reasons:

 Information Sharing

Several processes may need to access the same data (such as stored in a file.

 Computation Speedup

A task can often be run faster if it is broken into subtasks and distributed among different
processes. For example, the matrix multiplication code you saw in class. This depends upon
the processes sharing data. (Of course, real speedup also required having multiple CPUs that
can be shared as well.) For another example, consider a web server which may be serving
many clients. Each client can have their own process or thread helping them. This allows the
server to use the operating system to distribute the computer’s resources, including CPU time,
among the many clients.

 Modularity

It may be easier to organize a complex task into separate subtasks, and then have different
processes or threads running each subtask. Example: A single server process dedicated to a
single client may have multiple threads running – each performing a different task for the
client.

 Convenience

An individual user can run several programs at the same time, to perform some task. Example:
A network browser is open, while the user has a remote terminal program running (such as
telnet), and a word processing program editing data. Cooperation between processes requires
mechanisms that allow processes to communicate data between each other and synchronize
their actions so they do not harmfully interfere with each other. The purpose of this note is to
consider ways that processes can communicate data with each other, called Inter-process
Communication (IPC).

Note: Another note will discuss process synchronization, and in particular, the most
important means of synchronizing activity, the use of semaphores.

5.2 Inter-Process Communication
Inter-process Communication (IPC) is a set of techniques for the exchange of data among two or
more threads in one or more processes. It involves sending information from one process to
another. Processes may be running on one or more computers connected by a network. IPC
techniques are divided into methods for message passing, synchronization, shared memory, and
Remote Procedure Calls (RPC). The method of IPC used may vary based on the bandwidth and
latency of communication between the threads, and the type of data being communicated. Two
processes might want to co-operate in performing a particular task. For example, a process might
want to print to document in response to a user request, so it starts another process to handle the
printing and sends a message to it to start printing. Once the process handling the printing request
finishes, it sends a message back to the original process, which reads the message and uses this to
pop up a dialog box informing the user that the document has been printed.

There are other ways in which processes can communicate with each other, such as using a shared
memory space.

Operating System

Notes

present and discuss the mechanisms that support or enforce more structured forms of inter-process
communications. Subsequent sections are devoted to messages, an extremely versatile and popular
mechanism in both centralized and distributed systems, and to facilitate inter-process
communication and synchronization.

5.1 Cooperating Processes
The Concurrent processes executing in the operating system allows for the processes to cooperate
(bothmutually or destructively) with other processes. Processes are cooperating if they can affect
eachother. The simplest example of how this can happen is where two processes are using the same
file. One process may be writing to a file, while another process is reading from the file; so, what is
being read may be affected by what is being written. Processes cooperate by sharing data.
Cooperation is important for several reasons:

 Information Sharing

Several processes may need to access the same data (such as stored in a file.

 Computation Speedup

A task can often be run faster if it is broken into subtasks and distributed among different
processes. For example, the matrix multiplication code you saw in class. This depends upon
the processes sharing data. (Of course, real speedup also required having multiple CPUs that
can be shared as well.) For another example, consider a web server which may be serving
many clients. Each client can have their own process or thread helping them. This allows the
server to use the operating system to distribute the computer’s resources, including CPU time,
among the many clients.

 Modularity

It may be easier to organize a complex task into separate subtasks, and then have different
processes or threads running each subtask. Example: A single server process dedicated to a
single client may have multiple threads running – each performing a different task for the
client.

 Convenience

An individual user can run several programs at the same time, to perform some task. Example:
A network browser is open, while the user has a remote terminal program running (such as
telnet), and a word processing program editing data. Cooperation between processes requires
mechanisms that allow processes to communicate data between each other and synchronize
their actions so they do not harmfully interfere with each other. The purpose of this note is to
consider ways that processes can communicate data with each other, called Inter-process
Communication (IPC).

Note: Another note will discuss process synchronization, and in particular, the most
important means of synchronizing activity, the use of semaphores.

5.2 Inter-Process Communication
Inter-process Communication (IPC) is a set of techniques for the exchange of data among two or
more threads in one or more processes. It involves sending information from one process to
another. Processes may be running on one or more computers connected by a network. IPC
techniques are divided into methods for message passing, synchronization, shared memory, and
Remote Procedure Calls (RPC). The method of IPC used may vary based on the bandwidth and
latency of communication between the threads, and the type of data being communicated. Two
processes might want to co-operate in performing a particular task. For example, a process might
want to print to document in response to a user request, so it starts another process to handle the
printing and sends a message to it to start printing. Once the process handling the printing request
finishes, it sends a message back to the original process, which reads the message and uses this to
pop up a dialog box informing the user that the document has been printed.

There are other ways in which processes can communicate with each other, such as using a shared
memory space.

Operating System

Notes

present and discuss the mechanisms that support or enforce more structured forms of inter-process
communications. Subsequent sections are devoted to messages, an extremely versatile and popular
mechanism in both centralized and distributed systems, and to facilitate inter-process
communication and synchronization.

5.1 Cooperating Processes
The Concurrent processes executing in the operating system allows for the processes to cooperate
(bothmutually or destructively) with other processes. Processes are cooperating if they can affect
eachother. The simplest example of how this can happen is where two processes are using the same
file. One process may be writing to a file, while another process is reading from the file; so, what is
being read may be affected by what is being written. Processes cooperate by sharing data.
Cooperation is important for several reasons:

 Information Sharing

Several processes may need to access the same data (such as stored in a file.

 Computation Speedup

A task can often be run faster if it is broken into subtasks and distributed among different
processes. For example, the matrix multiplication code you saw in class. This depends upon
the processes sharing data. (Of course, real speedup also required having multiple CPUs that
can be shared as well.) For another example, consider a web server which may be serving
many clients. Each client can have their own process or thread helping them. This allows the
server to use the operating system to distribute the computer’s resources, including CPU time,
among the many clients.

 Modularity

It may be easier to organize a complex task into separate subtasks, and then have different
processes or threads running each subtask. Example: A single server process dedicated to a
single client may have multiple threads running – each performing a different task for the
client.

 Convenience

An individual user can run several programs at the same time, to perform some task. Example:
A network browser is open, while the user has a remote terminal program running (such as
telnet), and a word processing program editing data. Cooperation between processes requires
mechanisms that allow processes to communicate data between each other and synchronize
their actions so they do not harmfully interfere with each other. The purpose of this note is to
consider ways that processes can communicate data with each other, called Inter-process
Communication (IPC).

Note: Another note will discuss process synchronization, and in particular, the most
important means of synchronizing activity, the use of semaphores.

5.2 Inter-Process Communication
Inter-process Communication (IPC) is a set of techniques for the exchange of data among two or
more threads in one or more processes. It involves sending information from one process to
another. Processes may be running on one or more computers connected by a network. IPC
techniques are divided into methods for message passing, synchronization, shared memory, and
Remote Procedure Calls (RPC). The method of IPC used may vary based on the bandwidth and
latency of communication between the threads, and the type of data being communicated. Two
processes might want to co-operate in performing a particular task. For example, a process might
want to print to document in response to a user request, so it starts another process to handle the
printing and sends a message to it to start printing. Once the process handling the printing request
finishes, it sends a message back to the original process, which reads the message and uses this to
pop up a dialog box informing the user that the document has been printed.

There are other ways in which processes can communicate with each other, such as using a shared
memory space.

Lovely Professional University80

Unit 05: Inter- Process Communication

Notes

Table 5.1: Inter Process Communication

Method Provided by (Operating systems or other environments)

File All operating systems.

Signal Most operating systems; some systems, such as Windows, only
implement signals in the C run-time library and do not actually provide
support for their use as an IPC technique.

Socket Most operating systems.

Pipe All POSIX systems.

Named pipe All POSIX systems.

Semaphore All POSIX systems.

Shared memory All POSIX systems.

Message passing

(shared nothing)

Used in MPI paradigm, Java RMI, CORBA and others.

Memory-mapped file All POSIX systems; may carry race condition risk if a temporary file is
used. Windows also supports this technique but the APIs used are
platform specific.

Message queue Most operating systems.

Mailbox Some operating systems.

5.3 Process Communication in Client-Server Environment
Basically, the Client/Server environment is architected to split an application’s processing across
multiple processor to gain the maximum benefit at the least cost while minimizing the network
traffic between machines. The key phase is to split the application processing. In a Client/Server
mode each processing works independently but in cooperation with other processors. Each is
relying on the other to perform an independent activity to complete the application process. A good
example of this would be the Mid-Range computer, normally called a File Server, which is
responsible for holding the customer master file while the Client, normally the Personal Computer,
is responsible for requesting an update to a specific customer. Once the Client is authenticated, the
File Server is notified that the Client needs Mr. Smith’s record for an update.

The File Server is responsible for obtaining Mr. Smith’s record and passing it to the Client for the
actual modification. The Client performs the changes and then passes the changed record back to
the File Server which in turn updates the master file. As in this scenario, each processor has a
distinct and independent responsibility to complete the update process. The key is to perform this
cooperative task while minimizing the dialog or traffic between the machines over the network.
Networks have a limited capacity to carry data and if overloaded the application’s response time
would increase. To accomplish this goal, static processes such as edits, and menus are usually
designed to reside on the Client. Update and reporting processes usually are designed to reside on
the File Server. In this way, the network traffic to complete the transaction process is minimized. In
addition, this design minimizes the processing cost as the Personal Computer usually is the least
expensive processor, the File Server being the next expensive, and finally the Main Frame the most
expensive.

There are many Client/Server Models. First, one could install all of the application’s object
programs on the personal computer. Secondly, one could install the static object program routines
such as edits and menus on the personal computer and the business logic object programs on the
file server. Thirdly, one could install all the object programs on the file server. As another option,

Lovely Professional University 81

Operating System

Notes

one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

5.4 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Figure 5.1: Threading Process

An operating system that has thread facility, the basic unit of CPU utilization is a thread. As shown
in Figure 5.1, a thread has or consists of a program counter (PC), a register set, and a stack space.
Threads are not independent of one other like process as a result threads shares with other threads
their code section, data section, OS resources also known as task, such as open files and signals.

Multitasking and multiprogramming, the two techniques that intend to use the computing
resources optimally have been dealt with in the previous unit at length. In this unit you will learn
about yet another technique that has caused remarkable improvement on the utilization of
resources - thread. A thread is a finer abstraction of a process. Recall that a process is defined by the
resources it uses and by the location at which it is executing in the memory. There are many
instances, however, in which it would be useful for resources to be shared and accessed
concurrently. This concept is so useful that several new operating systems are providing
mechanism to support it through a thread facility.

Operating System

Notes

one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

5.4 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Figure 5.1: Threading Process

An operating system that has thread facility, the basic unit of CPU utilization is a thread. As shown
in Figure 5.1, a thread has or consists of a program counter (PC), a register set, and a stack space.
Threads are not independent of one other like process as a result threads shares with other threads
their code section, data section, OS resources also known as task, such as open files and signals.

Multitasking and multiprogramming, the two techniques that intend to use the computing
resources optimally have been dealt with in the previous unit at length. In this unit you will learn
about yet another technique that has caused remarkable improvement on the utilization of
resources - thread. A thread is a finer abstraction of a process. Recall that a process is defined by the
resources it uses and by the location at which it is executing in the memory. There are many
instances, however, in which it would be useful for resources to be shared and accessed
concurrently. This concept is so useful that several new operating systems are providing
mechanism to support it through a thread facility.

Operating System

Notes

one could install all the object programs on the mainframe. Which model you choose depends on
your application design.

5.4 Concept of Thread
Threads are a way for a program to fork (or split) itself into two or more simultaneously (or
pseudo-simultaneously) running tasks. A thread is a single sequence stream within in a process.
Because threads have some of the properties of processes, they are sometimes called lightweight
processes. In a process, threads allow multiple executions of streams. In many respects, threads are
popular way to improve application through parallelism.

The CPU switches rapidly back and forth among the threads giving illusion that the threads are
running in parallel. Like a traditional process i.e., process with one thread, a thread can be in any of
several states (Running, Blocked, Ready or Terminated). Each thread has its own stack. Since thread
will generally call different procedures and thus a different execution history. This is why thread
needs its own stack.

Figure 5.1: Threading Process

An operating system that has thread facility, the basic unit of CPU utilization is a thread. As shown
in Figure 5.1, a thread has or consists of a program counter (PC), a register set, and a stack space.
Threads are not independent of one other like process as a result threads shares with other threads
their code section, data section, OS resources also known as task, such as open files and signals.

Multitasking and multiprogramming, the two techniques that intend to use the computing
resources optimally have been dealt with in the previous unit at length. In this unit you will learn
about yet another technique that has caused remarkable improvement on the utilization of
resources - thread. A thread is a finer abstraction of a process. Recall that a process is defined by the
resources it uses and by the location at which it is executing in the memory. There are many
instances, however, in which it would be useful for resources to be shared and accessed
concurrently. This concept is so useful that several new operating systems are providing
mechanism to support it through a thread facility.

Lovely Professional University82

Unit 05: Inter- Process Communication

Notes

Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization, and
consists of a program counter, a register set, and a stack. It shares with peer threads its code section,
data section, and operating-system resources such as open files and signals, collectively known as a
task. A traditional or heavyweight process is equal to a task with one thread. A task does nothing if
no threads are in it, and a thread must be in exactly one task. The extensive sharing makes CPU
switching among peer threads and the creation of threads inexpensive, compared with context
switches among heavyweight processes. Although a thread context switch still requires a register
set switch, no memory-management-related work need be done. Like any parallel processing
environment, multithreading a process may introduce concurrency control problems that require
the use of critical sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via system
calls, so thread switching does not need to call the operating system, and to cause an interrupt to
the kernel. Switching between user-level threads can be done independently of the operating
system and, therefore, very quickly. Thus, blocking a thread and switching to another thread is a
reasonable solution to the problem of how a server can handle many requests efficiently. User-level
threads do have disadvantages, however. For instance, if the kernel is single-threaded, then any
user-level thread executing a system call will cause the entire task to wait until the system call
returns.

You can grasp the functionality of threads by comparing multiple-thread control with multiple-
process control. With multiple processes, each process operates independently of the others; each
process has its own program counter, stack register, and address space. This type of organization is
useful when the jobs performed by the processes are unrelated. Multiple processes can perform the
same task as well. For instance, multiple processes can provide data to remote machines in a
network file system implementation. However, it is more efficient to have one process containing
multiple threads serve the same purpose. In the multiple process implementation, each process
executes the same code but has its own memory and file resources. One multi-threaded process
uses fewer resources than multiple redundant processes, including memory, open files and CPU
scheduling, for example, as Solaris evolves, network daemons are being rewritten as kernel threads
to increase greatly the performance of those network server functions. Threads operate, in many
respects, in the same manner as processes. Threads can be in one of several states: ready, blocked,
running, or terminated. As shown in figure 5.2, a thread within a process executes sequentially, and
each thread has its own stack and program counter. Threads can create child threads, and can block
waiting for system calls to complete; if one thread is blocked, another can run. However, unlike
processes, threads are not independent of one another. Because all threads can access every address
in the task, a thread can read or write over any other thread’s stacks. This structure does not
provide protection between threads. Such protection, however, should not be necessary. Whereas
processes may originate from different users, and may be hostile to one another, only a single user
can own an individual task withmultiple threads. The threads, in this case, probably would be
designed to assist one another, and therefore would not require mutual protection.

Figure 5.2: Thread Structure

Let us return to our example of the blocked file-server process in the single-process model. In this
scenario, no other server process can execute until the first process is unblocked. By contrast, in the

Unit 05: Inter- Process Communication

Notes

Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization, and
consists of a program counter, a register set, and a stack. It shares with peer threads its code section,
data section, and operating-system resources such as open files and signals, collectively known as a
task. A traditional or heavyweight process is equal to a task with one thread. A task does nothing if
no threads are in it, and a thread must be in exactly one task. The extensive sharing makes CPU
switching among peer threads and the creation of threads inexpensive, compared with context
switches among heavyweight processes. Although a thread context switch still requires a register
set switch, no memory-management-related work need be done. Like any parallel processing
environment, multithreading a process may introduce concurrency control problems that require
the use of critical sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via system
calls, so thread switching does not need to call the operating system, and to cause an interrupt to
the kernel. Switching between user-level threads can be done independently of the operating
system and, therefore, very quickly. Thus, blocking a thread and switching to another thread is a
reasonable solution to the problem of how a server can handle many requests efficiently. User-level
threads do have disadvantages, however. For instance, if the kernel is single-threaded, then any
user-level thread executing a system call will cause the entire task to wait until the system call
returns.

You can grasp the functionality of threads by comparing multiple-thread control with multiple-
process control. With multiple processes, each process operates independently of the others; each
process has its own program counter, stack register, and address space. This type of organization is
useful when the jobs performed by the processes are unrelated. Multiple processes can perform the
same task as well. For instance, multiple processes can provide data to remote machines in a
network file system implementation. However, it is more efficient to have one process containing
multiple threads serve the same purpose. In the multiple process implementation, each process
executes the same code but has its own memory and file resources. One multi-threaded process
uses fewer resources than multiple redundant processes, including memory, open files and CPU
scheduling, for example, as Solaris evolves, network daemons are being rewritten as kernel threads
to increase greatly the performance of those network server functions. Threads operate, in many
respects, in the same manner as processes. Threads can be in one of several states: ready, blocked,
running, or terminated. As shown in figure 5.2, a thread within a process executes sequentially, and
each thread has its own stack and program counter. Threads can create child threads, and can block
waiting for system calls to complete; if one thread is blocked, another can run. However, unlike
processes, threads are not independent of one another. Because all threads can access every address
in the task, a thread can read or write over any other thread’s stacks. This structure does not
provide protection between threads. Such protection, however, should not be necessary. Whereas
processes may originate from different users, and may be hostile to one another, only a single user
can own an individual task withmultiple threads. The threads, in this case, probably would be
designed to assist one another, and therefore would not require mutual protection.

Figure 5.2: Thread Structure

Let us return to our example of the blocked file-server process in the single-process model. In this
scenario, no other server process can execute until the first process is unblocked. By contrast, in the

Unit 05: Inter- Process Communication

Notes

Thread Structure

A thread, sometimes called a lightweight process (LWP), is a basic unit of resource utilization, and
consists of a program counter, a register set, and a stack. It shares with peer threads its code section,
data section, and operating-system resources such as open files and signals, collectively known as a
task. A traditional or heavyweight process is equal to a task with one thread. A task does nothing if
no threads are in it, and a thread must be in exactly one task. The extensive sharing makes CPU
switching among peer threads and the creation of threads inexpensive, compared with context
switches among heavyweight processes. Although a thread context switch still requires a register
set switch, no memory-management-related work need be done. Like any parallel processing
environment, multithreading a process may introduce concurrency control problems that require
the use of critical sections or locks.

Also, some systems implement user-level threads in user-level libraries, rather than via system
calls, so thread switching does not need to call the operating system, and to cause an interrupt to
the kernel. Switching between user-level threads can be done independently of the operating
system and, therefore, very quickly. Thus, blocking a thread and switching to another thread is a
reasonable solution to the problem of how a server can handle many requests efficiently. User-level
threads do have disadvantages, however. For instance, if the kernel is single-threaded, then any
user-level thread executing a system call will cause the entire task to wait until the system call
returns.

You can grasp the functionality of threads by comparing multiple-thread control with multiple-
process control. With multiple processes, each process operates independently of the others; each
process has its own program counter, stack register, and address space. This type of organization is
useful when the jobs performed by the processes are unrelated. Multiple processes can perform the
same task as well. For instance, multiple processes can provide data to remote machines in a
network file system implementation. However, it is more efficient to have one process containing
multiple threads serve the same purpose. In the multiple process implementation, each process
executes the same code but has its own memory and file resources. One multi-threaded process
uses fewer resources than multiple redundant processes, including memory, open files and CPU
scheduling, for example, as Solaris evolves, network daemons are being rewritten as kernel threads
to increase greatly the performance of those network server functions. Threads operate, in many
respects, in the same manner as processes. Threads can be in one of several states: ready, blocked,
running, or terminated. As shown in figure 5.2, a thread within a process executes sequentially, and
each thread has its own stack and program counter. Threads can create child threads, and can block
waiting for system calls to complete; if one thread is blocked, another can run. However, unlike
processes, threads are not independent of one another. Because all threads can access every address
in the task, a thread can read or write over any other thread’s stacks. This structure does not
provide protection between threads. Such protection, however, should not be necessary. Whereas
processes may originate from different users, and may be hostile to one another, only a single user
can own an individual task withmultiple threads. The threads, in this case, probably would be
designed to assist one another, and therefore would not require mutual protection.

Figure 5.2: Thread Structure

Let us return to our example of the blocked file-server process in the single-process model. In this
scenario, no other server process can execute until the first process is unblocked. By contrast, in the

Lovely Professional University 83

Operating System

Notes

case of a task that contains multiple threads, while one server thread is blocked and waiting, a
second thread in the same task could run. In this application, the cooperation of multiple threads
that are part of the same job confers the advantages of higher throughput and improved
performance. Other applications, such as the producer-consumer problem, require sharing a
common buffer and so also benefit from this feature of thread utilization. The producer and
consumer could be threads in a task. Little overhead is needed to switch between them, and, on a
multiprocessor system, they could execute in parallel on two processors for maximum efficiency.

5.5 User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of control
associated with several shared resources. There are many alternatives regarding threads. Threads
can be supported by the kernel (as in the Mach and OS/2 operating systems). In this case, a set of
system calls similar to those for processes is provided. Alternatively, they can be supported above
the kernel, via a set of library calls at the user level (as is done in Project Andrew from CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Figure 5.3: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure 5.4: Diagram of User Threads

Operating System

Notes

case of a task that contains multiple threads, while one server thread is blocked and waiting, a
second thread in the same task could run. In this application, the cooperation of multiple threads
that are part of the same job confers the advantages of higher throughput and improved
performance. Other applications, such as the producer-consumer problem, require sharing a
common buffer and so also benefit from this feature of thread utilization. The producer and
consumer could be threads in a task. Little overhead is needed to switch between them, and, on a
multiprocessor system, they could execute in parallel on two processors for maximum efficiency.

5.5 User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of control
associated with several shared resources. There are many alternatives regarding threads. Threads
can be supported by the kernel (as in the Mach and OS/2 operating systems). In this case, a set of
system calls similar to those for processes is provided. Alternatively, they can be supported above
the kernel, via a set of library calls at the user level (as is done in Project Andrew from CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Figure 5.3: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure 5.4: Diagram of User Threads

Operating System

Notes

case of a task that contains multiple threads, while one server thread is blocked and waiting, a
second thread in the same task could run. In this application, the cooperation of multiple threads
that are part of the same job confers the advantages of higher throughput and improved
performance. Other applications, such as the producer-consumer problem, require sharing a
common buffer and so also benefit from this feature of thread utilization. The producer and
consumer could be threads in a task. Little overhead is needed to switch between them, and, on a
multiprocessor system, they could execute in parallel on two processors for maximum efficiency.

5.5 User Level and Kernel Level Threads
The abstraction presented by a group of lightweight processes is that of multiple threads of control
associated with several shared resources. There are many alternatives regarding threads. Threads
can be supported by the kernel (as in the Mach and OS/2 operating systems). In this case, a set of
system calls similar to those for processes is provided. Alternatively, they can be supported above
the kernel, via a set of library calls at the user level (as is done in Project Andrew from CMU).

To implement parallel and concurrent mechanisms you need to use specific primitives of our
operating system. These must have context switching capabilities, which can be implemented in
two ways, using kernel level threads or using user level threads.

If I use kernel level threads, the operating system will have a descriptor for each thread belonging
to a process and it will schedule all the threads. This method is commonly called one to one. Each
user thread corresponds to a kernel thread.

Figure 5.3: Diagram of Kernel Level Threads

There are two major advantages around this kind of thread. The first one concerns switching
aspects; when a thread finishes its instruction or is blocked, another thread can be executed. The
second one is the ability of the kernel to dispatch threads of one process on several processors.
These characteristics are quite interesting for multi-processor architectures. However, thread
switching is done by the kernel, which decreases performances.

Figure 5.4: Diagram of User Threads

Lovely Professional University84

Unit 05: Inter- Process Communication

Notes

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. Refer
to figure 5.4. This is called many to one, because one kernel thread is associated to several user
threads. It has some advantages: The first is that is independent of the system, thus, it runs faster
than context switching at kernel level. The second comes from the scheduler that can be chosen by
the user in order to manage a better thread execution. Nevertheless, if a thread of a process is
jammed, all other threads of the same process are jammed too. Another disadvantage is the
impossibility to execute two threads of the same process on two processors. So, user level thread is
not interesting in multi-processor architectures as in figure 5.5.
Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time.

Figure 5.5: Detailed diagrammatic representation of User Level Threads

Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and the other
with 100 threads (process b). Each process generally receives the same number of time slices, so the
thread in process a runs 100 times as fast as a thread in process b. On systems with kernel-
supported threads, switching among the threads is more time-consuming because the kernel (via
an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Unit 05: Inter- Process Communication

Notes

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. Refer
to figure 5.4. This is called many to one, because one kernel thread is associated to several user
threads. It has some advantages: The first is that is independent of the system, thus, it runs faster
than context switching at kernel level. The second comes from the scheduler that can be chosen by
the user in order to manage a better thread execution. Nevertheless, if a thread of a process is
jammed, all other threads of the same process are jammed too. Another disadvantage is the
impossibility to execute two threads of the same process on two processors. So, user level thread is
not interesting in multi-processor architectures as in figure 5.5.
Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time.

Figure 5.5: Detailed diagrammatic representation of User Level Threads

Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and the other
with 100 threads (process b). Each process generally receives the same number of time slices, so the
thread in process a runs 100 times as fast as a thread in process b. On systems with kernel-
supported threads, switching among the threads is more time-consuming because the kernel (via
an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Unit 05: Inter- Process Communication

Notes

User level threads are implemented inside a specialized library that provides primitives to handle
them. All information about threads is stored and managed inside the process address space. Refer
to figure 5.4. This is called many to one, because one kernel thread is associated to several user
threads. It has some advantages: The first is that is independent of the system, thus, it runs faster
than context switching at kernel level. The second comes from the scheduler that can be chosen by
the user in order to manage a better thread execution. Nevertheless, if a thread of a process is
jammed, all other threads of the same process are jammed too. Another disadvantage is the
impossibility to execute two threads of the same process on two processors. So, user level thread is
not interesting in multi-processor architectures as in figure 5.5.
Why should an operating system support one version or the other? User-level threads do not
involve the kernel, and therefore are faster to switch among than kernel-supported threads.
However, any calls to the operating system can cause the entire process to wait, because the kernel
schedules only processes (having no knowledge of threads), and a process which is waiting gets no
CPU time.

Figure 5.5: Detailed diagrammatic representation of User Level Threads

Scheduling can also be unfair. Consider two processes, one with 1 thread (process a) and the other
with 100 threads (process b). Each process generally receives the same number of time slices, so the
thread in process a runs 100 times as fast as a thread in process b. On systems with kernel-
supported threads, switching among the threads is more time-consuming because the kernel (via
an interrupt) must do the switch. Each thread may be scheduled independently, however, so
process b could receive 100 times the CPU time that process it receives. Additionally, process b
could have 100 system calls in operation concurrently, accomplishing far more than the same
process would on a system with only user-level thread support.

Lovely Professional University 85

Operating System

Notes

Figure 5.6: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure 5.7: Hybrid Thread

5.6 Multi-Threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and
itsown set of variables. One process could spawn another process, but once that occurred the
twobehaved independent of each other. Then the next big thing happened. The programs wantedto
do more than one thing at the same time (this is called Multi-threading, and you would learnwhat it
is soon). A browser, for example, might want to download one file in one window, whileit is trying
to upload another and print some other file. This ability of a program to do multiplethings
simultaneously is implemented through threads (detailed description on threads followssoon).

Multi-Tasking vs. Multi-Threading

Multi-tasking is the ability of an operating system to execute more than one program
simultaneously. Though I say so but in reality, no two programs on a single processor machine can
be executed at the same time. The CPU switches from one program to the next so quickly that

Operating System

Notes

Figure 5.6: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure 5.7: Hybrid Thread

5.6 Multi-Threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and
itsown set of variables. One process could spawn another process, but once that occurred the
twobehaved independent of each other. Then the next big thing happened. The programs wantedto
do more than one thing at the same time (this is called Multi-threading, and you would learnwhat it
is soon). A browser, for example, might want to download one file in one window, whileit is trying
to upload another and print some other file. This ability of a program to do multiplethings
simultaneously is implemented through threads (detailed description on threads followssoon).

Multi-Tasking vs. Multi-Threading

Multi-tasking is the ability of an operating system to execute more than one program
simultaneously. Though I say so but in reality, no two programs on a single processor machine can
be executed at the same time. The CPU switches from one program to the next so quickly that

Operating System

Notes

Figure 5.6: Detailed diagram of a kernel thread

Because of the compromises involved in each of these two approaches to threading, some systems
use a hybrid approach in which both user-level and kernel-supported threads are implemented.
Solaris 2 is such a system. A diagrammatic approach of hybrid thread is mentioned in Figure

Figure 5.7: Hybrid Thread

5.6 Multi-Threading
When the computers were first invented, they were capable of executing one program at a time.
Thus, once one program was completely executed, they then picked the second one to execute and
so on. With time, the concept of timesharing was developed whereby each program was given a
specific amount of processor time and when its time got over the second program standing in
queue was called upon (this is called Multi-tasking, and you would learn more about it soon).

Each running program (called the process) had its own memory space, its own stack, heap and
itsown set of variables. One process could spawn another process, but once that occurred the
twobehaved independent of each other. Then the next big thing happened. The programs wantedto
do more than one thing at the same time (this is called Multi-threading, and you would learnwhat it
is soon). A browser, for example, might want to download one file in one window, whileit is trying
to upload another and print some other file. This ability of a program to do multiplethings
simultaneously is implemented through threads (detailed description on threads followssoon).

Multi-Tasking vs. Multi-Threading

Multi-tasking is the ability of an operating system to execute more than one program
simultaneously. Though I say so but in reality, no two programs on a single processor machine can
be executed at the same time. The CPU switches from one program to the next so quickly that

Lovely Professional University86

Unit 05: Inter- Process Communication

Notes

appears as if all of the programs are executing at the same time. Multi-threading is the ability of an
operating system to execute the different parts of the program, called threads, simultaneously. The
program has to be designed well so that the different threads do not interfere with each other. This
concept helps to create scalable applications because you can add threads as and when needed.
Individual programs are all isolated from each other in terms of their memory and data, but
individual threads are not as they all share the same memory and data variables. Hence,
implementing multi-tasking is relatively easier in an operating system than implementing
multithreading.

5.7 Thread Libraries
The threads library allows concurrent programming in Objective Caml. It provides multiple
threads of control (also called lightweight processes) that execute concurrently in the same memory
space. Threads communicate by in-place modification of shared data structures, or by sending and
receiving data on communication channels. The threads library is implemented by time-sharing on
a single processor. It will not take advantage of multi-processor machines. Using this library will
therefore never make programs run faster. However, many programs are easier to write when
structured as several communicating processes.
Two implementations of the thread’s library are available, depending on the capabilities of the
operating system:

1. System threads: This implementation builds on the OS-provided threads facilities: POSIX
1003.1c threads for Unix, and Win32 threads for Windows. When available, system threads
support both bytecode and native-code programs.

2. VM-level threads: This implementation performs time-sharing and context switching at the
level of the OCaml virtual machine (bytecode interpreter). It is available on Unix systems,
and supports only bytecode programs. It cannot be used with native-code programs.

Programs that use system threads must be linked as follows:

ocamlc -thread other options unix.cmathreads.cma other files

ocamlopt -thread other options unix.cmxathreads.cmxa other files

5.8 Threading Issues
The threading issues are:

1. System calls form and exec is discussed here. In a multithreaded program environment, form
and exec system calls is changed. Unix system have two version of form system calls. One call
duplicates all threads and another that duplicates only the thread that invoke the form system
call whether to use one or two version of form system call totally depends upon the
application. Duplicating all threads in unnecessary if exec is called immediately after form
system call.

2. Thread cancellation is a process of thread terminate before its completion of task. Example: In
multiple thread environment thread concurrently searching through a database. If any thread
return the result, the remaining thread might be cancelled.

3. Thread cancellation is of two types:
a) Asynchronous cancellation: One thread immediately terminates the target thread.
b) Deferred cancellation: The target thread periodically checks whether it should terminate,

allowing it an opportunity to terminate itself in an orderly fashion.

With deferred cancellation, one thread indicates that a target thread is to be cancelled, but
cancellation occurs only after the target thread has checked a flag to determine if it should be
cancelled or not.

Lovely Professional University 87

Operating System

Notes

Figure 5.8: Diagram on Process with Multi-Thread

5.9 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

5.10 Benefits of Threads
Following are some reasons why threads are used in designing operating systems:

1. A process with multiple threads makes a great server for example printer server.
2. Because threads can share common data, they do not need to use inter-process

communication.
3. Because of the very nature, threads can take advantage of multi-processors.
4. Threads need a stack and storage for registers therefore, threads are cheap to create.
5. Threads do not need new address space, global data, program code or operating system

resources.

Operating System

Notes

Figure 5.8: Diagram on Process with Multi-Thread

5.9 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

5.10 Benefits of Threads
Following are some reasons why threads are used in designing operating systems:

1. A process with multiple threads makes a great server for example printer server.
2. Because threads can share common data, they do not need to use inter-process

communication.
3. Because of the very nature, threads can take advantage of multi-processors.
4. Threads need a stack and storage for registers therefore, threads are cheap to create.
5. Threads do not need new address space, global data, program code or operating system

resources.

Operating System

Notes

Figure 5.8: Diagram on Process with Multi-Thread

5.9 Processes vs. Threads
As we mentioned earlier that in many respects’ threads operate in the same way as that of
processes. Let us point out some of the similarities and differences.

Similarities

1. Like processes threads share CPU and only one thread active (running) at a time.
2. Like processes, threads within a process, threads within a process execute sequentially.
3. Like processes, thread can create children.
4. And like process, if one thread is blocked, another thread can run.

Differences

1. Unlike processes, threads are not independent of one another.
2. Unlike processes, all threads can access every address in the task.
3. Processes might or might not assist one another because processes may originate from

different users, but threads are design to assist one other.

5.10 Benefits of Threads
Following are some reasons why threads are used in designing operating systems:

1. A process with multiple threads makes a great server for example printer server.
2. Because threads can share common data, they do not need to use inter-process

communication.
3. Because of the very nature, threads can take advantage of multi-processors.
4. Threads need a stack and storage for registers therefore, threads are cheap to create.
5. Threads do not need new address space, global data, program code or operating system

resources.

Lovely Professional University88

Unit 05: Inter- Process Communication

Notes

Summary

 Process management is an operating system’s way of dealing with running multiple processes
at once.

 A multi-tasking operating system may just switch between processes to give the appearance
of many processes executing concurrently or simultaneously, though in fact only one process
can be executing at any one time on a single-core CPU (unless using multi-threading or other
similar technology).

 Processes are often called tasks in embedded operating systems. Process is the entity to which
processors are assigned. The rapid switching back and forth of CPU among processes is called
multi-programming.

 A thread is a single sequence stream within in a process. A process can have five states like
created, ready, running, blocked and terminated.

 A process control block or PCB is a data structure (a table) that holds information about a
process.

 Time-Run-Out occurs when the scheduler decides that the running process has run long
enough and it is time to let another process have CPU time.

 Dispatch occurs when all other processes have had their share and it is time for the first
process to run again. Wakeup occurs when the external event for which a process was waiting
(such as arrival of input) happens. Admitted occurs when the process is created.

 Exit occurs when the process has finished execution.

Keywords

 Admitted: It is a process state transition which occurs when the process is created.
 Blocking: It is a process state transition which occurs when process discovers that it cannot

continue.
 Dispatch: It is a process state transition which occurs when all other processes have had

their share and it is time for the first process to run again.
 Exit: It is a process state transition which occurs when the process has finished execution.
 Multiprogramming: The rapid switching back and forth of CPU among processes is called

multiprogramming.
 Process control block (PCB): It is a data structure (a table) that holds information about a

process.
 Process management: It is an operating system’s way of dealing with running multiple

processes at once.
 Process: It is the entity to which processors are assigned.
 Thread: A thread is a single sequence stream within in a process.
 Time-Run-Out: It is a process state transition which occurs when the scheduler decides that

the running process has run long enough and it is time to let another process have CPU
time.

 Wakeup: It is a process state transition which occurs when the external event for which a
process was waiting (such as arrival of input) happens.

SelfAssessment

1. Interrupt driven processes will normally run at a very priority.
2. Processes are often called in embedded operating systems.

Lovely Professional University 89

Operating System

Notes

3. The term “process” was first used by the designers of the in
4. In new state, the process awaits admission to the state.
5. The operating system groups all information that it needs about a particular process into a

data structure called a process descriptor or
6. is a set of techniques for the exchange of data among two or more threads in

one or more processes.
7. are a way for a program to fork itself into two or more simultaneously

running tasks.
8. is the ability of an operating system to execute more than one program

simultaneously.
9. The threads library is implemented by time-sharing on a
10. A process includes PC, registers, and

11. A process does not include which of the following:
A. program counter
B. stack
C. data section
D. queue

12. Which of the following is not related to the physical implementation of communication link?

A. Shared memory

B. Automatic or explicit buffering

C. Hardware bus

D. Network

13. Which of the following is a shortcut for sending an INT signal using the keyboard?

A. Ctrl-Z

B. Ctrl-C

C. Ctrl-K

D. Ctrl-I

14. A single threaded process is the one in which ………………?

A. One command is processed at a time

B. Multiple parts of the program are allowed to executed at the same time

C. There are lightweight processes available within the process

D. None of the given choices

15. Which of the following is not an advantage of the Cooperating Processes?

Lovely Professional University90

Unit 05: Inter- Process Communication

Notes

A. Information Privacy

B. Communication speed-up

C. Modularity

D. Convenience

Answers for Self Assessment

1. high priority 2. tasks 3. MULTICS,
1960’s

4. ready 5. Process
Control
Block
(PCB)

6. Inter-process
Communication
(IPC)

7. Threads 8. Multitasking 9. single
processor

10. variables

11. D 12. B 13. B 14. A 15. A

Review Questions

1. Do you think a single user system requires process communication? Support your answer
with logic.

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example. Also explain why inter-process

communication is required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh

Unit 05: Inter- Process Communication

Notes

A. Information Privacy

B. Communication speed-up

C. Modularity

D. Convenience

Answers for Self Assessment

1. high priority 2. tasks 3. MULTICS,
1960’s

4. ready 5. Process
Control
Block
(PCB)

6. Inter-process
Communication
(IPC)

7. Threads 8. Multitasking 9. single
processor

10. variables

11. D 12. B 13. B 14. A 15. A

Review Questions

1. Do you think a single user system requires process communication? Support your answer
with logic.

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example. Also explain why inter-process

communication is required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh

Unit 05: Inter- Process Communication

Notes

A. Information Privacy

B. Communication speed-up

C. Modularity

D. Convenience

Answers for Self Assessment

1. high priority 2. tasks 3. MULTICS,
1960’s

4. ready 5. Process
Control
Block
(PCB)

6. Inter-process
Communication
(IPC)

7. Threads 8. Multitasking 9. single
processor

10. variables

11. D 12. B 13. B 14. A 15. A

Review Questions

1. Do you think a single user system requires process communication? Support your answer
with logic.

2. Suppose a user program faced an error during memory access. What will it do then? Will
it be informed to the OS? Explain.

3. What resources are used when a thread created? How do they differ from those when a
process is created?

4. What are the different process states? What is the state of the processor, when a process is
waiting for some event to occur?

5. Write a brief description on process state transition.
6. What is PCB? What is the function of PCB?
7. How a process is created?
8. What is process hierarchy?
9. How a process terminated?
10. What is cooperating process? Explain it with example. Also explain why inter-process

communication is required?

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Published by Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh

Lovely Professional University 91

Operating System

Notes

Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University92

Unit 06: CPU Scheduling

Notes

Unit 06: CPU Scheduling

CONTENTS

Objectives

Introduction

6.1 CPU Scheduling

6.2 CPU Scheduling Basic Criteria

6.3 Scheduling Algorithms

6.4 Operating Systems and Scheduling Types

6.5 Types of Scheduling

6.6 Multiple Processor Scheduling

6.7 Thread Scheduling

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Describe CPU scheduling
 Explain CPU scheduling basic criteria
 Know scheduling algorithms
 Describe types of scheduling
 Explain multiple processor scheduling
 Define thread scheduling

Introduction
CPU scheduling is the basics of multiprogramming. By switching the CPU among severalprocesses,
the operating systems can make the computer more productive. The objective ofmultiprogramming
is to have some process running at all times, in order to maximize CPUutilization.

6.1 CPU Scheduling
The objective of multiprogramming is to have some process running at all times to maximizeCPU
utilization. The objective of time-sharing system is to switch the CPU among processesso frequently
that users can interact with each program while it is running. For a uni-processorsystem, there will
never be more than one running process. If there are more processes, the restwill have to wait until
the CPU is free and can be rescheduled.As processes enter the system, they are put into a job queue.
This queue consists of all processesin the system. The processes that are residing in main memory
and are ready and waiting toexecute are kept on a list called the ready queue. This queue is
generally stored as a linked list as shown in figure 6.1.A ready-queue header will contain pointers
to the first and last PCBs in the list. Each PCB has apointer field that points to the next process in

Lovely Professional University 93

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

the ready queue.There are also other queues in the system. When a process is allocated the CPU, it
executes for awhile and eventually quits, is interrupted, or waits for the occurrence of a particular
event, suchas the completion of an I/O request. In the case of an I/O request, such a request may be
to adedicated tape drive, or to a shared device, such as a disk. Since there are many processes in
thesystem, the disk may be busy with the I/O request of some other process. The process
thereforemay have to wait for the disk. The list of processes waiting for a particular I/O device is
called adevice queue. Each device has its own device queue.

Figure 6.1: CPU Scheduling

Scheduling Mechanisms
A multiprogramming operating system allows more than one process to be loaded intothe
executable memory at a time and for the loaded process to share the CPU usingtime-multiplexing.
Part of the reason for using multiprogramming is that the operating systemitself is implemented as
one or more processes, so there must be a way for the operating systemand application processes to
share the CPU. Another main reason is the need for processes toperform I/O operations in the
normal course of computation. Since I/O operations ordinarilyrequire orders of magnitude more
time to complete than do CPU instructions, multiprogramming systems allocate the CPU to another
process whenever a process invokes an I/O operation.

Goals for Scheduling
Make sure your scheduling strategy is good enough with the following criteria:

1. Utilization/Efficiency: keep the CPU busy 100% of the time with useful work
2. Throughput: maximize the number of jobs processed per hour.
3. Turnaround time: from the time of submission to the time of completion, minimize the

timebatch users must wait for output
4. Waiting time: Sum of times spent in ready queue - Minimize this
5. Response Time: time from submission till the first response is produced, minimize

responsetime for interactive users
6. Fairness: make sure each process gets a fair share of the CPU

Context Switching
Typically, there are several tasks to perform in a computer system. So, if one task requires some
I/O operation, you want to initiate the I/O operation and go on tothe next task. You will come back
to it later.This act of switching from one process to another is called a “Context Switch”. When you
return back to a process, you should resume where you left off. For all practicalpurposes, this
process should never know there was a switch, and it should look like this was theonly process in
the system.

To implement this, on a context switch, you have to

Operating System

Notes

the ready queue.There are also other queues in the system. When a process is allocated the CPU, it
executes for awhile and eventually quits, is interrupted, or waits for the occurrence of a particular
event, suchas the completion of an I/O request. In the case of an I/O request, such a request may be
to adedicated tape drive, or to a shared device, such as a disk. Since there are many processes in
thesystem, the disk may be busy with the I/O request of some other process. The process
thereforemay have to wait for the disk. The list of processes waiting for a particular I/O device is
called adevice queue. Each device has its own device queue.

Figure 6.1: CPU Scheduling

Scheduling Mechanisms
A multiprogramming operating system allows more than one process to be loaded intothe
executable memory at a time and for the loaded process to share the CPU usingtime-multiplexing.
Part of the reason for using multiprogramming is that the operating systemitself is implemented as
one or more processes, so there must be a way for the operating systemand application processes to
share the CPU. Another main reason is the need for processes toperform I/O operations in the
normal course of computation. Since I/O operations ordinarilyrequire orders of magnitude more
time to complete than do CPU instructions, multiprogramming systems allocate the CPU to another
process whenever a process invokes an I/O operation.

Goals for Scheduling
Make sure your scheduling strategy is good enough with the following criteria:

1. Utilization/Efficiency: keep the CPU busy 100% of the time with useful work
2. Throughput: maximize the number of jobs processed per hour.
3. Turnaround time: from the time of submission to the time of completion, minimize the

timebatch users must wait for output
4. Waiting time: Sum of times spent in ready queue - Minimize this
5. Response Time: time from submission till the first response is produced, minimize

responsetime for interactive users
6. Fairness: make sure each process gets a fair share of the CPU

Context Switching
Typically, there are several tasks to perform in a computer system. So, if one task requires some
I/O operation, you want to initiate the I/O operation and go on tothe next task. You will come back
to it later.This act of switching from one process to another is called a “Context Switch”. When you
return back to a process, you should resume where you left off. For all practicalpurposes, this
process should never know there was a switch, and it should look like this was theonly process in
the system.

To implement this, on a context switch, you have to

Operating System

Notes

the ready queue.There are also other queues in the system. When a process is allocated the CPU, it
executes for awhile and eventually quits, is interrupted, or waits for the occurrence of a particular
event, suchas the completion of an I/O request. In the case of an I/O request, such a request may be
to adedicated tape drive, or to a shared device, such as a disk. Since there are many processes in
thesystem, the disk may be busy with the I/O request of some other process. The process
thereforemay have to wait for the disk. The list of processes waiting for a particular I/O device is
called adevice queue. Each device has its own device queue.

Figure 6.1: CPU Scheduling

Scheduling Mechanisms
A multiprogramming operating system allows more than one process to be loaded intothe
executable memory at a time and for the loaded process to share the CPU usingtime-multiplexing.
Part of the reason for using multiprogramming is that the operating systemitself is implemented as
one or more processes, so there must be a way for the operating systemand application processes to
share the CPU. Another main reason is the need for processes toperform I/O operations in the
normal course of computation. Since I/O operations ordinarilyrequire orders of magnitude more
time to complete than do CPU instructions, multiprogramming systems allocate the CPU to another
process whenever a process invokes an I/O operation.

Goals for Scheduling
Make sure your scheduling strategy is good enough with the following criteria:

1. Utilization/Efficiency: keep the CPU busy 100% of the time with useful work
2. Throughput: maximize the number of jobs processed per hour.
3. Turnaround time: from the time of submission to the time of completion, minimize the

timebatch users must wait for output
4. Waiting time: Sum of times spent in ready queue - Minimize this
5. Response Time: time from submission till the first response is produced, minimize

responsetime for interactive users
6. Fairness: make sure each process gets a fair share of the CPU

Context Switching
Typically, there are several tasks to perform in a computer system. So, if one task requires some
I/O operation, you want to initiate the I/O operation and go on tothe next task. You will come back
to it later.This act of switching from one process to another is called a “Context Switch”. When you
return back to a process, you should resume where you left off. For all practicalpurposes, this
process should never know there was a switch, and it should look like this was theonly process in
the system.

To implement this, on a context switch, you have to

Lovely Professional University94

Unit 06: CPU Scheduling

Notes

1. Save the context of the current process

2. Select the next process to run

3. Restore the context of this new process.

Non-preemptive vs. Preemptive Scheduling
 Non-preemptive

Non-preemptive algorithms are designed so that once a process enters the running
state(isallowed a process), it is not removed from the processor until it has completed its
service time (orit explicitly yields the processor).

context_switch() is called only when the process terminates or blocks.

 Preemptive
Preemptive algorithms are driven by the notion of prioritized computation. The process with
thehighest priority should always be the one currently using the processor. If a process is
currentlyusing the processor and a new process with a higher priority enters, the ready list, the
process onthe processor should be removed and returned to the ready list until it is once again
the highestpriorityprocess in the system.

context_switch() is called even when the process is running usually done via atimer interrupt.

6.2 CPU Scheduling Basic Criteria
CPU scheduling is the basics of multiprogramming. By switching the CPU among several
processes, the operating systems can make the computer more productive. The objective
ofmultiprogramming is to have some process running at all times, in order to maximize
CPUutilization. On systems with 1 processor, only one process may run at a time; any other
processesmust wait until CPU is free to be rescheduled.In multiprogramming, a process executes
until it must wait (either interrupted, or doing IO), atwhich point, the CPU is assigned to another
process, which again, executes until it must wait, atwhich point another process gets the CPU, and
so on.Processes generally execute a CPU burst, followed by an IO burst, followed by the CPU
burst,followed by the CPU burst, etc. This cycle is central to all processes. Every process must have
CPUbursts, and every process must do some IO. The operating system maintains what is known as
aready-queue. Processes on this queue are ready to be executed. Whenever a currently
executingprocess needs to wait (does IO, is interrupted, etc.) the operating system picks a process
fromthe ready queue and assigns the CPU to that process. The cycle then continues. There are
manyscheduling algorithms, ranging in complexity and robustness: First-come, First-serve
scheduling,Shortest Job First scheduling, Round-Robin scheduling, etc.A major task of an operating
system is to manage a collection of processes. In some cases, a singleprocess may consist of a set of
individual threads.In both situations, a system with a single CPU or a multi-processor system with
fewer CPU’s thanprocesses has to divide CPU time among the different processes/threads that are
competing touse it. This process is called CPU scheduling.There are many scheduling algorithms
and various criteria to judge their performance. Differentalgorithms may favor different types of
processes. Some criteria are as follows:

1. CPU utilization: CPU must be as busy as possible in performing different tasks. CPUutilization is

more important in real-time system and multi-programmed systems.

2. Throughput: The number of processes executed in a specified time period is calledthroughput. The

throughput increasesfor short processes. It decreases if the size ofprocesses is huge.

3. 3. Turnaround Time: The amount of time that is needed to execute a process is calledturnaround

time. It is the actual job time plus the waiting time.

4. Waiting Time: The amount of time the process has waited is called waiting time. It is

theturnaround time minus actual job time.

5. Response Time: The amount of time between a request is Submitted and the first
responseis produced is called response time.

Lovely Professional University 95

Operating System

Notes

6.3 Scheduling Algorithms
Most Operating Systems today use very similar CPU time scheduling algorithms, all based on
thesame basic ideas, but with Operating System-specific c adaptations and extensions. What
followsis a description of those rough basic ideas. What should be remarked is that this algorithm is
not the best algorithm that you can imagine,but it is, proven mathematically and by experience in
the early days of OS programming (sixtiesand seventies), the algorithm that is the closest to the
‘best’ algorithm. Perhaps when computersget more powerful someday, then we might implement
the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-
purposeOperating Systems or systems, and some real-time systems will use a very different
algorithm.CPU scheduling is the task of selecting a waiting process from the ready queue and
allocating theCPU to it. The CPU is allocated to the selected process by the dispatcher.A CPU
scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

First-Come, First-Served (FCFS)
This is a Non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes inthe
order in which they request the processor. The process that requests the CPU first is allocatedthe
CPU first. When a process comes in, add its PCB to the tail of ready queue. When runningprocess
terminates, dequeue the process (PCB) at head of ready queue and run it. Figure 6.2 depicts the
FCFS scheduling.

Figure 6.2: FCFS Scheduling

Advantage

Very simple

Disadvantages

1. Long average and worst-case waiting times
2. Poor dynamic behavior (convoy effect - short process behind long process as in figure 6.3)

Operating System

Notes

6.3 Scheduling Algorithms
Most Operating Systems today use very similar CPU time scheduling algorithms, all based on
thesame basic ideas, but with Operating System-specific c adaptations and extensions. What
followsis a description of those rough basic ideas. What should be remarked is that this algorithm is
not the best algorithm that you can imagine,but it is, proven mathematically and by experience in
the early days of OS programming (sixtiesand seventies), the algorithm that is the closest to the
‘best’ algorithm. Perhaps when computersget more powerful someday, then we might implement
the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-
purposeOperating Systems or systems, and some real-time systems will use a very different
algorithm.CPU scheduling is the task of selecting a waiting process from the ready queue and
allocating theCPU to it. The CPU is allocated to the selected process by the dispatcher.A CPU
scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

First-Come, First-Served (FCFS)
This is a Non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes inthe
order in which they request the processor. The process that requests the CPU first is allocatedthe
CPU first. When a process comes in, add its PCB to the tail of ready queue. When runningprocess
terminates, dequeue the process (PCB) at head of ready queue and run it. Figure 6.2 depicts the
FCFS scheduling.

Figure 6.2: FCFS Scheduling

Advantage

Very simple

Disadvantages

1. Long average and worst-case waiting times
2. Poor dynamic behavior (convoy effect - short process behind long process as in figure 6.3)

Operating System

Notes

6.3 Scheduling Algorithms
Most Operating Systems today use very similar CPU time scheduling algorithms, all based on
thesame basic ideas, but with Operating System-specific c adaptations and extensions. What
followsis a description of those rough basic ideas. What should be remarked is that this algorithm is
not the best algorithm that you can imagine,but it is, proven mathematically and by experience in
the early days of OS programming (sixtiesand seventies), the algorithm that is the closest to the
‘best’ algorithm. Perhaps when computersget more powerful someday, then we might implement
the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-
purposeOperating Systems or systems, and some real-time systems will use a very different
algorithm.CPU scheduling is the task of selecting a waiting process from the ready queue and
allocating theCPU to it. The CPU is allocated to the selected process by the dispatcher.A CPU
scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

First-Come, First-Served (FCFS)
This is a Non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes inthe
order in which they request the processor. The process that requests the CPU first is allocatedthe
CPU first. When a process comes in, add its PCB to the tail of ready queue. When runningprocess
terminates, dequeue the process (PCB) at head of ready queue and run it. Figure 6.2 depicts the
FCFS scheduling.

Figure 6.2: FCFS Scheduling

Advantage

Very simple

Disadvantages

1. Long average and worst-case waiting times
2. Poor dynamic behavior (convoy effect - short process behind long process as in figure 6.3)

Lovely Professional University96

Unit 06: CPU Scheduling

Notes

Figure 6.3: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Shortest-Job-First (SJF)
The SJF algorithm takes processes that use the shortest CPU time first. Mathematically seen, and
corresponding to the experience, this is the ideal scheduling algorithm. I won’t give details in here
about the performance. It’s all to do about overhead and response time, actually: the system will be
fast when the scheduler doesn’t take much of the CPU time itself, and when interactive processes
react quickly (get a fast response). This system would be very good.

The overhead caused by the algorithm itself is huge, however. The scheduler would have top
implement some way to time the CPU usage of processes and predict it, or the user should tell the
scheduler how long a job (this is really a word that comes from very early computer design, when
Batch Job Operating Systems were used would take. So, it is impossible to implement this
algorithm without hurting performance very much.

Advantage

Minimizes average waiting times.

Disadvantages

1. How to determine length of next CPU burst?

Unit 06: CPU Scheduling

Notes

Figure 6.3: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Shortest-Job-First (SJF)
The SJF algorithm takes processes that use the shortest CPU time first. Mathematically seen, and
corresponding to the experience, this is the ideal scheduling algorithm. I won’t give details in here
about the performance. It’s all to do about overhead and response time, actually: the system will be
fast when the scheduler doesn’t take much of the CPU time itself, and when interactive processes
react quickly (get a fast response). This system would be very good.

The overhead caused by the algorithm itself is huge, however. The scheduler would have top
implement some way to time the CPU usage of processes and predict it, or the user should tell the
scheduler how long a job (this is really a word that comes from very early computer design, when
Batch Job Operating Systems were used would take. So, it is impossible to implement this
algorithm without hurting performance very much.

Advantage

Minimizes average waiting times.

Disadvantages

1. How to determine length of next CPU burst?

Unit 06: CPU Scheduling

Notes

Figure 6.3: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Shortest-Job-First (SJF)
The SJF algorithm takes processes that use the shortest CPU time first. Mathematically seen, and
corresponding to the experience, this is the ideal scheduling algorithm. I won’t give details in here
about the performance. It’s all to do about overhead and response time, actually: the system will be
fast when the scheduler doesn’t take much of the CPU time itself, and when interactive processes
react quickly (get a fast response). This system would be very good.

The overhead caused by the algorithm itself is huge, however. The scheduler would have top
implement some way to time the CPU usage of processes and predict it, or the user should tell the
scheduler how long a job (this is really a word that comes from very early computer design, when
Batch Job Operating Systems were used would take. So, it is impossible to implement this
algorithm without hurting performance very much.

Advantage

Minimizes average waiting times.

Disadvantages

1. How to determine length of next CPU burst?

Lovely Professional University 97

Operating System

Notes

2. Starvation of jobs with long CPU bursts.

Examples

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only makes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest
remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process. Figure 6.4 depicts the priority
scheduling.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling
algorithm will preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A non-preemptive priority scheduling algorithm will
simply put the new process at the head of the ready queue. A major problem with priority

Operating System

Notes

2. Starvation of jobs with long CPU bursts.

Examples

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only makes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest
remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process. Figure 6.4 depicts the priority
scheduling.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling
algorithm will preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A non-preemptive priority scheduling algorithm will
simply put the new process at the head of the ready queue. A major problem with priority

Operating System

Notes

2. Starvation of jobs with long CPU bursts.

Examples

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only makes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest
remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process. Figure 6.4 depicts the priority
scheduling.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling
algorithm will preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A non-preemptive priority scheduling algorithm will
simply put the new process at the head of the ready queue. A major problem with priority

Lovely Professional University98

Unit 06: CPU Scheduling

Notes

scheduling algorithms is indefinite blocking or starvation. This can be solved by a technique called
aging wherein I gradually increase the priority of a long waiting process.

Figure 6.4: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The

maindisadvantage is the lower priority jobs will starve.

Gantt Chart

Average waiting time: (0+1+6+16+18)/5 = 8.2

Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Advantages

Simple, low overhead, works for interactive systems

Disadvantages

1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Examples

Process Burst Time Arrival Priority
P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Unit 06: CPU Scheduling

Notes

scheduling algorithms is indefinite blocking or starvation. This can be solved by a technique called
aging wherein I gradually increase the priority of a long waiting process.

Figure 6.4: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The

maindisadvantage is the lower priority jobs will starve.

Gantt Chart

Average waiting time: (0+1+6+16+18)/5 = 8.2

Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Advantages

Simple, low overhead, works for interactive systems

Disadvantages

1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Examples

Process Burst Time Arrival Priority
P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Unit 06: CPU Scheduling

Notes

scheduling algorithms is indefinite blocking or starvation. This can be solved by a technique called
aging wherein I gradually increase the priority of a long waiting process.

Figure 6.4: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The

maindisadvantage is the lower priority jobs will starve.

Gantt Chart

Average waiting time: (0+1+6+16+18)/5 = 8.2

Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Advantages

Simple, low overhead, works for interactive systems

Disadvantages

1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Examples

Process Burst Time Arrival Priority
P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Lovely Professional University 99

Operating System

Notes

Figure 6.5: Round Robin Scheduling

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Figure 6.6: Time Quantum and Context Switch Time

Turnaround Time Varies with the Time Quantum

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Operating System

Notes

Figure 6.5: Round Robin Scheduling

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Figure 6.6: Time Quantum and Context Switch Time

Turnaround Time Varies with the Time Quantum

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Operating System

Notes

Figure 6.5: Round Robin Scheduling

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Figure 6.6: Time Quantum and Context Switch Time

Turnaround Time Varies with the Time Quantum

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Lovely Professional University100

Unit 06: CPU Scheduling

Notes

Figure 6.7: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs arriving
in the order listed here:

I T(pi) Arrival Time
0 80 0
1 20 10
2 10 10
3 20 80
4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:
1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt

chartis as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80= 80 sec.
3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue as shown in figure 6.8.

Unit 06: CPU Scheduling

Notes

Figure 6.7: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs arriving
in the order listed here:

I T(pi) Arrival Time
0 80 0
1 20 10
2 10 10
3 20 80
4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:
1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt

chartis as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80= 80 sec.
3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue as shown in figure 6.8.

Unit 06: CPU Scheduling

Notes

Figure 6.7: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs arriving
in the order listed here:

I T(pi) Arrival Time
0 80 0
1 20 10
2 10 10
3 20 80
4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:
1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt

chartis as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80= 80 sec.
3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue as shown in figure 6.8.

Lovely Professional University 101

Operating System

Notes

Figure 6.8: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue(as shown in figure 6.9)

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure 6.9: Scheduling Queues

Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.One of the most important responsibilities of
a real-time system is to schedule tasks accordingto their deadlines in order to guarantee that all
real-time activities achieve the required servicelevel. Many scheduling algorithms exist for a variety
of task models, but fundamental to many ofthese are the earliest deadline first (EDF) and rate-
monotonic (RM) scheduling policies.A schedule for a set of tasks is said to be feasible if a proof

Operating System

Notes

Figure 6.8: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue(as shown in figure 6.9)

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure 6.9: Scheduling Queues

Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.One of the most important responsibilities of
a real-time system is to schedule tasks accordingto their deadlines in order to guarantee that all
real-time activities achieve the required servicelevel. Many scheduling algorithms exist for a variety
of task models, but fundamental to many ofthese are the earliest deadline first (EDF) and rate-
monotonic (RM) scheduling policies.A schedule for a set of tasks is said to be feasible if a proof

Operating System

Notes

Figure 6.8: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue(as shown in figure 6.9)

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure 6.9: Scheduling Queues

Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.One of the most important responsibilities of
a real-time system is to schedule tasks accordingto their deadlines in order to guarantee that all
real-time activities achieve the required servicelevel. Many scheduling algorithms exist for a variety
of task models, but fundamental to many ofthese are the earliest deadline first (EDF) and rate-
monotonic (RM) scheduling policies.A schedule for a set of tasks is said to be feasible if a proof

Lovely Professional University102

Unit 06: CPU Scheduling

Notes

exists that every task instance in the setwill complete processing by its associated deadline. Also, a
task set is schedulable if there existsa feasible schedule for the set.The utilization associated with a
given task schedule and resource (i.e. CPU) is the fraction oftime that the resource is allocated over
the time that the scheduler is active. Figure 6.10 shows real time scheduling.

Figure 6.10: Real Time Scheduling

Earliest Deadline First
The EDF scheduling algorithm is a preemptive and dynamic priority scheduler that executestasks
in order of the time remaining before their corresponding deadlines. Tasks with the leasttime
remaining before their deadline are executed before tasks with more remaining time. Ateach
invocation of the scheduler, the remaining time is calculated for each waiting task, and thetask with
the least remaining time is dispatched. If a task set is schedulable, the EDF algorithmresults in a
schedule that achieves optimal resource utilization. However, EDF is shown to beunpredictable if
the required utilization exceeds 100%, known as an overload condition. EDF isuseful for scheduling
periodic tasks, since the dynamic priorities of tasks do not depend on thedeterminism of request
periods.

Rate Monotonic
Under the static-priority rate monotonic scheduling algorithm, tasks are ordered according to
thevalue of their request period, T. Tasks with shorter request periods are assigned higher
prioritythan those with longer periods. Liu and Layland proved that a feasible schedule is found
underrate monotonic scheduling if the total requested utilization is less than or equal to ln, which
isapproximately 69.3%.RM scheduling is optimal with respect to maximum utilization over all
static-priority schedulers.However, this scheduling policy only supports tasks that fit the periodic
task model, sincepriorities depend upon request periods. Because the request times of a periodic
tasks are notalways predictable, these tasks are not supported by the RM algorithm, but are instead
typicallyscheduled using a dynamic priority scheduler such as EDF.

Characteristics of Scheduling Algorithms

FCFS Round
Robin

SJF SRT HRRN Feedback

Selection
Function

max[w] constant Min[s] min[s-e] max[(w+s)/s] see text

Decision
Mode

Non-
preemptive

preemptive Non-
preemptive

preemptive Non-preemptive Preemptive at
time quantum

Throughput N/A low for small
quantum

high High High N/A

Response
Time

May be high good for short
processes

good for short
processes

Good Good N/A

Overhead minimal low Can be high Can be high Can be high Can be high

Starvation No No Possible Possible No Possible

Unit 06: CPU Scheduling

Notes

exists that every task instance in the setwill complete processing by its associated deadline. Also, a
task set is schedulable if there existsa feasible schedule for the set.The utilization associated with a
given task schedule and resource (i.e. CPU) is the fraction oftime that the resource is allocated over
the time that the scheduler is active. Figure 6.10 shows real time scheduling.

Figure 6.10: Real Time Scheduling

Earliest Deadline First
The EDF scheduling algorithm is a preemptive and dynamic priority scheduler that executestasks
in order of the time remaining before their corresponding deadlines. Tasks with the leasttime
remaining before their deadline are executed before tasks with more remaining time. Ateach
invocation of the scheduler, the remaining time is calculated for each waiting task, and thetask with
the least remaining time is dispatched. If a task set is schedulable, the EDF algorithmresults in a
schedule that achieves optimal resource utilization. However, EDF is shown to beunpredictable if
the required utilization exceeds 100%, known as an overload condition. EDF isuseful for scheduling
periodic tasks, since the dynamic priorities of tasks do not depend on thedeterminism of request
periods.

Rate Monotonic
Under the static-priority rate monotonic scheduling algorithm, tasks are ordered according to
thevalue of their request period, T. Tasks with shorter request periods are assigned higher
prioritythan those with longer periods. Liu and Layland proved that a feasible schedule is found
underrate monotonic scheduling if the total requested utilization is less than or equal to ln, which
isapproximately 69.3%.RM scheduling is optimal with respect to maximum utilization over all
static-priority schedulers.However, this scheduling policy only supports tasks that fit the periodic
task model, sincepriorities depend upon request periods. Because the request times of a periodic
tasks are notalways predictable, these tasks are not supported by the RM algorithm, but are instead
typicallyscheduled using a dynamic priority scheduler such as EDF.

Characteristics of Scheduling Algorithms

FCFS Round
Robin

SJF SRT HRRN Feedback

Selection
Function

max[w] constant Min[s] min[s-e] max[(w+s)/s] see text

Decision
Mode

Non-
preemptive

preemptive Non-
preemptive

preemptive Non-preemptive Preemptive at
time quantum

Throughput N/A low for small
quantum

high High High N/A

Response
Time

May be high good for short
processes

good for short
processes

Good Good N/A

Overhead minimal low Can be high Can be high Can be high Can be high

Starvation No No Possible Possible No Possible

Unit 06: CPU Scheduling

Notes

exists that every task instance in the setwill complete processing by its associated deadline. Also, a
task set is schedulable if there existsa feasible schedule for the set.The utilization associated with a
given task schedule and resource (i.e. CPU) is the fraction oftime that the resource is allocated over
the time that the scheduler is active. Figure 6.10 shows real time scheduling.

Figure 6.10: Real Time Scheduling

Earliest Deadline First
The EDF scheduling algorithm is a preemptive and dynamic priority scheduler that executestasks
in order of the time remaining before their corresponding deadlines. Tasks with the leasttime
remaining before their deadline are executed before tasks with more remaining time. Ateach
invocation of the scheduler, the remaining time is calculated for each waiting task, and thetask with
the least remaining time is dispatched. If a task set is schedulable, the EDF algorithmresults in a
schedule that achieves optimal resource utilization. However, EDF is shown to beunpredictable if
the required utilization exceeds 100%, known as an overload condition. EDF isuseful for scheduling
periodic tasks, since the dynamic priorities of tasks do not depend on thedeterminism of request
periods.

Rate Monotonic
Under the static-priority rate monotonic scheduling algorithm, tasks are ordered according to
thevalue of their request period, T. Tasks with shorter request periods are assigned higher
prioritythan those with longer periods. Liu and Layland proved that a feasible schedule is found
underrate monotonic scheduling if the total requested utilization is less than or equal to ln, which
isapproximately 69.3%.RM scheduling is optimal with respect to maximum utilization over all
static-priority schedulers.However, this scheduling policy only supports tasks that fit the periodic
task model, sincepriorities depend upon request periods. Because the request times of a periodic
tasks are notalways predictable, these tasks are not supported by the RM algorithm, but are instead
typicallyscheduled using a dynamic priority scheduler such as EDF.

Characteristics of Scheduling Algorithms

FCFS Round
Robin

SJF SRT HRRN Feedback

Selection
Function

max[w] constant Min[s] min[s-e] max[(w+s)/s] see text

Decision
Mode

Non-
preemptive

preemptive Non-
preemptive

preemptive Non-preemptive Preemptive at
time quantum

Throughput N/A low for small
quantum

high High High N/A

Response
Time

May be high good for short
processes

good for short
processes

Good Good N/A

Overhead minimal low Can be high Can be high Can be high Can be high

Starvation No No Possible Possible No Possible

Lovely Professional University 103

Operating System

Notes

w = time spent in the system so far, waiting and executing

e = time spent in execution so far.

s = total service time required by the process, including e.

6.4 Operating Systems and Scheduling Types

1) Solaris 2 uses priority-based process scheduling.
2) Windows 2000 uses a priority-based preemptive scheduling algorithm.
3) Linux provides two separate process-scheduling algorithms: one is designed for

timesharingprocesses for fair preemptive scheduling among multiple processes; the
otherdesigned for real-time tasks:
a) For processes in the time-sharing class Linux uses a prioritized credit-basedalgorithm

b) Real-time scheduling: Linux implements two real-time scheduling classes namelyFCFS (First come

first serve) and RR (Round Robin)

6.5 Types of Scheduling
In many multitasking systems the processor scheduling subsystem operates on three
levels,differentiated by the time scale at which they perform their operations. In this sense
differentiateamong:

1. Long term scheduling: which determines which programs are admitted to the system
forexecution and when, and which ones should be exited.

2. Medium term scheduling: which determines when processes are to be suspended
andresumed;

3. Short term scheduling (or dispatching): which determines which of the ready processes
canhave CPU resources, and for how long.

Long-term Scheduling

Long term scheduling obviously controls the degree of multiprogramming in multitaskingsystems,
following certain policies to decide whether the system can honor a new job submissionor, if more
than one job is submitted, which of them should be selected. The need for some formof compromise
between degree of multiprogramming and throughput seems evident, especiallywhen one
considers interactive systems. The higher the number of processes, in fact, the smaller thetime each
of them may control CPU for, if a fair share of responsiveness is to be given to allprocesses.
Moreover, you have already seen that a too high number of processes causes waste ofCPU time for
system housekeeping chores (trashing in virtual memory systems is a particularlynasty example of
this). However, the number of active processes should be high enough to keepthe CPU busy
servicing the payload (i.e. the user processes) as much as possible, by ensuring that- on average -
there always be a sufficient number of processes not waiting for I/O.

Simple policies for long term scheduling are:

1. Simple First Come First Served (FCFS): It’s essentially a FIFO scheme. All job requests(e.g. a
submission of a batch program, or a user trying to log in in a time-shared system)are honored
up to a fixed system load limit, further requests being refused tout court, orenqueued for later
processing.

2. Priority schemes: Note that in the context of long-term scheduling ``priority’’ has a
differentmeaning than in dispatching: here it affects the choice of a program to be entered the
systemas a process, there the choice of which ready process should be executed.Long term
scheduling is performed when a new process is created. It is shown in the figurebelow. If the
number of ready processes in the ready queue becomes very high, then there is an overhead on
the operating system (i.e., processor) for maintaining long lists, context switchingand
dispatching increases. Therefore, allow only limited number of processes in to the readyqueue.
The “long-term scheduler” managers this. Long-term scheduler determines whichprograms
are admitted into the system for processing. Once when admit a process or job, itbecomes

Lovely Professional University104

Unit 06: CPU Scheduling

Notes

process and is added to the queue for the short-term scheduler. In some systems, anewly
created process begins in a swapped-out condition, in which case it is added to a queuefor the
medium-term scheduler scheduling manage queues to minimize queueing delay and
tooptimize performance.

Figure 6.11: Long term Scheduling

The long-term scheduler limits the number of processes to allow for processing by taking the
decision to add one or more new jobs, based on FCFS (First-Come, first-serve) basis or priority or
execution time or Input/output requirements. Long-term scheduler executes relatively
infrequently.

Medium Term Scheduling

Medium term scheduling is essentially concerned with memory management; hence it’s very often
designed as a part of the memory management subsystem of an OS. Its efficient interaction with the
short-term scheduler is essential for system performances, especially in virtual memory systems.
This is the reason why in paged system the pager process is usually run at a very high (dispatching)
priority level.

Figure 6.12: Medium term Scheduling

Unblock is done by another task (a.k.a. wakeup, release, V) Block is a.k.a. sleep, request, P)In
addition to the short-term scheduling we have discussed, we add medium-term scheduling
inwhich decisions are made at a coarser time scale.Recall my favorite diagram, shown again on the
right. Medium term scheduling determines thetransitions from the top triangle to the bottom line.
We suspend (swap out) some process ifmemory is over-committed, dropping the (ready or
blocked) process down. We also need resumetransitions to return a process to the top triangle.

Criteria for choosing a victim to suspend include:

Unit 06: CPU Scheduling

Notes

process and is added to the queue for the short-term scheduler. In some systems, anewly
created process begins in a swapped-out condition, in which case it is added to a queuefor the
medium-term scheduler scheduling manage queues to minimize queueing delay and
tooptimize performance.

Figure 6.11: Long term Scheduling

The long-term scheduler limits the number of processes to allow for processing by taking the
decision to add one or more new jobs, based on FCFS (First-Come, first-serve) basis or priority or
execution time or Input/output requirements. Long-term scheduler executes relatively
infrequently.

Medium Term Scheduling

Medium term scheduling is essentially concerned with memory management; hence it’s very often
designed as a part of the memory management subsystem of an OS. Its efficient interaction with the
short-term scheduler is essential for system performances, especially in virtual memory systems.
This is the reason why in paged system the pager process is usually run at a very high (dispatching)
priority level.

Figure 6.12: Medium term Scheduling

Unblock is done by another task (a.k.a. wakeup, release, V) Block is a.k.a. sleep, request, P)In
addition to the short-term scheduling we have discussed, we add medium-term scheduling
inwhich decisions are made at a coarser time scale.Recall my favorite diagram, shown again on the
right. Medium term scheduling determines thetransitions from the top triangle to the bottom line.
We suspend (swap out) some process ifmemory is over-committed, dropping the (ready or
blocked) process down. We also need resumetransitions to return a process to the top triangle.

Criteria for choosing a victim to suspend include:

Unit 06: CPU Scheduling

Notes

process and is added to the queue for the short-term scheduler. In some systems, anewly
created process begins in a swapped-out condition, in which case it is added to a queuefor the
medium-term scheduler scheduling manage queues to minimize queueing delay and
tooptimize performance.

Figure 6.11: Long term Scheduling

The long-term scheduler limits the number of processes to allow for processing by taking the
decision to add one or more new jobs, based on FCFS (First-Come, first-serve) basis or priority or
execution time or Input/output requirements. Long-term scheduler executes relatively
infrequently.

Medium Term Scheduling

Medium term scheduling is essentially concerned with memory management; hence it’s very often
designed as a part of the memory management subsystem of an OS. Its efficient interaction with the
short-term scheduler is essential for system performances, especially in virtual memory systems.
This is the reason why in paged system the pager process is usually run at a very high (dispatching)
priority level.

Figure 6.12: Medium term Scheduling

Unblock is done by another task (a.k.a. wakeup, release, V) Block is a.k.a. sleep, request, P)In
addition to the short-term scheduling we have discussed, we add medium-term scheduling
inwhich decisions are made at a coarser time scale.Recall my favorite diagram, shown again on the
right. Medium term scheduling determines thetransitions from the top triangle to the bottom line.
We suspend (swap out) some process ifmemory is over-committed, dropping the (ready or
blocked) process down. We also need resumetransitions to return a process to the top triangle.

Criteria for choosing a victim to suspend include:

Lovely Professional University 105

Operating System

Notes

 How long since previously suspended.
 How much CPU time used recently.
 How much memory does it use.
 External priority (pay more, get swapped out less).

Short-term Scheduling

Short term scheduling concerns with the allocation of CPU time to processes in order to meetsome
pre-defined system performance objectives. The definition of these objectives (schedulingpolicy) is
an overall system design issue, and determines the ``character’’ of the operating systemfrom the
user’s (i.e. the buyer’s) point of view, giving rise to the traditional distinctions among‘‘multi-
purpose, time shared’’, ‘‘batch production’’, ‘‘real-time’’ systems, and so on.From a user’s point of
view, the performance criteria base on:

1) Response time: The interval of time from the moment a service is requested until theresponse
begins to be received. In time-shared, interactive systems this is a better measureof
responsiveness from a user’s point of view than turnaround time, since processes maybegin to
produce output early in their execution.

2) Turnaround time: The interval between the submission of a process and the completionof its
execution, including the actual running time, plus the time spent sleeping beforebeing
dispatched or while waiting to access various resources. This is the appropriateresponsiveness
measure for batch production, as well as for time-shared systems thatmaintain multiple batch
queues, sharing CPU time among them.

3) Meeting deadlines: The ability of the OS to meet pre-defined deadlines for job completion.It
makes sense only when the minimal execution time of an application can be
accuratelypredicted.

4) Predictability: The ability of the system to ensure that a given task is executed within acertain
time interval, and/or to ensure that a certain constant response time is grantedwithin a strict
tolerance, no matter what the machine load is.

When the overall system performance is considered, additional scheduling criteria must be
considered:

1) Throughput: The rate of completion of processes (processes completed per unit time). Thisis a
‘‘raw’’ measure of how much work is performed, since it depends on the executionlength of
processes, but it’s obviously affected by the scheduling policy.

2) User processor utilization: Time (percentage of unit time) during which the CPU is
runninguser processes. This is a measure of how well the system can serve the payload and
keep atminimum time spent in housekeeping chores.

3) Overall processor utilization: Time percentage during which the CPU is busy. It’s asignificant
criterion for expensive hardware, that must be kept busy as much as possible inorder to be
justify its cost (e.g. supercomputers for numerical calculus applications).

4) Resource utilization balance: It extends the idea of processor utilization to consider all system
resources. A good scheduler should try to keep all the hardware resources in useat any time.

Lovely Professional University106

Unit 06: CPU Scheduling

Notes

Figure 6.13: Medium term Scheduling

The design of the short-term scheduler is one of the critical areas in the overall system
design,because of the immediate effects on system performance from the user’s point of view. It’s
usuallyone of the trickiest as well: since most processor architectures support their own task
switchingfacilities, the implementation of the process switch mechanism is generally machine-
dependent.The result is that the actual process switch software is usually written in the assembly
languageof a particular machine, whether the operating system is meant to be portable across
differentmachines or not.

6.6 Multiple Processor Scheduling
The development of appropriate scheduling schemes for multiprocessor systems is problematic.Not
only are uni-processor algorithms not directly applicable but some of the apparently
correctmethods are counter intuitive.The scheduling problem for multiprocessor systems can be
generally stated as “How can youexecute a set of tasks T on a set of processors P subject to some set
of optimizing criteria C?”The most common goal of scheduling is to minimize the expected runtime
of a task set. Examplesof other scheduling criteria include minimizing the cost, minimizing
communication delay,giving priority to certain users’ processes, or needs for specialized hardware
devices.The scheduling policy for a multiprocessor system usually embodies a mixture of several of
thesecriteria. Issues in Multiprocessor Scheduling Solutions to the scheduling problem come in
twogeneral forms: algorithms and scheduling systems.Algorithms concentrate on policy while
scheduling systems provide mechanism to implementthe algorithms. Some scheduling systems run
outside the operating system kernel, while othersare part of a tightly-integrated distributed or
parallel operating system.

Distributed systems communicate via message-passing, while parallel systems use sharedmemory.
A task is the unit of computation in computing systems, and a job consists of one ormore
cooperating tasks. Global scheduling involves assigning a task to a particular processorwithin the
system.

Local scheduling determines which of the set of available tasks at a processor runs next on
thatprocessor. Task migration can change the global mapping by moving a task to a new processor.

If you have several jobs, each composed of many tasks, you can either assign several processorsto a
single job, or you can assign several tasks to a single processor. The former is known as
spacesharing, and the latter is called time sharing.Global scheduling is often used to perform load
sharing. Load sharing allows busy processorsto off-load some of their work to less busy processors.
Load balancing is a special case of loadsharing, in which the goal is to keep the load even across all
processors. Sender-initiated loadsharing occurs when busy processors try to find idle processors to
off-load some work. Receiverinitiatedload sharing occurs when idle processors seek busy
processors. It is now acceptedwisdom that full load balancing is generally not worth doing, as the

Unit 06: CPU Scheduling

Notes

Figure 6.13: Medium term Scheduling

The design of the short-term scheduler is one of the critical areas in the overall system
design,because of the immediate effects on system performance from the user’s point of view. It’s
usuallyone of the trickiest as well: since most processor architectures support their own task
switchingfacilities, the implementation of the process switch mechanism is generally machine-
dependent.The result is that the actual process switch software is usually written in the assembly
languageof a particular machine, whether the operating system is meant to be portable across
differentmachines or not.

6.6 Multiple Processor Scheduling
The development of appropriate scheduling schemes for multiprocessor systems is problematic.Not
only are uni-processor algorithms not directly applicable but some of the apparently
correctmethods are counter intuitive.The scheduling problem for multiprocessor systems can be
generally stated as “How can youexecute a set of tasks T on a set of processors P subject to some set
of optimizing criteria C?”The most common goal of scheduling is to minimize the expected runtime
of a task set. Examplesof other scheduling criteria include minimizing the cost, minimizing
communication delay,giving priority to certain users’ processes, or needs for specialized hardware
devices.The scheduling policy for a multiprocessor system usually embodies a mixture of several of
thesecriteria. Issues in Multiprocessor Scheduling Solutions to the scheduling problem come in
twogeneral forms: algorithms and scheduling systems.Algorithms concentrate on policy while
scheduling systems provide mechanism to implementthe algorithms. Some scheduling systems run
outside the operating system kernel, while othersare part of a tightly-integrated distributed or
parallel operating system.

Distributed systems communicate via message-passing, while parallel systems use sharedmemory.
A task is the unit of computation in computing systems, and a job consists of one ormore
cooperating tasks. Global scheduling involves assigning a task to a particular processorwithin the
system.

Local scheduling determines which of the set of available tasks at a processor runs next on
thatprocessor. Task migration can change the global mapping by moving a task to a new processor.

If you have several jobs, each composed of many tasks, you can either assign several processorsto a
single job, or you can assign several tasks to a single processor. The former is known as
spacesharing, and the latter is called time sharing.Global scheduling is often used to perform load
sharing. Load sharing allows busy processorsto off-load some of their work to less busy processors.
Load balancing is a special case of loadsharing, in which the goal is to keep the load even across all
processors. Sender-initiated loadsharing occurs when busy processors try to find idle processors to
off-load some work. Receiverinitiatedload sharing occurs when idle processors seek busy
processors. It is now acceptedwisdom that full load balancing is generally not worth doing, as the

Unit 06: CPU Scheduling

Notes

Figure 6.13: Medium term Scheduling

The design of the short-term scheduler is one of the critical areas in the overall system
design,because of the immediate effects on system performance from the user’s point of view. It’s
usuallyone of the trickiest as well: since most processor architectures support their own task
switchingfacilities, the implementation of the process switch mechanism is generally machine-
dependent.The result is that the actual process switch software is usually written in the assembly
languageof a particular machine, whether the operating system is meant to be portable across
differentmachines or not.

6.6 Multiple Processor Scheduling
The development of appropriate scheduling schemes for multiprocessor systems is problematic.Not
only are uni-processor algorithms not directly applicable but some of the apparently
correctmethods are counter intuitive.The scheduling problem for multiprocessor systems can be
generally stated as “How can youexecute a set of tasks T on a set of processors P subject to some set
of optimizing criteria C?”The most common goal of scheduling is to minimize the expected runtime
of a task set. Examplesof other scheduling criteria include minimizing the cost, minimizing
communication delay,giving priority to certain users’ processes, or needs for specialized hardware
devices.The scheduling policy for a multiprocessor system usually embodies a mixture of several of
thesecriteria. Issues in Multiprocessor Scheduling Solutions to the scheduling problem come in
twogeneral forms: algorithms and scheduling systems.Algorithms concentrate on policy while
scheduling systems provide mechanism to implementthe algorithms. Some scheduling systems run
outside the operating system kernel, while othersare part of a tightly-integrated distributed or
parallel operating system.

Distributed systems communicate via message-passing, while parallel systems use sharedmemory.
A task is the unit of computation in computing systems, and a job consists of one ormore
cooperating tasks. Global scheduling involves assigning a task to a particular processorwithin the
system.

Local scheduling determines which of the set of available tasks at a processor runs next on
thatprocessor. Task migration can change the global mapping by moving a task to a new processor.

If you have several jobs, each composed of many tasks, you can either assign several processorsto a
single job, or you can assign several tasks to a single processor. The former is known as
spacesharing, and the latter is called time sharing.Global scheduling is often used to perform load
sharing. Load sharing allows busy processorsto off-load some of their work to less busy processors.
Load balancing is a special case of loadsharing, in which the goal is to keep the load even across all
processors. Sender-initiated loadsharing occurs when busy processors try to find idle processors to
off-load some work. Receiverinitiatedload sharing occurs when idle processors seek busy
processors. It is now acceptedwisdom that full load balancing is generally not worth doing, as the

Lovely Professional University 107

Operating System

Notes

small gain in execution timeover simpler load sharing is more than offset by the effort expended in
maintaining the balancedload as shown in figure 6.14.

As the system runs, new tasks arrive while old tasks complete execution (or are served). If
thearrival rate is greater than the service rate then the system is said to be unstable. If tasks
areserviced as least as fast as they arrive, the system is said to be stable. If the arrival rate is
justslightly less than the service rate for a system, an unstable scheduling policy can push the
systeminto instability. A stable policy will never make a stable system unstable.

Figure 6.14: Multi-processor Queue

6.7 Thread Scheduling
The main approaches of threading scheduling are:

1) Load sharing
2) Gang scheduling
3) Dedicated processor assignment
4) Dynamic scheduling

1. Load Sharing
Processes are not assigned to a particular processor. A global queue of ready threads is
maintainedand each processor, when idle select a thread from the queue.There are three versions of
load sharing are these are:

1) First come first served
2) Smallest number of threads first
3) Preemptive smallest number of threads first
1) First come first served: when a job arrives each of its threads is placed consecutively at theend

of the shared queue. When a processor becomes idle it picks the next ready thread,which it
executes until completion or blocking.

2) Smallest number of threads first: The shared ready queue is organized as a priority queuewith
highest priority given to threads from jobs with the smallest number of unscheduledthreads.
Jobs of equal priority are ordered according to which job arrives first.

3) Preemptive smallest number of threads first: Highest is given to jobs with the smallest

Advantages
Advantages of load sharing are:

1) The load is distributed evenly across the processors assuring that no processor is idle whilework is

available to do.

2) No centralized scheduler is required

Operating System

Notes

small gain in execution timeover simpler load sharing is more than offset by the effort expended in
maintaining the balancedload as shown in figure 6.14.

As the system runs, new tasks arrive while old tasks complete execution (or are served). If
thearrival rate is greater than the service rate then the system is said to be unstable. If tasks
areserviced as least as fast as they arrive, the system is said to be stable. If the arrival rate is
justslightly less than the service rate for a system, an unstable scheduling policy can push the
systeminto instability. A stable policy will never make a stable system unstable.

Figure 6.14: Multi-processor Queue

6.7 Thread Scheduling
The main approaches of threading scheduling are:

1) Load sharing
2) Gang scheduling
3) Dedicated processor assignment
4) Dynamic scheduling

1. Load Sharing
Processes are not assigned to a particular processor. A global queue of ready threads is
maintainedand each processor, when idle select a thread from the queue.There are three versions of
load sharing are these are:

1) First come first served
2) Smallest number of threads first
3) Preemptive smallest number of threads first
1) First come first served: when a job arrives each of its threads is placed consecutively at theend

of the shared queue. When a processor becomes idle it picks the next ready thread,which it
executes until completion or blocking.

2) Smallest number of threads first: The shared ready queue is organized as a priority queuewith
highest priority given to threads from jobs with the smallest number of unscheduledthreads.
Jobs of equal priority are ordered according to which job arrives first.

3) Preemptive smallest number of threads first: Highest is given to jobs with the smallest

Advantages
Advantages of load sharing are:

1) The load is distributed evenly across the processors assuring that no processor is idle whilework is

available to do.

2) No centralized scheduler is required

Operating System

Notes

small gain in execution timeover simpler load sharing is more than offset by the effort expended in
maintaining the balancedload as shown in figure 6.14.

As the system runs, new tasks arrive while old tasks complete execution (or are served). If
thearrival rate is greater than the service rate then the system is said to be unstable. If tasks
areserviced as least as fast as they arrive, the system is said to be stable. If the arrival rate is
justslightly less than the service rate for a system, an unstable scheduling policy can push the
systeminto instability. A stable policy will never make a stable system unstable.

Figure 6.14: Multi-processor Queue

6.7 Thread Scheduling
The main approaches of threading scheduling are:

1) Load sharing
2) Gang scheduling
3) Dedicated processor assignment
4) Dynamic scheduling

1. Load Sharing
Processes are not assigned to a particular processor. A global queue of ready threads is
maintainedand each processor, when idle select a thread from the queue.There are three versions of
load sharing are these are:

1) First come first served
2) Smallest number of threads first
3) Preemptive smallest number of threads first
1) First come first served: when a job arrives each of its threads is placed consecutively at theend

of the shared queue. When a processor becomes idle it picks the next ready thread,which it
executes until completion or blocking.

2) Smallest number of threads first: The shared ready queue is organized as a priority queuewith
highest priority given to threads from jobs with the smallest number of unscheduledthreads.
Jobs of equal priority are ordered according to which job arrives first.

3) Preemptive smallest number of threads first: Highest is given to jobs with the smallest

Advantages
Advantages of load sharing are:

1) The load is distributed evenly across the processors assuring that no processor is idle whilework is

available to do.

2) No centralized scheduler is required

Lovely Professional University108

Unit 06: CPU Scheduling

Notes

3) The global queue can be organized and accessed by using any of the schemes.

Disadvantages

Disadvantages of load sharing are:

1) The central queue copies a region of memory that must be accessed in a manner thatenforces
mutual exclusion.

2) Preempted threads are unlikely to resume execution on the same processor.
3) If all threads are treated as a common pool of threads it is unlikely that all the threads of

aprogram will gain access to processors at the same time.

2. Gang Scheduling

1) If closely related processes execute in parallel, synchronization blocking may be reduced.
2) Set of related threads of scheduled to run on a set of processors.
3) Gang scheduling has three parts.

(a) Groups of related threads are scheduled as a unit, a gang

(b) All members of a gang run simultaneously on different timeshared CPUs.

(c) All gang members start and end their time slices together.

4) The trick that makes gang scheduling work is that all CPU are scheduled synchronously. This
means that time is divided into discrete quanta.

5) An example of how gang scheduling works is given in the Table 5.1. Here you have a
multiprocessor with six CPU being used by five processes, A through E, with a total of 24
ready threads.

Table 6.1: Gang Scheduling

a) During time slot 0, threads A0 through A5 are scheduled and run
b) During time slot 1, threads B0, B1, B2, C0, C1, C2 are scheduled and run
c) During time slot 2, D’s five threads and E0 get to run
d) The remaining six threads belonging to process E run in the time slot 3. Then thecycle

repeats, with slot 4 being the same as slot 0 and so on.
e) Gang scheduling is useful for applications where performance severely degradeswhen any

part of the application is not running.

Unit 06: CPU Scheduling

Notes

3) The global queue can be organized and accessed by using any of the schemes.

Disadvantages

Disadvantages of load sharing are:

1) The central queue copies a region of memory that must be accessed in a manner thatenforces
mutual exclusion.

2) Preempted threads are unlikely to resume execution on the same processor.
3) If all threads are treated as a common pool of threads it is unlikely that all the threads of

aprogram will gain access to processors at the same time.

2. Gang Scheduling

1) If closely related processes execute in parallel, synchronization blocking may be reduced.
2) Set of related threads of scheduled to run on a set of processors.
3) Gang scheduling has three parts.

(a) Groups of related threads are scheduled as a unit, a gang

(b) All members of a gang run simultaneously on different timeshared CPUs.

(c) All gang members start and end their time slices together.

4) The trick that makes gang scheduling work is that all CPU are scheduled synchronously. This
means that time is divided into discrete quanta.

5) An example of how gang scheduling works is given in the Table 5.1. Here you have a
multiprocessor with six CPU being used by five processes, A through E, with a total of 24
ready threads.

Table 6.1: Gang Scheduling

a) During time slot 0, threads A0 through A5 are scheduled and run
b) During time slot 1, threads B0, B1, B2, C0, C1, C2 are scheduled and run
c) During time slot 2, D’s five threads and E0 get to run
d) The remaining six threads belonging to process E run in the time slot 3. Then thecycle

repeats, with slot 4 being the same as slot 0 and so on.
e) Gang scheduling is useful for applications where performance severely degradeswhen any

part of the application is not running.

Unit 06: CPU Scheduling

Notes

3) The global queue can be organized and accessed by using any of the schemes.

Disadvantages

Disadvantages of load sharing are:

1) The central queue copies a region of memory that must be accessed in a manner thatenforces
mutual exclusion.

2) Preempted threads are unlikely to resume execution on the same processor.
3) If all threads are treated as a common pool of threads it is unlikely that all the threads of

aprogram will gain access to processors at the same time.

2. Gang Scheduling

1) If closely related processes execute in parallel, synchronization blocking may be reduced.
2) Set of related threads of scheduled to run on a set of processors.
3) Gang scheduling has three parts.

(a) Groups of related threads are scheduled as a unit, a gang

(b) All members of a gang run simultaneously on different timeshared CPUs.

(c) All gang members start and end their time slices together.

4) The trick that makes gang scheduling work is that all CPU are scheduled synchronously. This
means that time is divided into discrete quanta.

5) An example of how gang scheduling works is given in the Table 5.1. Here you have a
multiprocessor with six CPU being used by five processes, A through E, with a total of 24
ready threads.

Table 6.1: Gang Scheduling

a) During time slot 0, threads A0 through A5 are scheduled and run
b) During time slot 1, threads B0, B1, B2, C0, C1, C2 are scheduled and run
c) During time slot 2, D’s five threads and E0 get to run
d) The remaining six threads belonging to process E run in the time slot 3. Then thecycle

repeats, with slot 4 being the same as slot 0 and so on.
e) Gang scheduling is useful for applications where performance severely degradeswhen any

part of the application is not running.

Lovely Professional University 109

Operating System

Notes

3. Dedicated Processor Assignment

1) When application is scheduled its threads are assigned to a processor.
2) Some processor may be idle and no multiprogramming of processors.
3) Provides implicit scheduling defined by assignment of threads to processors. For theduration

of program execution, each program is allocated a set of processors equal innumber to the
number of threads in the program. Processors are chosen from the availablepool.

4. Dynamic Scheduling

1) Number of threads in a process are altered dynamically by the application.
2) Operating system and the application are involved in making scheduling decisions. TheOS is

responsible for partitioning the processors among the jobs.
3) Operating system adjusts load to improve the use:

a) Assign idle processors.
b) New arrivals may be assigned to a processor that is used by a job currently usingmore

than one processor.
c) Hold request until processor is available
d) New arrivals will be given a processor before existing running applications.

Summary
 The processes in the system can execute concurrently, and they must be created anddeleted

dynamically. Thus, the operating system must provide a mechanism (or facility)for process
creation and termination. Processes can be terminated in one of two waysi.e.Normal
Termination and Abnormal Termination.

 When more than one processes are executing concurrently in the operating system,
then theyare allowed to cooperate (both mutually and destructively) with each
other.

 Those processes are known as cooperating process. Inter-Process Communication
(IPC)is a set of techniques for the exchange of data among two or more threads in
one or moreprocesses.

 When two or more concurrent processes are reading or writing some shared data
and thefinal result depends on who runs precisely when, are called race conditions.

 Critical Section is a part of the program where the shared memory is accessed.
MutualExclusion is a way of making sure that if one process is using a shared
modifiable data,the other processes will be excluded from doing the same thing.
Semaphore is a protectedvariable whose value can be accessed and altered only by
the operations P and V andinitialization operation called ‘Semaphoiinitislize’.

 Message passing is a form of inter process communication used in concurrent
computing,where the communication is made by the sending of messages to
recipients.

Keywords
CPU scheduling: It is the basic of multiprogramming where the task of selecting a waiting
processfrom the ready queue and allocating the CPU to it.

CPU utilization: It is an important criterion in real-time system and multi-programmed
systemswhere the CPU must be as busy as possible in performing different tasks.

Response Time: The amount of time between a request is Submitted and the first response
isproduced is called response time.

Throughput: The number of processes executed in a specified time period is called throughput.

Lovely Professional University110

Unit 06: CPU Scheduling

Notes

Turnaround Time: The amount of time that is needed to execute a process is called turnaroundtime.
It is the actual job time plus the waiting time.

Waiting Time: The amount of time the process has waited is called waiting time. It is
theturnaround time minus actual job time.

Self Assessment

1) A header will contain pointers to the fi rst and last PCBs in the list.
2) scheduling is the basics of multiprogramming.
3) A major task of an operating system is to manage a collection of
4) The CPU is to the selected process by the dispatcher.
5)is a method of CPU scheduling that is a preemptive version of shortest jobnext

scheduling.
6) Ascheduling algorithm will simply put the new process at the head of theready

queue.
7) scheduling is essentially concerned with memory management.
8) The most common goal of scheduling is to of a task set.
9) scheduling involves assigning a task to a particular processor within

thesystem.
10) scheduling is really the easiest way of scheduling.

11) ………….. is a kind of program without any kind of user interaction.
A. User Program
B. Job
C. Process
D. System Program

12) The goal of CPU scheduling is to maximize the………….

A. Turnaround time

B. Waiting time

C. Throughput

D. Response time

13) The time required by the process to complete the execution is called ………?
A. Burst Time
B. Arrival Time
C. Finish Time
D. None of these

14) The condition when a number of programs which can be present in the memory at the same
time is called …………….?

A. Multi-tasking
B. Multi-programming
C. Time sharing
D. Real time

Lovely Professional University 111

Operating System

Notes

15) In a soft real-time system, a process is ………………...

A. required to move between the queues using the concept of aging

B. required to complete a critical task within a guaranteed amount of time

C. the scheduling technique which requires that critical processes receive priority over less

fortunate ones.

D. A technique that does not make use of priority scheduling

Answers for Self Assessment

1. ready-
queue

2. CPU 3. Processes 4. allocated 5. Shortest
remaining
time

6. non
preemptive
priority

7. Medium
term

8. minimize
the
expected
runtime

9. Global 10. Round-
robin

11. B 12. C 13. A 14. B 15. C

Review Questions

1) Suppose that a scheduling algorithm favors those processes that have used the leastprocessor time in the

recent past. Why will this algorithm favor I/O-bound programs andyet not permanently starve CPU-

bound programs?

2) Assume you have the following

a) Suppose a system uses FCFS scheduling. Create a Gantt chart illustrating theexecution of
these processes?

b) What is the turnaround time for process p3?
c) What is the average wait time for the processes?

3) Suppose a new process in a system arrives at an average of six processes per minute andeach
such process requires an average of 8 seconds of service time. Estimate the fraction oftime the
CPU is busy in a system with a single processor.

4) A CPU scheduling algorithm determines an order for the execution of its scheduledprocesses.
Given n processes to be scheduled on one processor, how many possible differentschedules are
there? Give a formula in terms of n.

5) Many CPU-scheduling algorithms are parameterized. For example, the RR algorithmrequires a
parameter to indicate the time slice. Multilevel feedback queues requireparameters to defi ne
the number of queues, the scheduling algorithms for each queue, thecriteria used to move
processes between queues, and so on.

Operating System

Notes

15) In a soft real-time system, a process is ………………...

A. required to move between the queues using the concept of aging

B. required to complete a critical task within a guaranteed amount of time

C. the scheduling technique which requires that critical processes receive priority over less

fortunate ones.

D. A technique that does not make use of priority scheduling

Answers for Self Assessment

1. ready-
queue

2. CPU 3. Processes 4. allocated 5. Shortest
remaining
time

6. non
preemptive
priority

7. Medium
term

8. minimize
the
expected
runtime

9. Global 10. Round-
robin

11. B 12. C 13. A 14. B 15. C

Review Questions

1) Suppose that a scheduling algorithm favors those processes that have used the leastprocessor time in the

recent past. Why will this algorithm favor I/O-bound programs andyet not permanently starve CPU-

bound programs?

2) Assume you have the following

a) Suppose a system uses FCFS scheduling. Create a Gantt chart illustrating theexecution of
these processes?

b) What is the turnaround time for process p3?
c) What is the average wait time for the processes?

3) Suppose a new process in a system arrives at an average of six processes per minute andeach
such process requires an average of 8 seconds of service time. Estimate the fraction oftime the
CPU is busy in a system with a single processor.

4) A CPU scheduling algorithm determines an order for the execution of its scheduledprocesses.
Given n processes to be scheduled on one processor, how many possible differentschedules are
there? Give a formula in terms of n.

5) Many CPU-scheduling algorithms are parameterized. For example, the RR algorithmrequires a
parameter to indicate the time slice. Multilevel feedback queues requireparameters to defi ne
the number of queues, the scheduling algorithms for each queue, thecriteria used to move
processes between queues, and so on.

Operating System

Notes

15) In a soft real-time system, a process is ………………...

A. required to move between the queues using the concept of aging

B. required to complete a critical task within a guaranteed amount of time

C. the scheduling technique which requires that critical processes receive priority over less

fortunate ones.

D. A technique that does not make use of priority scheduling

Answers for Self Assessment

1. ready-
queue

2. CPU 3. Processes 4. allocated 5. Shortest
remaining
time

6. non
preemptive
priority

7. Medium
term

8. minimize
the
expected
runtime

9. Global 10. Round-
robin

11. B 12. C 13. A 14. B 15. C

Review Questions

1) Suppose that a scheduling algorithm favors those processes that have used the leastprocessor time in the

recent past. Why will this algorithm favor I/O-bound programs andyet not permanently starve CPU-

bound programs?

2) Assume you have the following

a) Suppose a system uses FCFS scheduling. Create a Gantt chart illustrating theexecution of
these processes?

b) What is the turnaround time for process p3?
c) What is the average wait time for the processes?

3) Suppose a new process in a system arrives at an average of six processes per minute andeach
such process requires an average of 8 seconds of service time. Estimate the fraction oftime the
CPU is busy in a system with a single processor.

4) A CPU scheduling algorithm determines an order for the execution of its scheduledprocesses.
Given n processes to be scheduled on one processor, how many possible differentschedules are
there? Give a formula in terms of n.

5) Many CPU-scheduling algorithms are parameterized. For example, the RR algorithmrequires a
parameter to indicate the time slice. Multilevel feedback queues requireparameters to defi ne
the number of queues, the scheduling algorithms for each queue, thecriteria used to move
processes between queues, and so on.

Lovely Professional University112

Unit 06: CPU Scheduling

Notes

These algorithms are a really sets of algorithms (for example, the set of RR algorithmsfor all
time slices, and so on). One set of algorithms may include another (for example, theFCFS
algorithm is the RR algorithm with an infinite time quantum). What (if any) relationholds
between the following pairs of sets of algorithms?

a) Priority and SJF
b) Multilevel Feedback Queues and FCFS
c) Priority and FCFS
d) RR and SJF

6) Distinguish between long term and short-term scheduling.
7) Consider the following set of processes, with the length of the CPU burst given inmilliseconds.

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, non-preemptive priority (a smallerpriority number implies a
higher priority), and RR (quantum = 1).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

8) Consider the following set of processes, with the length of the CPU burst and arrival timegiven
in milliseconds.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, (the algorithm can look into the futureand wait for a
shorter process that will arrive).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

9) Explain the differences in the degree to which the following scheduling algorithmsdiscriminate
in favor of short processes:

a) First Come First Served
b) Round Robin
c) Multilevel Feedback Queues

10. Write short notes on:

a) Waiting time
b) Response time
c) Throughput

Unit 06: CPU Scheduling

Notes

These algorithms are a really sets of algorithms (for example, the set of RR algorithmsfor all
time slices, and so on). One set of algorithms may include another (for example, theFCFS
algorithm is the RR algorithm with an infinite time quantum). What (if any) relationholds
between the following pairs of sets of algorithms?

a) Priority and SJF
b) Multilevel Feedback Queues and FCFS
c) Priority and FCFS
d) RR and SJF

6) Distinguish between long term and short-term scheduling.
7) Consider the following set of processes, with the length of the CPU burst given inmilliseconds.

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, non-preemptive priority (a smallerpriority number implies a
higher priority), and RR (quantum = 1).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

8) Consider the following set of processes, with the length of the CPU burst and arrival timegiven
in milliseconds.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, (the algorithm can look into the futureand wait for a
shorter process that will arrive).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

9) Explain the differences in the degree to which the following scheduling algorithmsdiscriminate
in favor of short processes:

a) First Come First Served
b) Round Robin
c) Multilevel Feedback Queues

10. Write short notes on:

a) Waiting time
b) Response time
c) Throughput

Unit 06: CPU Scheduling

Notes

These algorithms are a really sets of algorithms (for example, the set of RR algorithmsfor all
time slices, and so on). One set of algorithms may include another (for example, theFCFS
algorithm is the RR algorithm with an infinite time quantum). What (if any) relationholds
between the following pairs of sets of algorithms?

a) Priority and SJF
b) Multilevel Feedback Queues and FCFS
c) Priority and FCFS
d) RR and SJF

6) Distinguish between long term and short-term scheduling.
7) Consider the following set of processes, with the length of the CPU burst given inmilliseconds.

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, non-preemptive priority (a smallerpriority number implies a
higher priority), and RR (quantum = 1).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

8) Consider the following set of processes, with the length of the CPU burst and arrival timegiven
in milliseconds.

a) Draw four Gantt charts that illustrate the execution of these processes using thefollowing
scheduling algorithms: FCFS, SJF, (the algorithm can look into the futureand wait for a
shorter process that will arrive).

b) What is the turnaround time of each process for each of the scheduling algorithms inpart a?
c) What is the waiting time of each process for each of the scheduling algorithms in parta?

9) Explain the differences in the degree to which the following scheduling algorithmsdiscriminate
in favor of short processes:

a) First Come First Served
b) Round Robin
c) Multilevel Feedback Queues

10. Write short notes on:

a) Waiting time
b) Response time
c) Throughput

Lovely Professional University 113

Operating System

Notes

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,
Prentice Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University114

Unit 07: Scheduling Algorithms

Notes

Unit 07: Scheduling Algorithms

CONTENTS

Objectives

Introduction

7.1 Scheduling Algorithms

7.2 First-Come, First-Served (FCFS)

7.3 Shortest Remaining Time (SRT)

7.4 Priority Scheduling

7.5 Round-Robin (RR)

7.6 Multilevel Feedback Queue Scheduling

7.7 Real-Time Scheduling

7.8 Earliest Deadline First

7.9 Rate Monotonic

7.10 Operating Systems and Scheduling Types

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Describe CPU scheduling
 Explain CPU scheduling basic criteria
 Know scheduling algorithms
 Describe types of scheduling
 Explain multiple processor scheduling
 Define thread scheduling

Introduction
CPU scheduling is the basics of multiprogramming. By switching the CPU among severalprocesses,
the operating systems can make the computer more productive. The objective ofmultiprogramming
is to have some process running at all times, in order to maximize CPUutilization.

7.1 Scheduling Algorithms
Most Operating Systems today use very similar CPU time scheduling algorithms, all based on the
same basic ideas, but with Operating System-specific adaptations and extensions. What follows is a
description of those rough basic ideas.

Lovely Professional University 115

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

What should be remarked is that this algorithm is not the best algorithm that you can imagine, but
it is, proven mathematically and by experience in the early days of OS programming (sixties and
seventies), the algorithm that is the closest to the ‘best’ algorithm. Perhaps when computers get
more powerful someday then we might implement the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-purpose
Operating Systems or systems, and some real-time systems will use a very different algorithm.

CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the
CPU to it. The CPU is allocated to the selected process by the dispatcher.

A CPU scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

7.2 First-Come, First-Served (FCFS)
This is a non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes in the
order in which they request the processor. The process that requests the CPU first is allocated the
CPU first. When a process comes in, add its PCB to the tail of ready queue. When running process
terminates, dequeue the process (PCB) at head of ready queue and run it.

Figure: FCFS Scheduling

Advantage

 Very simple

Disadvantages

1. Long average and worst-case waiting times

2. Poor dynamic behavior (convoy effect - short process behind long process)

Operating System

Notes

What should be remarked is that this algorithm is not the best algorithm that you can imagine, but
it is, proven mathematically and by experience in the early days of OS programming (sixties and
seventies), the algorithm that is the closest to the ‘best’ algorithm. Perhaps when computers get
more powerful someday then we might implement the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-purpose
Operating Systems or systems, and some real-time systems will use a very different algorithm.

CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the
CPU to it. The CPU is allocated to the selected process by the dispatcher.

A CPU scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

7.2 First-Come, First-Served (FCFS)
This is a non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes in the
order in which they request the processor. The process that requests the CPU first is allocated the
CPU first. When a process comes in, add its PCB to the tail of ready queue. When running process
terminates, dequeue the process (PCB) at head of ready queue and run it.

Figure: FCFS Scheduling

Advantage

 Very simple

Disadvantages

1. Long average and worst-case waiting times

2. Poor dynamic behavior (convoy effect - short process behind long process)

Operating System

Notes

What should be remarked is that this algorithm is not the best algorithm that you can imagine, but
it is, proven mathematically and by experience in the early days of OS programming (sixties and
seventies), the algorithm that is the closest to the ‘best’ algorithm. Perhaps when computers get
more powerful someday then we might implement the ideal CPU time scheduler.

Another remark is that this algorithm is designed for general-purpose computers. Special-purpose
Operating Systems or systems, and some real-time systems will use a very different algorithm.

CPU scheduling is the task of selecting a waiting process from the ready queue and allocating the
CPU to it. The CPU is allocated to the selected process by the dispatcher.

A CPU scheduling algorithm should try to maximize the following:

1. CPU utilization
2. Throughput

A CPU scheduling algorithm should try to minimize the following:

1. Turnaround time
2. Waiting time
3. Response time

Different algorithms are used for CPU scheduling.

7.2 First-Come, First-Served (FCFS)
This is a non-Preemptive scheduling algorithm. FCFS strategy assigns priority to processes in the
order in which they request the processor. The process that requests the CPU first is allocated the
CPU first. When a process comes in, add its PCB to the tail of ready queue. When running process
terminates, dequeue the process (PCB) at head of ready queue and run it.

Figure: FCFS Scheduling

Advantage

 Very simple

Disadvantages

1. Long average and worst-case waiting times

2. Poor dynamic behavior (convoy effect - short process behind long process)

Lovely Professional University116

Unit 07: Scheduling Algorithms

Notes

Figure: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Example:

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

7.3 Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only takes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest

Unit 07: Scheduling Algorithms

Notes

Figure: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Example:

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

7.3 Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only takes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest

Unit 07: Scheduling Algorithms

Notes

Figure: Convey Effects

Example:

Process Burst Time

P1 24

P2 3

P3 3

Suppose that the processes arrive in the order: P1, P2, P3. The Gantt chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order P2, P3, P1. The Gantt chart for the schedule is:

Example:

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

1. SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

2. SRT (preemptive SJB)

Average waiting time = (9 + 1 + 0 +2)/4 = 3

7.3 Shortest Remaining Time (SRT)
Shortest remaining time is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling. In this scheduling algorithm, the process with the smallest amount of time
remaining until completion is selected to execute. Since the currently executing process is the one
with the shortest amount of time remaining by definition, and since that time should only reduce as
execution progresses, processes will always run until they complete or a new process is added that
requires a smaller amount of time.

Shortest remaining time is advantageous because short processes are handled very quickly. The
system also requires very little overhead since it only takes a decision when a process completes or
a new process is added, and when a new process is added the algorithm only needs to compare the
currently executing process with the new process, ignoring all other processes currently waiting to
execute. However, it has the potential for process starvation for processes which will require a long
time to complete if short processes are continually added, though this threat can be minimal when
process times follow a heavy-tailed distribution. Like shortest job first scheduling, shortest

Lovely Professional University 117

Operating System

Notes

remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

7.4 Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling algorithm will
preempt the CPU if the priority of the newly arrived process is higher than the priority of the currently
running process. A non-preemptive priority scheduling algorithm will simply put the new process at the head
of the ready queue. A major problem with priority scheduling algorithms is indefinite blocking or starvation.
This can be solved by a technique called aging wherein I gradually increase the priority of a long waiting
process.

Figure 7.2: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The main
disadvantage is the lower priority jobs will starve.

Example:
Process Burst Time Arrival Priority

P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Gantt Chart

Operating System

Notes

remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

7.4 Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling algorithm will
preempt the CPU if the priority of the newly arrived process is higher than the priority of the currently
running process. A non-preemptive priority scheduling algorithm will simply put the new process at the head
of the ready queue. A major problem with priority scheduling algorithms is indefinite blocking or starvation.
This can be solved by a technique called aging wherein I gradually increase the priority of a long waiting
process.

Figure 7.2: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The main
disadvantage is the lower priority jobs will starve.

Example:
Process Burst Time Arrival Priority

P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Gantt Chart

Operating System

Notes

remaining time scheduling is rarely used outside of specialized environments because it requires
accurate estimations of the runtime of all processes that are waiting to execute.

7.4 Priority Scheduling
A priority is associated with each process, and the CPU is allocated to the process with the highest
priority. Priority can be defined either internally or externally. Internally defined priorities use
some measurable quantities to compute the priority of a process.

Example: Time limits, memory requirements, no. of open fi les, ratio of average I/O burst
time to average CPU burst time etc. external priorities are set by criteria that are external
to the OS, such as the importance of the process, the type and amount of funds being paid
for computer use, the department sponsoring work and other often political factors.

Priority scheduling can be preemptive or non-preemptive. A preemptive priority scheduling algorithm will
preempt the CPU if the priority of the newly arrived process is higher than the priority of the currently
running process. A non-preemptive priority scheduling algorithm will simply put the new process at the head
of the ready queue. A major problem with priority scheduling algorithms is indefinite blocking or starvation.
This can be solved by a technique called aging wherein I gradually increase the priority of a long waiting
process.

Figure 7.2: Priority Scheduling

Advantages and Disadvantages

The main advantage is the important jobs can be finished earlier as much as possible. The main
disadvantage is the lower priority jobs will starve.

Example:
Process Burst Time Arrival Priority

P1 10 0 3
P2 1 0 1
P3 2 0 4
P4 1 0 5
P5 5 0 2

Gantt Chart

Lovely Professional University118

Unit 07: Scheduling Algorithms

Notes

Average waiting time: (0+1+6+16+18)/5 = 8.2

7.5 Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Figure: Round Robin Scheduling

Advantages
Simple, low overhead, works for interactive systems
Disadvantages
1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Unit 07: Scheduling Algorithms

Notes

Average waiting time: (0+1+6+16+18)/5 = 8.2

7.5 Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Figure: Round Robin Scheduling

Advantages
Simple, low overhead, works for interactive systems
Disadvantages
1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Unit 07: Scheduling Algorithms

Notes

Average waiting time: (0+1+6+16+18)/5 = 8.2

7.5 Round-Robin (RR)
Round-robin scheduling is really the easiest way of scheduling. All processes form a circulararray
and the scheduler gives control to each process at a time. It is off course very easy toimplement and
causes almost no overhead, when compared to all other algorithms. But responsetime is very low
for the processes that need it. Of course, it is not the algorithm I want, but it canbe used
eventually.This algorithm is not the best at all for general-purpose Operating Systems, but it is
useful for batchprocessingOperating Systems, in which all jobs have the same priority, and in
which responsetime is of minor or no importance. And this priority leads us to the next way of
scheduling.

Figure: Round Robin Scheduling

Advantages
Simple, low overhead, works for interactive systems
Disadvantages
1. If quantum is too small, too much time wasted in context switching

2. If too large (i.e., longer than mean CPU burst), approaches FCFS

Example of RR with Time Quantum = 20

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

Process Burst Time

P1 53

P2 17

P3 68

P4 24

Lovely Professional University 119

Operating System

Notes

Turnaround Time Varies with the Time Quantum

Figure: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs
arriving in the order listed here:

i T(pi) Arrival Time

0 80 0

1 20 10

2 10 10

3 20 80

4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:

Operating System

Notes

Turnaround Time Varies with the Time Quantum

Figure: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs
arriving in the order listed here:

i T(pi) Arrival Time

0 80 0

1 20 10

2 10 10

3 20 80

4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:

Operating System

Notes

Turnaround Time Varies with the Time Quantum

Figure: Variation of Turnaround Time with the Time Quantum

Example: Assume you have the following jobs to execute with one processor, with the jobs
arriving in the order listed here:

i T(pi) Arrival Time

0 80 0

1 20 10

2 10 10

3 20 80

4 50 85

1. Suppose a system uses RR scheduling with a quantum of 15. Create a Gantt chart illustrating the

execution of these processes?

2. What is the turnaround time for process p3?
3. What is the average wait time for the processes?

Solution:

Lovely Professional University120

Unit 07: Scheduling Algorithms

Notes

1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt chart
is as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80

= 80 sec.

3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

7.6 Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue.

Figure 5.6: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Unit 07: Scheduling Algorithms

Notes

1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt chart
is as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80

= 80 sec.

3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

7.6 Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue.

Figure 5.6: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Unit 07: Scheduling Algorithms

Notes

1. As the Round-Robin Scheduling follows a circular queue implementation, the Gantt chart
is as follows:

P0 P1 P2 P0 P1 P2 P0 P1 P3 p4 P0 P3 P4 P0 P4

0 15 30 45 60 75 85 100 110 125 140 155 160 175 190 205

2. The turnaround time for process P3 is =160-80

= 80 sec.

3. Average waiting time:

Waiting time for process p0 = 0 sec.

Waiting time for process p1 = 5 sec.

Waiting time for process p2 = 20 sec.

Waiting time for process p3 = 30 sec.

Waiting time for process p4 = 40 sec.

Therefore, the average waiting time is (0+5+20+30+40)/5 = 22 sec.

7.6 Multilevel Feedback Queue Scheduling
In this CPU schedule a process is allowed to move between queues. If a process uses too muchCPU
time, it will be moved to a lower priority queue. This scheme leaves I/O bound andinteractive
processes in the higher priority queues. Similarly, a process that waits too long in alower priority
queue may be moved to a higher priority queue.

Figure 5.6: Multi-level Feedback Queue Scheduling

Example: Multilevel Feedback Queue

Three Queues
1. Q0–RR with time quantum 8 milliseconds
2. Q1–RR time quantum 16 milliseconds
3. Q2–FCFS

Lovely Professional University 121

Operating System

Notes

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure: Scheduling Queues

7.7 Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.

One of the most important responsibilities of a real-time system is to schedule tasks accordingto
their deadlines in order to guarantee that all real-time activities achieve the required servicelevel.
Many scheduling algorithms exist for a variety of task models, but fundamental to many ofthese
are the earliest deadline first (EDF) and rate-monotonic (RM) scheduling policies.A schedule for a
set of tasks is said to be feasible if a proof exists that every task instance in the setwill complete
processing by its associated deadline. Also, a task set is schedulable if there existsa feasible
schedule for the set.The utilization associated with a given task schedule and resource (i.e. CPU) is
the fraction oftime that the resource is allocated over the time that the scheduler is active.

Figure: Real Time Scheduling

Operating System

Notes

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure: Scheduling Queues

7.7 Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.

One of the most important responsibilities of a real-time system is to schedule tasks accordingto
their deadlines in order to guarantee that all real-time activities achieve the required servicelevel.
Many scheduling algorithms exist for a variety of task models, but fundamental to many ofthese
are the earliest deadline first (EDF) and rate-monotonic (RM) scheduling policies.A schedule for a
set of tasks is said to be feasible if a proof exists that every task instance in the setwill complete
processing by its associated deadline. Also, a task set is schedulable if there existsa feasible
schedule for the set.The utilization associated with a given task schedule and resource (i.e. CPU) is
the fraction oftime that the resource is allocated over the time that the scheduler is active.

Figure: Real Time Scheduling

Operating System

Notes

Scheduling
1. A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8

milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1.
2. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not

complete, it is preempted and moved to queue Q2.

Figure: Scheduling Queues

7.7 Real-Time Scheduling
Real-time systems design is an increasingly important topic in systems research communitiesas
well as the software industries. Real-time applications and their requirements can be foundin
almost every area of operating systems and networking research. An incomplete list of
suchdomains includes distributed systems, embedded systems, network protocol processing,
aircraftdesign, spacecraft design..., and the list goes on.

One of the most important responsibilities of a real-time system is to schedule tasks accordingto
their deadlines in order to guarantee that all real-time activities achieve the required servicelevel.
Many scheduling algorithms exist for a variety of task models, but fundamental to many ofthese
are the earliest deadline first (EDF) and rate-monotonic (RM) scheduling policies.A schedule for a
set of tasks is said to be feasible if a proof exists that every task instance in the setwill complete
processing by its associated deadline. Also, a task set is schedulable if there existsa feasible
schedule for the set.The utilization associated with a given task schedule and resource (i.e. CPU) is
the fraction oftime that the resource is allocated over the time that the scheduler is active.

Figure: Real Time Scheduling

Lovely Professional University122

Unit 07: Scheduling Algorithms

Notes

7.8 Earliest Deadline First
The EDF scheduling algorithm is a preemptive and dynamic priority scheduler that executes tasks
in order of the time remaining before their corresponding deadlines. Tasks with the least time
remaining before their deadline are executed before tasks with more remaining time. At each
invocation of the scheduler, the remaining time is calculated for each waiting task, and the task
with the least remaining time is dispatched. If a task set is schedulable, the EDF algorithm results in
a schedule that achieves optimal resource utilization. However, EDF is shown to be unpredictable if
the required utilization exceeds 100%, known as an overload condition. EDF is useful for
scheduling periodic tasks, since the dynamic priorities of tasks do not depend on the determinism
of request periods.

7.9 Rate Monotonic
Under the static-priority rate monotonic scheduling algorithm, tasks are ordered according to the
value of their request period, T. Tasks with shorter request periods are assigned higher priority
than those with longer periods. Liu and Layland proved that a feasible schedule is found under rate
monotonic scheduling if the total requested utilization is less than or equal to ln, which is
approximately 69.3%. RM scheduling is optimal with respect to maximum utilization over all static-
priority schedulers. However, this scheduling policy only supports tasks that fi t the periodic task
model, since priorities depend upon request periods. Because the request times of a periodic tasks
are not always predictable, these tasks are not supported by the RM algorithm, but are instead
typically scheduled using a dynamic priority scheduler such as EDF.

Characteristics of Scheduling Algorithms

FCFS Round
Robin

SJF SRT HRRN Feedback

Selection

Function
max[w] Constant Min[s] min[s-e] max[(w+s)/s] see text

Decision

Mode
Non-
preemptive

Preemptive Non-
preemptive

preemptive Non-preemptive Preemptive at
time quantum

Throughput
N/A

low for small

quantum
High High High N/A

Response
Time May be high

good for short
processes good for short

processes
Good Good N/A

Overhead
Minimal Low Can be high Can be high Can be high Can be high

Effect on
Processes

Starvation
No No Possible Possible No Possible

w = time spent in the system so far, waiting and executing

e = time spent in execution so far.

s = total service time required by the process, including e.

7.10 Operating Systems and Scheduling Types

1) Solaris 2 uses priority-based process scheduling.
2) Windows 2000 uses a priority-based preemptive scheduling algorithm.

Lovely Professional University 123

Operating System

Notes

3) Linux provides two separate process-scheduling algorithms: one is designed for timesharing
processes for fair preemptive scheduling among multiple processes; the other designed for
real-time tasks:
a) For processes in the time-sharing class Linux uses a prioritized credit-basedalgorithm

b) Real-time scheduling: Linux implements two real-time scheduling classes namely FCFS (First

come first serve) and RR (Round Robin)

Summary

 Thread is a single sequence stream within in a process. In this method, the kernel
knowsabout and manages the threads.

 Context Switch ITT-VIS has added support for using threads internally in IDL to
acceleratespecific numerical computations on multi-processor systems.

 The concept of multi-threading involves an operating system that is multi-thread
capableallowing programs to split tasks between multiple execution threads.

Keywords
Process Management: Process management is a series of techniques, skills, tools, and
methodsused to control and manage a business process within a large system or organization.

Threads: A thread is a single sequence stream within in a process.

Process: A process is an instance of a computer program that is being executed. It contains
theprogram code and its current activity. Depending on the operating system (OS).

Kernel: The kernel is the central component of most computer operating systems; it is a
bridgebetween applications and the actual data processing done at the hardware level.

Context Switch: A context switch is the computing process of storing and restoring state
(context)of a CPU so that execution can be resumed from the same point at a later time.

Multitasking: Multitasking is the ability of an operating system to execute more than
oneprogram simultaneously.

The Cost of Context Switching: Context switching represents a substantial cost to the systemin
terms of CPU time and can, in fact, be the most-costly operation on an operating system.

BIOS: The BIOS software is built into the PC, and is the first code run by a PC when
poweredon (‘boot firmware’). The primary function of the BIOS is to load and start an
operatingsystem.

CPU Scheduling: CPU scheduling algorithms have different properties, and the choice of
aparticular algorithm may favor one class of processes over another.

Scheduling Algorithm: A scheduling algorithm is the method by which threads, processes or
dataflows are given access to system resources (e.g. processor time, communications
bandwidth).

Self Assessment

1. A thread
A. is a lightweight process where the context switching is low.
B. is a lightweight process where the context switching is high.
C. is used to speed up paging.
D. none of the above.

2. Process is

Lovely Professional University124

Unit 07: Scheduling Algorithms

Notes

A. program in High level language kept on disk

B. contents of main memory
C. a program in execution
D. a job in secondary memory

3. Fork is

A. the dispatching of a task
B. the creation of a new job
C. the creation of a new process
D. increasing the priority of a task

4. The components that process data are located in the:
A. input devices

B. output devices

C. system unit

D. storage component

5. System software is the set of programs that enables your computer’s hardware devices and
....................... software to work together.

A. management
B. processing
C. utility
D. application

6. is a method of CPU scheduling that is a preemptive version of shortest job
next scheduling.

A. Shortest remaining time
B. Round robin
C. Multilevel queue
D. First come first serve

7. A scheduling algorithm will simply put the new process at the head of the
ready queue.

A. preemptive
B. non-preemptive priority
C. preemptive priority
D. non-preemptive and non-priority

8. scheduling is essentially concerned with memory management.
A. Medium term
B. Short term
C. Long term
D. End term

Lovely Professional University 125

Operating System

Notes

9. The most common goal of scheduling is to of a task set.

A. maximize the expected runtime

B. minimize the expected runtime

C. eliminate the runtime

D. estimate the expected runtime

10. scheduling involves assigning a task to a particular processor within the
system.

A. Global

B. Local

C. Multilevel queue

D. Priority

11. The number of processes completed per unit time are known as
12. in the sum of periods spent waiting in the ready queue.
13. A process is one which is repeatedly executed once in each period.
14. On-line scheduling algorithms does not compute a schedule in real-time as processesarrive.
A. True
B. False

15. Runnable state in a thread can be thought of as a default state.
A. True
B. False

Answers for Self Assessment

1. A 2. C 3. C 4. C 5. D

6. A 7. B 8. A 9. B 10. A

11. throughput 12. Waiting
time

13. periodic 14. B 15. A

Review Questions

1. What is a thread? Describe the differences among short-term, medium-term, and long-
termscheduling.

2. Provide two programming examples in which multi-threading does not provide
betterperformance than a single-threaded solution.

3. Describe the actions taken by a thread library to context switch between user-level threads.
4. Under what circumstances does a multithreaded solution using multiple kernel

threadsprovide better performance than a single-threaded solution on a single-processor
system?

Lovely Professional University126

Unit 07: Scheduling Algorithms

Notes

5. Which of the following components of program state are shared across threads in a
multithreadedprocess?

(a) Register values (b) Heap memory
(c) Global variables (d) Stack memory
6. Can a multi-threaded solution using multiple user-level threads achieve better

performanceon multi-processor system than on a single-processor system?
7. Consider multi-processor system and a multi-threaded program written using the many-to-

many threading model. Let the number of user-level threads in the program be morethan
the number of processors in the system. Discuss the performance implications of
thefollowing scenarios.

a) The number of kernel threads allocated to the program is less than the number ofprocessors.
b) The number of kernel threads allocated to the program is equal to the number ofprocessors.
c) The number of kernel threads allocated to the program is greater than the number

ofprocessors but less than the number of user level threads.
8. Write a multi-threaded Java, Pthreads, or Win32 program that outputs prime numbers.This

program should work as follows: The user will run the program and will enter anumber on
the command line. The program will then create a separate thread that outputsall the prime
numbers less than or equal to the number entered by the user.

9. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-
boundprograms?

10. Discuss how the following pairs of scheduling criteria conflict in certain settings.
a) CPU utilization and response time
b) Average turnaround time and maximum waiting time
c) I/O device utilization and CPU utilization
11. Which of the following scheduling algorithms could result in starvation?
a) First-come, first-served
b) Shortest job first
c) Round robin
12. Consider a system implementing multilevel queue scheduling. What strategy can acomputer

user employ to maximize the amount of CPU time allocated to the user’s process?
13. Explain the differences in the degree to which the following scheduling

algorithmsdiscriminate in favor of short processes:
a) FCFS
b) RR
c) Multilevel feedback queues
14. Using the Windows XP scheduling algorithm, what is the numeric priority of a thread forthe

following scenarios?
a) A thread in the REALTIME PRIORITY CLASS with a relative priority of HIGHEST.
b) A thread in the NORMAL PRIORITY CLASS with a relative priority of NORMAL.
c) A thread in the HIGH PRIORITY CLASS with a relative priority of ABOVE NORMAL.
15. Consider the scheduling algorithm in the Solaris operating system for time sharing threads:
a) What is the time quantum (in milliseconds) for a thread with priority 10? With priority55?
b) Assume a thread with priority 35 has used its entire time quantum without blocking. What

new priority will the scheduler assign this thread?
c) Assume a thread with priority 35 blocks for I/O before its time quantum has expired.What

new priority will the scheduler assign this thread?

Lovely Professional University 127

Operating System

Notes

Further Readings
Introduction to Operating Design and Implementation, by Michael Kifer, ScoottA.
Smolka.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull.

Web Links
wiley.com/coolege.silberschatz

www.en.wikipedia.org

www.web-source.net

Operating System

Notes

Further Readings
Introduction to Operating Design and Implementation, by Michael Kifer, ScoottA.
Smolka.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull.

Web Links
wiley.com/coolege.silberschatz

www.en.wikipedia.org

www.web-source.net

Operating System

Notes

Further Readings
Introduction to Operating Design and Implementation, by Michael Kifer, ScoottA.
Smolka.

Operating Systems, by Andrew Tanebaum, Albert S. Woodhull.

Web Links
wiley.com/coolege.silberschatz

www.en.wikipedia.org

www.web-source.net

Lovely Professional University128

Unit 08: Process Synchronization

Notes

Unit 08: Process Synchronization

CONTENTS

Objectives

Introduction

8.1 Synchronization Process

8.2 Critical Section Problem

8.3 Semaphores

8.4 Types of Semaphore

8.5 What is Mutex?

8.6 Monitors

8.7 Schedule

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 learn the concept of process synchronization
 understand the problems that arose due to multiple process executions
 explore the various categorizations of processes based on synchronization
 understand the critical section problem
 learn the solution to the critical section problem
 identify the conditions that should be satisfied to solve the critical section problem
 understand the race condition
 understand the critical section problem
 identify the need and use of semaphores
 learn the difference between semaphores and mutex
 learn the basic concept of serializability
 understand the different types of schedules
 learn the benefits of serializable schedule

Introduction
Modern operating systems, such as Unix, execute processes concurrently. Although there is asingle
Central Processor (CPU), which execute the instructions of only one program at a time,
theoperating system rapidly switches the processor between different processes (usually allowing
asingle process a few hundred microseconds of CPU time before replacing it with another
process.)Some of these resources (such as memory) are simultaneously shared by all processes.
Suchresources are being used in parallel between all running processes on the system. Other

Lovely Professional University 129

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

resourcesmust be used by one process at a time, so must be carefully managed so that all processes
get accessto the resource. Such resources are being used in concurrently between all running
processes onthe system. The most important example of a shared resource is the CPU, although
most of theI/O devices are also shared. For many of these shared resources the operating system
distributesthe time a process requires of the resource to ensure reasonable access for all processes.
Considerthe CPU, the operating system has a clock which sets an alarm every few hundred
microseconds.At this time the operating system stops the CPU, saves all the relevant information
that is neededto re-start the CPU exactly where it last left off (this will include saving the current
instructionbeing executed, the state of the memory in the CPUs registers, and other data), and
removesthe process from the use of the CPU. The operating system then selects another process to
run,returns the state of the CPU to what it was when it last ran this new process, and starts the
CPUagain. Let’s take a moment to see how the operating system manages this.In this unit, we shall
discuss about the deadlock. A deadlock is a situation wherein two or morecompeting actions are
waiting for the other to finish, and thus neither ever does. It is often seenin a paradox like ‘the
chicken or the egg’.This situation may be likened to two people who are drawing diagrams, with
only one pencil andone ruler between them. If one person takes the pencil and the other takes the
ruler, a deadlockoccurs when the person with the pencil needs the ruler and the person with the
ruler needs thepencil, before he can give up the ruler. Both requests can’t be satisfied, so a deadlock
occurs.

8.1 Synchronization Process
Process Synchronization is mainly needed in a multi-process system when multiple processes are
running together, and more than one processes try to gain access to the same shared resource or
any data at the same time.Process Synchronization is the task of coordinating the execution of
processes in a way that no two processes can have access to the same shared data and
resources.Process Scheduling is an OS task that schedules processes of different states like ready,
waiting, and running.It is a procedure that is involved in order to preserve the appropriate order of
execution of cooperative processes.In order to synchronize the processes, there are various
synchronization mechanisms.Process scheduling allows OS to allocate a time interval of CPU
execution for each process. Another important reason for using a process scheduling system is that
it keeps the CPU busy all the time. This allows you to get the minimum response time for
programs.It is specially needed in a multi-process system when multiple processes are running
together, and more than one processes try to gain access to the same shared resource or data at the
same time.Concurrent access to shared data may result in data inconsistency.So, the change made
by one process not necessarily reflected when other processes accessed the same shared data. To
avoid this type of inconsistency of data, the processes need to be synchronized with each
other.Maintaining data consistency requires mechanisms to ensure the orderly execution of
cooperating processes.It is the task phenomenon of coordinating the execution of processes in such
a way that no two processes can have access to the same shared data and resources.It is a procedure
that is involved in order to preserve the appropriate order of execution of cooperative processes.In
order to synchronize the processes, there are various synchronization mechanisms.Process
Synchronization is mainly needed in a multi-process system when multiple processes are running
together, and more than one processes try to gain access to the same shared resource or any data at
the same time.Process Synchronization was introduced to handle problems that arose while
multiple process executions.

Process is categorized into two types on the basis of synchronization and these are given below:

1) Independent Process

2) Cooperative Process

1) Independent Process - Two processes are said to be independent if the execution of one process
does not affect the execution of another process.

2) Cooperative Process - Two processes are said to be cooperative if the execution of one process
affects the execution of another process. These processes need to be synchronized so that the
order of execution can be guaranteed.

Lovely Professional University130

Unit 08: Process Synchronization

Notes

How Process Synchronization Works?
Process synchronization refers to the idea that multiple processes are to join up or handshakeat a
certain point, so as to reach an agreement or commit to a certain sequence of action.Synchronization
involves the orderly sharing of system resources by processes.

Figure: 8.1 Working of Process Synchronization

As shown in figure 8.1, the process A changing the data in a memory location while another
process B is trying to read the data from the same memory location. There is a high probability that
data read by the second process will be erroneous.Maintaining data consistency requires
mechanisms to ensure the orderly execution of cooperating processes.

To illustrate the process synchronization, consider the railway intersection scenario in Figure 8.2,
wecan think of this intersection as a system resource that is shared by two processes: the car
processand the train process. If only one process is active, then no resource conflict exists. But
whathappens when both processes are active and they both arrive at the intersection
simultaneously?In this case, the shared resource becomes a problem. They cannot both use the
resource at thesame time or a collision will occur. Similarly, processes sharing resources on a
computer must beproperly managed in order to avoid “collisions.”. This problem can be overcome
by making use of a signal as shown in Figure 8.3.

Figure: 8.2 Railway Intersection Figure 8.3: Railway-road Intersection with signal

Consider a machine with a single printer running a time-sharing operation system. If a
processneeds to print its results, it must request that the operating system give it access to the
printer’s device driver. At this point, the operating system must decide whether to grant this
request,depending upon whether the printer is already being used by another process. If it is not,
theoperating system should grant the request and allow the process to continue; otherwise,
theoperating system should deny the request and perhaps classify the process as a waiting
processuntil the printer becomes available. Indeed, if two processes were given simultaneous access
tothe machine’s printer, the results would be worthless to both.Now that the problem of
synchronization is properly stated, consider the following relateddefinitions:

1. Critical Resource: A resource shared with constraints on its use (e.g. memory,
files,printers,etc.)

2. Critical Section: Code that accesses a critical resource
3. Mutual Exclusion: At most one process may be executing a Critical Section with respect toa

particular critical resource simultaneously

In the example given above, the printer is the critical resource. Let’s suppose that the
processeswhich are sharing this resource are called process A and process B. The critical sections of
processA and process B are the sections of the code which issue the print command. In order to
ensure that both processes do not attempt to use the printer at the same, they must be granted

Unit 08: Process Synchronization

Notes

How Process Synchronization Works?
Process synchronization refers to the idea that multiple processes are to join up or handshakeat a
certain point, so as to reach an agreement or commit to a certain sequence of action.Synchronization
involves the orderly sharing of system resources by processes.

Figure: 8.1 Working of Process Synchronization

As shown in figure 8.1, the process A changing the data in a memory location while another
process B is trying to read the data from the same memory location. There is a high probability that
data read by the second process will be erroneous.Maintaining data consistency requires
mechanisms to ensure the orderly execution of cooperating processes.

To illustrate the process synchronization, consider the railway intersection scenario in Figure 8.2,
wecan think of this intersection as a system resource that is shared by two processes: the car
processand the train process. If only one process is active, then no resource conflict exists. But
whathappens when both processes are active and they both arrive at the intersection
simultaneously?In this case, the shared resource becomes a problem. They cannot both use the
resource at thesame time or a collision will occur. Similarly, processes sharing resources on a
computer must beproperly managed in order to avoid “collisions.”. This problem can be overcome
by making use of a signal as shown in Figure 8.3.

Figure: 8.2 Railway Intersection Figure 8.3: Railway-road Intersection with signal

Consider a machine with a single printer running a time-sharing operation system. If a
processneeds to print its results, it must request that the operating system give it access to the
printer’s device driver. At this point, the operating system must decide whether to grant this
request,depending upon whether the printer is already being used by another process. If it is not,
theoperating system should grant the request and allow the process to continue; otherwise,
theoperating system should deny the request and perhaps classify the process as a waiting
processuntil the printer becomes available. Indeed, if two processes were given simultaneous access
tothe machine’s printer, the results would be worthless to both.Now that the problem of
synchronization is properly stated, consider the following relateddefinitions:

1. Critical Resource: A resource shared with constraints on its use (e.g. memory,
files,printers,etc.)

2. Critical Section: Code that accesses a critical resource
3. Mutual Exclusion: At most one process may be executing a Critical Section with respect toa

particular critical resource simultaneously

In the example given above, the printer is the critical resource. Let’s suppose that the
processeswhich are sharing this resource are called process A and process B. The critical sections of
processA and process B are the sections of the code which issue the print command. In order to
ensure that both processes do not attempt to use the printer at the same, they must be granted

Unit 08: Process Synchronization

Notes

How Process Synchronization Works?
Process synchronization refers to the idea that multiple processes are to join up or handshakeat a
certain point, so as to reach an agreement or commit to a certain sequence of action.Synchronization
involves the orderly sharing of system resources by processes.

Figure: 8.1 Working of Process Synchronization

As shown in figure 8.1, the process A changing the data in a memory location while another
process B is trying to read the data from the same memory location. There is a high probability that
data read by the second process will be erroneous.Maintaining data consistency requires
mechanisms to ensure the orderly execution of cooperating processes.

To illustrate the process synchronization, consider the railway intersection scenario in Figure 8.2,
wecan think of this intersection as a system resource that is shared by two processes: the car
processand the train process. If only one process is active, then no resource conflict exists. But
whathappens when both processes are active and they both arrive at the intersection
simultaneously?In this case, the shared resource becomes a problem. They cannot both use the
resource at thesame time or a collision will occur. Similarly, processes sharing resources on a
computer must beproperly managed in order to avoid “collisions.”. This problem can be overcome
by making use of a signal as shown in Figure 8.3.

Figure: 8.2 Railway Intersection Figure 8.3: Railway-road Intersection with signal

Consider a machine with a single printer running a time-sharing operation system. If a
processneeds to print its results, it must request that the operating system give it access to the
printer’s device driver. At this point, the operating system must decide whether to grant this
request,depending upon whether the printer is already being used by another process. If it is not,
theoperating system should grant the request and allow the process to continue; otherwise,
theoperating system should deny the request and perhaps classify the process as a waiting
processuntil the printer becomes available. Indeed, if two processes were given simultaneous access
tothe machine’s printer, the results would be worthless to both.Now that the problem of
synchronization is properly stated, consider the following relateddefinitions:

1. Critical Resource: A resource shared with constraints on its use (e.g. memory,
files,printers,etc.)

2. Critical Section: Code that accesses a critical resource
3. Mutual Exclusion: At most one process may be executing a Critical Section with respect toa

particular critical resource simultaneously

In the example given above, the printer is the critical resource. Let’s suppose that the
processeswhich are sharing this resource are called process A and process B. The critical sections of
processA and process B are the sections of the code which issue the print command. In order to
ensure that both processes do not attempt to use the printer at the same, they must be granted

Lovely Professional University 131

Operating System

Notes

mutuallyexclusive access to the printer driver. The idea of mutual exclusion with our railroad
intersectionby adding a semaphore to the picture.

Semaphores are used in software systems in much the same way as they are in railway
systems.Corresponding to the section of track that can contain only one train at a time is a sequence
ofinstructions that can be executed by only one process at a time. Such a sequence of instructionsis
called a critical section.

8.2 Critical Section Problem
The critical section is a code segment where the shared variables can be accessed. The key to
preventing trouble involving shared storage is find some way to prohibit more than one process
from reading and writing the shared data simultaneously. That part of the program where the
shared memory is accessed is called the Critical Section.

To understand critical section problem let us assume that there aren processes all competing to use
some shared data. Each process has a code segment, called critical section, in which the shared data
is accessed.An atomic action is required in a critical section i.e. only one process can execute in its
critical section at a time. All the other processes have to wait to execute in their critical sections.A
diagram that demonstrates the critical section is as follows:

Figure: 8.4 The Critical Section

In the above diagram, the entry section handles the entry into the critical section. It acquires the
resources needed for execution by the process. The exit section handles the exit from the critical
section. It releases the resources and also informs the other processes that the critical section is free.

The Critical - Section Problem
The problem in the critical section is to ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section. Let us consider an example as I
Figure 8.5 to understand the race condition.

To avoid race conditions and flawed results, one must identify codes in Critical Sections in each
thread as can be seen in figure 8.4. The characteristic properties of the code that form a Critical
Section are:

1. Codes that reference one or more variables in a “read-update-write” fashion while any of those
variables is possibly being altered by another thread.

2. Codes that alter one or more variables that are possibly being referenced in “read-
updatawrite” fashion by another thread.

3. Codes use a data structure while any part of it is possibly being altered by another thread.
4. Codes alter any part of a data structure while it is possibly in use by another thread.

Operating System

Notes

mutuallyexclusive access to the printer driver. The idea of mutual exclusion with our railroad
intersectionby adding a semaphore to the picture.

Semaphores are used in software systems in much the same way as they are in railway
systems.Corresponding to the section of track that can contain only one train at a time is a sequence
ofinstructions that can be executed by only one process at a time. Such a sequence of instructionsis
called a critical section.

8.2 Critical Section Problem
The critical section is a code segment where the shared variables can be accessed. The key to
preventing trouble involving shared storage is find some way to prohibit more than one process
from reading and writing the shared data simultaneously. That part of the program where the
shared memory is accessed is called the Critical Section.

To understand critical section problem let us assume that there aren processes all competing to use
some shared data. Each process has a code segment, called critical section, in which the shared data
is accessed.An atomic action is required in a critical section i.e. only one process can execute in its
critical section at a time. All the other processes have to wait to execute in their critical sections.A
diagram that demonstrates the critical section is as follows:

Figure: 8.4 The Critical Section

In the above diagram, the entry section handles the entry into the critical section. It acquires the
resources needed for execution by the process. The exit section handles the exit from the critical
section. It releases the resources and also informs the other processes that the critical section is free.

The Critical - Section Problem
The problem in the critical section is to ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section. Let us consider an example as I
Figure 8.5 to understand the race condition.

To avoid race conditions and flawed results, one must identify codes in Critical Sections in each
thread as can be seen in figure 8.4. The characteristic properties of the code that form a Critical
Section are:

1. Codes that reference one or more variables in a “read-update-write” fashion while any of those
variables is possibly being altered by another thread.

2. Codes that alter one or more variables that are possibly being referenced in “read-
updatawrite” fashion by another thread.

3. Codes use a data structure while any part of it is possibly being altered by another thread.
4. Codes alter any part of a data structure while it is possibly in use by another thread.

Operating System

Notes

mutuallyexclusive access to the printer driver. The idea of mutual exclusion with our railroad
intersectionby adding a semaphore to the picture.

Semaphores are used in software systems in much the same way as they are in railway
systems.Corresponding to the section of track that can contain only one train at a time is a sequence
ofinstructions that can be executed by only one process at a time. Such a sequence of instructionsis
called a critical section.

8.2 Critical Section Problem
The critical section is a code segment where the shared variables can be accessed. The key to
preventing trouble involving shared storage is find some way to prohibit more than one process
from reading and writing the shared data simultaneously. That part of the program where the
shared memory is accessed is called the Critical Section.

To understand critical section problem let us assume that there aren processes all competing to use
some shared data. Each process has a code segment, called critical section, in which the shared data
is accessed.An atomic action is required in a critical section i.e. only one process can execute in its
critical section at a time. All the other processes have to wait to execute in their critical sections.A
diagram that demonstrates the critical section is as follows:

Figure: 8.4 The Critical Section

In the above diagram, the entry section handles the entry into the critical section. It acquires the
resources needed for execution by the process. The exit section handles the exit from the critical
section. It releases the resources and also informs the other processes that the critical section is free.

The Critical - Section Problem
The problem in the critical section is to ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section. Let us consider an example as I
Figure 8.5 to understand the race condition.

To avoid race conditions and flawed results, one must identify codes in Critical Sections in each
thread as can be seen in figure 8.4. The characteristic properties of the code that form a Critical
Section are:

1. Codes that reference one or more variables in a “read-update-write” fashion while any of those
variables is possibly being altered by another thread.

2. Codes that alter one or more variables that are possibly being referenced in “read-
updatawrite” fashion by another thread.

3. Codes use a data structure while any part of it is possibly being altered by another thread.
4. Codes alter any part of a data structure while it is possibly in use by another thread.

Lovely Professional University132

Unit 08: Process Synchronization

Notes

Figure 8.5 Critical Section Problem

Here, the important point is that when one process is executing shared modifiable data in itscritical
section, no other process is to be allowed to execute in its critical section. Thus, theexecution of
critical sections by the processes is mutually exclusive in time.

Figure 8.6: Different sections in the Critical Section

Solution of the Critical Section Problem
The critical section problem can be avoided by introducing the entry and the exit section in the
program code as shown in figure 8.7.

Figure 8.7: Solution to the critical section problem

The critical section problem needs a solution to SYNCHRONIZE the different processes. For
synchronization the critical section problem must satisfy the following conditions −

 Mutual Exclusion
 Progress
 Bounded Waiting
 No assumption related to hardware or speed

It should be noted that Mutual Exclusion and Progress are Primary rules whereas bounded waiting
and No assumption related to hardware or speed are Secondary Rules respectively.

Unit 08: Process Synchronization

Notes

Figure 8.5 Critical Section Problem

Here, the important point is that when one process is executing shared modifiable data in itscritical
section, no other process is to be allowed to execute in its critical section. Thus, theexecution of
critical sections by the processes is mutually exclusive in time.

Figure 8.6: Different sections in the Critical Section

Solution of the Critical Section Problem
The critical section problem can be avoided by introducing the entry and the exit section in the
program code as shown in figure 8.7.

Figure 8.7: Solution to the critical section problem

The critical section problem needs a solution to SYNCHRONIZE the different processes. For
synchronization the critical section problem must satisfy the following conditions −

 Mutual Exclusion
 Progress
 Bounded Waiting
 No assumption related to hardware or speed

It should be noted that Mutual Exclusion and Progress are Primary rules whereas bounded waiting
and No assumption related to hardware or speed are Secondary Rules respectively.

Unit 08: Process Synchronization

Notes

Figure 8.5 Critical Section Problem

Here, the important point is that when one process is executing shared modifiable data in itscritical
section, no other process is to be allowed to execute in its critical section. Thus, theexecution of
critical sections by the processes is mutually exclusive in time.

Figure 8.6: Different sections in the Critical Section

Solution of the Critical Section Problem
The critical section problem can be avoided by introducing the entry and the exit section in the
program code as shown in figure 8.7.

Figure 8.7: Solution to the critical section problem

The critical section problem needs a solution to SYNCHRONIZE the different processes. For
synchronization the critical section problem must satisfy the following conditions −

 Mutual Exclusion
 Progress
 Bounded Waiting
 No assumption related to hardware or speed

It should be noted that Mutual Exclusion and Progress are Primary rules whereas bounded waiting
and No assumption related to hardware or speed are Secondary Rules respectively.

Lovely Professional University 133

Operating System

Notes

A way of making sure that if one process is using a shared modifiable data, the other processeswill
be excluded from doing the same thing.Formally, while one process executes the shared variable,
all other processes desiring to do soat the same time moment should be kept waiting; when that
process has finished executing theshared variable, one of the processes waiting; while that process
has finished executing the sharedvariable, one of the processes waiting to do so should be allowed
to proceed. In this fashion, eachprocess executing the shared data (variables) excludes all others
from doing so simultaneously.This is called Mutual Exclusion.

Notes: Mutual exclusion needs to be enforced only when processes access shared
modifiable data - when processes are performing operations that do not conflict with one
another they should be allowed to proceed concurrently.

Solution: 1 Mutual Exclusion Conditions
If you could arrange matters such that no two processes were ever in their critical
sectionssimultaneously, you could avoid race conditions. You need four conditions to hold to have
agood solution for the critical section problem (mutual exclusion).

1. No two processes may at the same moment inside their critical sections.
2. No assumptions are made about relative speeds of processes or number of CPUs.
3. No process outside its critical section should block other processes.
4. No process should wait arbitrary long to enter its critical section.

If process Pi is executing in its critical section, then no other processes can be executing in their
critical sections.

Figure: 8.8 Mutual Exclusion

Proposals for Achieving Mutual Exclusion
The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a post-protocol(or
exist protocol) to keep two or more threads from being in their critical sections at the sametime.

Problem:When one process is updating shared modifiable data in its critical section, no
otherprocess should be allowed to enter in its critical section.

Proposal 1: Disabling Interrupts (Hardware Solution)
Each process disables all interrupts just after entering in its critical section and re-enable
allinterrupts just before leaving critical section. With interrupts turned off the CPU could not
beswitched to other process. Hence, no other process will enter its critical and mutual
exclusionachieved.

Conclusion
Disabling interrupts is sometimes a useful technique within thekernel of an operating system, but it
is not appropriate as a general mutual exclusion mechanismfor user process. The reason is that it is
unwise to give user process the power to turn offinterrupts.

Proposal 2: Lock Variable (Software Solution)
In this solution, you consider a single, shared, (lock) variable, initially 0. When a process wantsto
enter in its critical section, it first tests the lock. If lock is 0, the process first sets it to 1 andthen
enters the critical section. If the lock is already 1, the process just waits until (lock) variablebecomes
0. Thus, a 0 means that no process in its critical section, and 1 means hold your horses -some
process is in its critical section.

Conclusion

Operating System

Notes

A way of making sure that if one process is using a shared modifiable data, the other processeswill
be excluded from doing the same thing.Formally, while one process executes the shared variable,
all other processes desiring to do soat the same time moment should be kept waiting; when that
process has finished executing theshared variable, one of the processes waiting; while that process
has finished executing the sharedvariable, one of the processes waiting to do so should be allowed
to proceed. In this fashion, eachprocess executing the shared data (variables) excludes all others
from doing so simultaneously.This is called Mutual Exclusion.

Notes: Mutual exclusion needs to be enforced only when processes access shared
modifiable data - when processes are performing operations that do not conflict with one
another they should be allowed to proceed concurrently.

Solution: 1 Mutual Exclusion Conditions
If you could arrange matters such that no two processes were ever in their critical
sectionssimultaneously, you could avoid race conditions. You need four conditions to hold to have
agood solution for the critical section problem (mutual exclusion).

1. No two processes may at the same moment inside their critical sections.
2. No assumptions are made about relative speeds of processes or number of CPUs.
3. No process outside its critical section should block other processes.
4. No process should wait arbitrary long to enter its critical section.

If process Pi is executing in its critical section, then no other processes can be executing in their
critical sections.

Figure: 8.8 Mutual Exclusion

Proposals for Achieving Mutual Exclusion
The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a post-protocol(or
exist protocol) to keep two or more threads from being in their critical sections at the sametime.

Problem:When one process is updating shared modifiable data in its critical section, no
otherprocess should be allowed to enter in its critical section.

Proposal 1: Disabling Interrupts (Hardware Solution)
Each process disables all interrupts just after entering in its critical section and re-enable
allinterrupts just before leaving critical section. With interrupts turned off the CPU could not
beswitched to other process. Hence, no other process will enter its critical and mutual
exclusionachieved.

Conclusion
Disabling interrupts is sometimes a useful technique within thekernel of an operating system, but it
is not appropriate as a general mutual exclusion mechanismfor user process. The reason is that it is
unwise to give user process the power to turn offinterrupts.

Proposal 2: Lock Variable (Software Solution)
In this solution, you consider a single, shared, (lock) variable, initially 0. When a process wantsto
enter in its critical section, it first tests the lock. If lock is 0, the process first sets it to 1 andthen
enters the critical section. If the lock is already 1, the process just waits until (lock) variablebecomes
0. Thus, a 0 means that no process in its critical section, and 1 means hold your horses -some
process is in its critical section.

Conclusion

Operating System

Notes

A way of making sure that if one process is using a shared modifiable data, the other processeswill
be excluded from doing the same thing.Formally, while one process executes the shared variable,
all other processes desiring to do soat the same time moment should be kept waiting; when that
process has finished executing theshared variable, one of the processes waiting; while that process
has finished executing the sharedvariable, one of the processes waiting to do so should be allowed
to proceed. In this fashion, eachprocess executing the shared data (variables) excludes all others
from doing so simultaneously.This is called Mutual Exclusion.

Notes: Mutual exclusion needs to be enforced only when processes access shared
modifiable data - when processes are performing operations that do not conflict with one
another they should be allowed to proceed concurrently.

Solution: 1 Mutual Exclusion Conditions
If you could arrange matters such that no two processes were ever in their critical
sectionssimultaneously, you could avoid race conditions. You need four conditions to hold to have
agood solution for the critical section problem (mutual exclusion).

1. No two processes may at the same moment inside their critical sections.
2. No assumptions are made about relative speeds of processes or number of CPUs.
3. No process outside its critical section should block other processes.
4. No process should wait arbitrary long to enter its critical section.

If process Pi is executing in its critical section, then no other processes can be executing in their
critical sections.

Figure: 8.8 Mutual Exclusion

Proposals for Achieving Mutual Exclusion
The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a post-protocol(or
exist protocol) to keep two or more threads from being in their critical sections at the sametime.

Problem:When one process is updating shared modifiable data in its critical section, no
otherprocess should be allowed to enter in its critical section.

Proposal 1: Disabling Interrupts (Hardware Solution)
Each process disables all interrupts just after entering in its critical section and re-enable
allinterrupts just before leaving critical section. With interrupts turned off the CPU could not
beswitched to other process. Hence, no other process will enter its critical and mutual
exclusionachieved.

Conclusion
Disabling interrupts is sometimes a useful technique within thekernel of an operating system, but it
is not appropriate as a general mutual exclusion mechanismfor user process. The reason is that it is
unwise to give user process the power to turn offinterrupts.

Proposal 2: Lock Variable (Software Solution)
In this solution, you consider a single, shared, (lock) variable, initially 0. When a process wantsto
enter in its critical section, it first tests the lock. If lock is 0, the process first sets it to 1 andthen
enters the critical section. If the lock is already 1, the process just waits until (lock) variablebecomes
0. Thus, a 0 means that no process in its critical section, and 1 means hold your horses -some
process is in its critical section.

Conclusion

Lovely Professional University134

Unit 08: Process Synchronization

Notes

The flaw in this proposal can be best explained by example. Suppose process A sees that thelock is
0. Before it can set the lock to 1 another process B is scheduled, runs, and sets the lock to1. When the
process A runs again, it will also set the lock to 1, and two processes will be in theircritical section
simultaneously.

Proposal 3: Strict Alteration
In this proposed solution, the integer variable ‘turn’ keeps track of whose turn is to enter thecritical
section. Initially, process A inspect turn, finds it to be 0, and enters in its critical section.Process B
also finds it to be 0 and sits in a loop continually testing ‘turn’ to see when it
becomes1.Continuously testing a variable waiting for some value to appear is called the Busy-
Waiting.

Conclusion
Taking turns is not a good idea when one of the processes is much slower than the other.
Supposeprocess 0 finishes its critical section quickly, so both processes are now in their noncritical
section.This situation violates above mentioned condition 3.

Using Systems calls ‘sleep’ and ‘wakeup’

Basically, what above mentioned solution do is this: when a process wants to enter in its
criticalsection, it checks to see if then entry is allowed. If it is not, the process goes into tight loop
andwaits (i.e., start busy waiting) until it is allowed to enter. This approach waste CPU-time.Now
look at some inter-process communication primitives is the pair of steep-wakeup.

Sleep
It is a system call that causes the caller to block, that is, be suspended until some other
processwakes it up.

Wakeup

It is a system call that wakes up the process.Both ‘sleep’ and ‘wakeup’ system calls have one
parameter that represents a memory addressused to match up ‘sleeps’ and ‘wakeups’.

Bounded Buffer Producers and Consumers

The bounded buffer producers and consumers assumes that there is a fixed buffer size i.e., a
finitenumbers of slots are available.

Statement

To suspend the producers when the buffer is full, to suspend the consumers when the buffer
isempty, and to make sure that only one process at a time manipulates a buffer so there are no
raceconditions or lost updates.

As an example,how, sleep-wakeup system calls are used, consider the producer-consumerproblem
also known as bounded buffer problem.

Two processes share a common, fixed-size (bounded) buffer. The producer puts information
intothe buffer and the consumer takes information out.

Trouble arises when:

1. The producer wants to put a new data in the buffer, but buffer is already full.

Solution:Producer goes to sleep and to be awakened when the consumer has removed data.

2. The consumer wants to remove data the buffer but buffer is already empty.

Solution: Consumer goes to sleep until the producer puts some data in buffer and
wakesconsumer up.

Conclusion: This approach also leads to same race conditions you have seen in earlierapproaches.
Race condition can occur due to the fact that access to ‘count’ is unconstrained. Theessence of the
problem is that a wakeup call, sent to a process that is not sleeping, is lost.

Solution 2: Progress
If no process is executing in its critical section and there exist some processes that wish to enter
their critical section, then only those processes that are not executing in their remainder sections can

Lovely Professional University 135

Operating System

Notes

participate in the decision on which will enter the critical section next, and this selection cannot be
postponed indefinitely.

Solution 3: Bounded Waiting
A bound must exist on the number of times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical section and before that request is
granted.

Solution 4: No assumption related to Hardware or Speed

For example issues related to processor speed are manageable without having assumptions
regarding the hardware or the speed of the processor.

8.3 Semaphores
To understand the concept of semaphores, let us first understand the concept of the ‘Race
Condition’. A race condition is a situation that may occur inside a critical section. This happens
when the result of multiple thread execution in critical section differs according to the order in
which the threads execute.Race conditions in critical sections can be avoided if the critical section is
treated as an atomic instruction. Also, proper thread synchronization using locks or atomic
variables can prevent race conditions.The critical section in a code segment where the shared
variables can be accessed. The critical section in a code segment where the shared variables can be
accessed. Atomic action is required in a critical section i.e. only one process can execute in its critical
section at a time. All the other processes have to wait to execute in their critical sections as shown in
figure 8.9.The critical section is given as follows:

do{

Entry Section

Critical Section

Exit Section

Remainder Section

} while (TRUE);

In the code, the entry sections handles the entry into the critical section. It acquires the resources
needed for execution by the process. The exit section handles the exit from the critical section. It
releases the resources and also informs the other processes that critical section is free.A semaphore
is a signaling mechanism and a thread that is waiting on a semaphore can be signaled by another
thread. This is different than a mutex as the mutex can be signaled only by the thread that called the
wait function.A semaphore uses two atomic operations, wait and signal for process
synchronization.The wait operation decrements the value of its argument S, if it is positive. If S is
negative or zero, then no operation is performed.Semaphore is simply a variable that is non-
negative and shared between threads. A semaphore is a signaling mechanism, and a thread that is
waiting on a semaphore can be signaled by another thread.

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of semaphores.

Definition
A semaphore is a protected variable whose value can be accessed and altered only by the
operations P and V and initialization operation called ‘Semaphorinitislize’.

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores also called
general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), operates as
follows:

P(S): IF S > 0

THEN S := S – 1

ELSE (wait on S)

Operating System

Notes

participate in the decision on which will enter the critical section next, and this selection cannot be
postponed indefinitely.

Solution 3: Bounded Waiting
A bound must exist on the number of times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical section and before that request is
granted.

Solution 4: No assumption related to Hardware or Speed

For example issues related to processor speed are manageable without having assumptions
regarding the hardware or the speed of the processor.

8.3 Semaphores
To understand the concept of semaphores, let us first understand the concept of the ‘Race
Condition’. A race condition is a situation that may occur inside a critical section. This happens
when the result of multiple thread execution in critical section differs according to the order in
which the threads execute.Race conditions in critical sections can be avoided if the critical section is
treated as an atomic instruction. Also, proper thread synchronization using locks or atomic
variables can prevent race conditions.The critical section in a code segment where the shared
variables can be accessed. The critical section in a code segment where the shared variables can be
accessed. Atomic action is required in a critical section i.e. only one process can execute in its critical
section at a time. All the other processes have to wait to execute in their critical sections as shown in
figure 8.9.The critical section is given as follows:

do{

Entry Section

Critical Section

Exit Section

Remainder Section

} while (TRUE);

In the code, the entry sections handles the entry into the critical section. It acquires the resources
needed for execution by the process. The exit section handles the exit from the critical section. It
releases the resources and also informs the other processes that critical section is free.A semaphore
is a signaling mechanism and a thread that is waiting on a semaphore can be signaled by another
thread. This is different than a mutex as the mutex can be signaled only by the thread that called the
wait function.A semaphore uses two atomic operations, wait and signal for process
synchronization.The wait operation decrements the value of its argument S, if it is positive. If S is
negative or zero, then no operation is performed.Semaphore is simply a variable that is non-
negative and shared between threads. A semaphore is a signaling mechanism, and a thread that is
waiting on a semaphore can be signaled by another thread.

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of semaphores.

Definition
A semaphore is a protected variable whose value can be accessed and altered only by the
operations P and V and initialization operation called ‘Semaphorinitislize’.

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores also called
general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), operates as
follows:

P(S): IF S > 0

THEN S := S – 1

ELSE (wait on S)

Operating System

Notes

participate in the decision on which will enter the critical section next, and this selection cannot be
postponed indefinitely.

Solution 3: Bounded Waiting
A bound must exist on the number of times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical section and before that request is
granted.

Solution 4: No assumption related to Hardware or Speed

For example issues related to processor speed are manageable without having assumptions
regarding the hardware or the speed of the processor.

8.3 Semaphores
To understand the concept of semaphores, let us first understand the concept of the ‘Race
Condition’. A race condition is a situation that may occur inside a critical section. This happens
when the result of multiple thread execution in critical section differs according to the order in
which the threads execute.Race conditions in critical sections can be avoided if the critical section is
treated as an atomic instruction. Also, proper thread synchronization using locks or atomic
variables can prevent race conditions.The critical section in a code segment where the shared
variables can be accessed. The critical section in a code segment where the shared variables can be
accessed. Atomic action is required in a critical section i.e. only one process can execute in its critical
section at a time. All the other processes have to wait to execute in their critical sections as shown in
figure 8.9.The critical section is given as follows:

do{

Entry Section

Critical Section

Exit Section

Remainder Section

} while (TRUE);

In the code, the entry sections handles the entry into the critical section. It acquires the resources
needed for execution by the process. The exit section handles the exit from the critical section. It
releases the resources and also informs the other processes that critical section is free.A semaphore
is a signaling mechanism and a thread that is waiting on a semaphore can be signaled by another
thread. This is different than a mutex as the mutex can be signaled only by the thread that called the
wait function.A semaphore uses two atomic operations, wait and signal for process
synchronization.The wait operation decrements the value of its argument S, if it is positive. If S is
negative or zero, then no operation is performed.Semaphore is simply a variable that is non-
negative and shared between threads. A semaphore is a signaling mechanism, and a thread that is
waiting on a semaphore can be signaled by another thread.

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of semaphores.

Definition
A semaphore is a protected variable whose value can be accessed and altered only by the
operations P and V and initialization operation called ‘Semaphorinitislize’.

Binary Semaphores can assume only the value 0 or the value 1 counting semaphores also called
general semaphores can assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), operates as
follows:

P(S): IF S > 0

THEN S := S – 1

ELSE (wait on S)

Lovely Professional University136

Unit 08: Process Synchronization

Notes

The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or signal (S), operates
as follows:

V(S): IF (one or more processes are waiting on S)

THEN (let one of these processes proceed)

ELSE S: = S + 1

Operations P and V are done as single, indivisible, atomic action. It is guaranteed that once a
semaphore operation has stared, no other process can access the semaphore until operation has
completed. Mutual exclusion on the semaphore, S, is enforced within P(S) and V(S). If several
processes attempt a P(S) simultaneously, only process will be allowed to proceed. The other
processes will be kept waiting, but the implementation of P and V guarantees that processes will
not suffer indefinite postponement.Semaphores solve the lost-wakeup problem. Semaphore was
proposed by Dijkstra in 1965 which is a very significant technique to manage concurrent processes
by using a simple integer value, which is known as a semaphore. It uses two atomic operations,

1)wait, and

2) signal for the process synchronization.

A semaphore either allows or disallows access to the resource, which depends on how it is set up.

Semaphore Limitations
A few limitations of semaphores are listed below:

 One of the biggest limitations of semaphore is priority inversion.
 Deadlock, suppose a process is trying to wake up another process which is not in a sleep

state. Therefore, a deadlock may block indefinitely.One of the biggest limitations of
semaphore is priority inversion.

 The operating system has to keep track of all calls to wait and to signal the semaphore.

Semaphore Implementation Problems

The main problem with semaphores is that they require busy waiting,

 if a process is in the critical section, then other processes trying to enter critical section will
be waiting until the critical section is not occupied by any process.

 Whenever any process waits then it continuously checks for semaphore value (look at this
line while (s==0); in P operation) and waste CPU cycle.

 There is also a chance of “spinlock” as the processes keep on spins while waiting for the
lock.

Characteristics of Semaphore
The main characteristics of the semaphores are:

• It is a mechanism that can be used to provide synchronization of tasks.

• It is a low-level synchronization mechanism.

• It will always hold a non-negative integer value.

• It can be implemented using test operations and interrupts, which should be executed
using file descriptors.

wait(S){

while (S<=0);

S--;

}

The signal operation increments the value of its argument S.

signal(S){

Lovely Professional University 137

Operating System

Notes

S++;

}

8.4 Types of Semaphore
Semaphores are of two types:

1) Binary Semaphore

2) Counting Semaphore

1) Binary Semaphore – This is also known as mutex lock. It can have only two values – 0 and 1.
Its value is initialized to 1. It is used to implement the solution of critical section problems with
multiple processes.

2) Counting Semaphore – Its value can range over an unrestricted domain. It is used to control
access to a resource that has multiple instances.Now let us see how it does so.

Figure 8.9: Semaphore variable values

First, look at two operations that can be used to access and change the value of the semaphore
variable. Let us understand some point regarding P and V operation. P operation is also called
wait, sleep, or down operation, and V operation is also called signal, wake-up, or up operation.
Both operations are atomic and semaphore(s) is always initialized to one. Here atomic means that
variable on which read, modify and update happens at the same time/moment with no pre-
emption i.e. in-between read, modify and update no other operation is performed that may change
the variable.A critical section is surrounded by both operations to implement process
synchronization. As can be seen in the image, the critical section of Process P is in between P and V
operation.

Figure 8.10: The P and V operations of Semaphores

As can be seen in figure 8.10, the critical section of Process P is in between P and V operation.Now,
let us see how it implements mutual exclusion.Let there be two processes P1 and P2 and a
semaphore s is initialized as 1. Now if suppose P1 enters in its critical section then the value of
semaphore s becomes 0. Now if P2 wants to enter its critical section then it will wait until s > 0, this
can only happen when P1 finishes its critical section and calls V operation on semaphore s.

This way mutual exclusion is achieved.

Operating System

Notes

S++;

}

8.4 Types of Semaphore
Semaphores are of two types:

1) Binary Semaphore

2) Counting Semaphore

1) Binary Semaphore – This is also known as mutex lock. It can have only two values – 0 and 1.
Its value is initialized to 1. It is used to implement the solution of critical section problems with
multiple processes.

2) Counting Semaphore – Its value can range over an unrestricted domain. It is used to control
access to a resource that has multiple instances.Now let us see how it does so.

Figure 8.9: Semaphore variable values

First, look at two operations that can be used to access and change the value of the semaphore
variable. Let us understand some point regarding P and V operation. P operation is also called
wait, sleep, or down operation, and V operation is also called signal, wake-up, or up operation.
Both operations are atomic and semaphore(s) is always initialized to one. Here atomic means that
variable on which read, modify and update happens at the same time/moment with no pre-
emption i.e. in-between read, modify and update no other operation is performed that may change
the variable.A critical section is surrounded by both operations to implement process
synchronization. As can be seen in the image, the critical section of Process P is in between P and V
operation.

Figure 8.10: The P and V operations of Semaphores

As can be seen in figure 8.10, the critical section of Process P is in between P and V operation.Now,
let us see how it implements mutual exclusion.Let there be two processes P1 and P2 and a
semaphore s is initialized as 1. Now if suppose P1 enters in its critical section then the value of
semaphore s becomes 0. Now if P2 wants to enter its critical section then it will wait until s > 0, this
can only happen when P1 finishes its critical section and calls V operation on semaphore s.

This way mutual exclusion is achieved.

Operating System

Notes

S++;

}

8.4 Types of Semaphore
Semaphores are of two types:

1) Binary Semaphore

2) Counting Semaphore

1) Binary Semaphore – This is also known as mutex lock. It can have only two values – 0 and 1.
Its value is initialized to 1. It is used to implement the solution of critical section problems with
multiple processes.

2) Counting Semaphore – Its value can range over an unrestricted domain. It is used to control
access to a resource that has multiple instances.Now let us see how it does so.

Figure 8.9: Semaphore variable values

First, look at two operations that can be used to access and change the value of the semaphore
variable. Let us understand some point regarding P and V operation. P operation is also called
wait, sleep, or down operation, and V operation is also called signal, wake-up, or up operation.
Both operations are atomic and semaphore(s) is always initialized to one. Here atomic means that
variable on which read, modify and update happens at the same time/moment with no pre-
emption i.e. in-between read, modify and update no other operation is performed that may change
the variable.A critical section is surrounded by both operations to implement process
synchronization. As can be seen in the image, the critical section of Process P is in between P and V
operation.

Figure 8.10: The P and V operations of Semaphores

As can be seen in figure 8.10, the critical section of Process P is in between P and V operation.Now,
let us see how it implements mutual exclusion.Let there be two processes P1 and P2 and a
semaphore s is initialized as 1. Now if suppose P1 enters in its critical section then the value of
semaphore s becomes 0. Now if P2 wants to enter its critical section then it will wait until s > 0, this
can only happen when P1 finishes its critical section and calls V operation on semaphore s.

This way mutual exclusion is achieved.

Lovely Professional University138

Unit 08: Process Synchronization

Notes

Figure 8.11: Binary Semaphore

Look at the figure 8.11: for details of Binary semaphore.This binary semaphore which can take only
two values 0 and 1 and ensure mutual exclusion.There is one other type of semaphore called
counting semaphore which can take values greater than one.Now suppose there is a resource
whose number of instances is 4. Now we initialize S = 4 and the rest is the same as for binary
semaphore. Whenever the process wants that resource it calls P or waits for function and when it is
done it calls V or signal function. If the value of S becomes zero then a process has to wait until S
becomes positive. For example, Suppose there are 4 processes P1, P2, P3, P4, and they all call wait
operation on S(initialized with 4). If another process P5 wants the resource then it should wait until
one of the four processes calls the signal function and the value of semaphore becomes positive.

Semaphore Limitations:
1. One of the biggest limitations of semaphore is priority inversion.

2. Deadlock, suppose a process is trying to wake up another process which is not in a sleep
state. Therefore, a deadlock may block indefinitely.

3. The operating system has to keep track of all calls to wait and to signal the semaphore.

Problem in Implementing Semaphores:
The main problem with semaphores is that they require busy waiting, If a process is in the critical
section, then other processes trying to enter critical section will be waiting until the critical section is
not occupied by any process.Whenever any process waits then it continuously checks for
semaphore value (look at this line while (s==0); in P operation) and waste CPU cycle.There is also a
chance of “spinlock” as the processes keep on spins while waiting for the lock.

Implementing Counting Semaphores:
In the counting semaphore implementation, whenever the process waits, it is added to a waiting
queue of processes associated with that semaphore. This is done through system call block() on that
process. When a process is completed it calls the signal function and one process in the queue is
resumed. It uses wakeup() system call.

8.5 What is Mutex?
A mutex is a binary variable whose purpose is to provide locking mechanism. It is used to provide
mutual exclusion to a section of code, means only one process can work on a particular code section
at a time. Mutex is locking mechanism in OS. There is misconception that binary semaphore is same
as mutex variable but both are different in the sense that the binary semaphore apart from
providing locking mechanism also provides two atomic operation signal and wait, means after
releasing resource semaphore will provide signaling mechanism for the processes who are waiting
for the resource.

Unit 08: Process Synchronization

Notes

Figure 8.11: Binary Semaphore

Look at the figure 8.11: for details of Binary semaphore.This binary semaphore which can take only
two values 0 and 1 and ensure mutual exclusion.There is one other type of semaphore called
counting semaphore which can take values greater than one.Now suppose there is a resource
whose number of instances is 4. Now we initialize S = 4 and the rest is the same as for binary
semaphore. Whenever the process wants that resource it calls P or waits for function and when it is
done it calls V or signal function. If the value of S becomes zero then a process has to wait until S
becomes positive. For example, Suppose there are 4 processes P1, P2, P3, P4, and they all call wait
operation on S(initialized with 4). If another process P5 wants the resource then it should wait until
one of the four processes calls the signal function and the value of semaphore becomes positive.

Semaphore Limitations:
1. One of the biggest limitations of semaphore is priority inversion.

2. Deadlock, suppose a process is trying to wake up another process which is not in a sleep
state. Therefore, a deadlock may block indefinitely.

3. The operating system has to keep track of all calls to wait and to signal the semaphore.

Problem in Implementing Semaphores:
The main problem with semaphores is that they require busy waiting, If a process is in the critical
section, then other processes trying to enter critical section will be waiting until the critical section is
not occupied by any process.Whenever any process waits then it continuously checks for
semaphore value (look at this line while (s==0); in P operation) and waste CPU cycle.There is also a
chance of “spinlock” as the processes keep on spins while waiting for the lock.

Implementing Counting Semaphores:
In the counting semaphore implementation, whenever the process waits, it is added to a waiting
queue of processes associated with that semaphore. This is done through system call block() on that
process. When a process is completed it calls the signal function and one process in the queue is
resumed. It uses wakeup() system call.

8.5 What is Mutex?
A mutex is a binary variable whose purpose is to provide locking mechanism. It is used to provide
mutual exclusion to a section of code, means only one process can work on a particular code section
at a time. Mutex is locking mechanism in OS. There is misconception that binary semaphore is same
as mutex variable but both are different in the sense that the binary semaphore apart from
providing locking mechanism also provides two atomic operation signal and wait, means after
releasing resource semaphore will provide signaling mechanism for the processes who are waiting
for the resource.

Unit 08: Process Synchronization

Notes

Figure 8.11: Binary Semaphore

Look at the figure 8.11: for details of Binary semaphore.This binary semaphore which can take only
two values 0 and 1 and ensure mutual exclusion.There is one other type of semaphore called
counting semaphore which can take values greater than one.Now suppose there is a resource
whose number of instances is 4. Now we initialize S = 4 and the rest is the same as for binary
semaphore. Whenever the process wants that resource it calls P or waits for function and when it is
done it calls V or signal function. If the value of S becomes zero then a process has to wait until S
becomes positive. For example, Suppose there are 4 processes P1, P2, P3, P4, and they all call wait
operation on S(initialized with 4). If another process P5 wants the resource then it should wait until
one of the four processes calls the signal function and the value of semaphore becomes positive.

Semaphore Limitations:
1. One of the biggest limitations of semaphore is priority inversion.

2. Deadlock, suppose a process is trying to wake up another process which is not in a sleep
state. Therefore, a deadlock may block indefinitely.

3. The operating system has to keep track of all calls to wait and to signal the semaphore.

Problem in Implementing Semaphores:
The main problem with semaphores is that they require busy waiting, If a process is in the critical
section, then other processes trying to enter critical section will be waiting until the critical section is
not occupied by any process.Whenever any process waits then it continuously checks for
semaphore value (look at this line while (s==0); in P operation) and waste CPU cycle.There is also a
chance of “spinlock” as the processes keep on spins while waiting for the lock.

Implementing Counting Semaphores:
In the counting semaphore implementation, whenever the process waits, it is added to a waiting
queue of processes associated with that semaphore. This is done through system call block() on that
process. When a process is completed it calls the signal function and one process in the queue is
resumed. It uses wakeup() system call.

8.5 What is Mutex?
A mutex is a binary variable whose purpose is to provide locking mechanism. It is used to provide
mutual exclusion to a section of code, means only one process can work on a particular code section
at a time. Mutex is locking mechanism in OS. There is misconception that binary semaphore is same
as mutex variable but both are different in the sense that the binary semaphore apart from
providing locking mechanism also provides two atomic operation signal and wait, means after
releasing resource semaphore will provide signaling mechanism for the processes who are waiting
for the resource.

Lovely Professional University 139

Operating System

Notes

Difference between Mutex & Semaphore
1. Mutex is used for thread but semaphore is used for process.

2. Mutex works in user space but semaphore work in kernel space.

3. Mutex is locking mechanism ownership method but semaphore is signaling mechanism
but not ownership.

4. Thread to thread mutex is used but for process to process locking mechanism, semaphore
is used.

Producer-Consumer Problem using Semaphores

The Solution to producer-consumer problem uses three semaphores, namely, full, empty
andmutex.The semaphore ‘full’ is used for counting the number of slots in the buffer that are full.
The ‘empty’for counting the number of slots that are empty and semaphore ‘mutex’ to make sure
that theproducer and consumer do not access modifiable shared section of the buffer
simultaneously.

Initialization

1. Set full buffer slots to 0.

i.e., semaphore Full = 0.

2. Set empty buffer slots to N.

i.e., semaphore empty = N.

3. For control access to critical section set mutex to 1.

i.e., semaphore mutex = 1.

Producer ()

WHILE (true)

produce-Item ();

P (empty);

P (mutex);

enter-Item ()

V (mutex)

V (full);

Consumer ()

WHILE (true)

P (full)

P (mutex);

remove-Item ();

V (mutex);

V (empty);

consume-Item (Item)

A semaphore is hardware or a software tag variable whose value indicates the status of a
commonresource. Its purpose is to lock the resource being used. A process which needs the
resourcewill check the semaphore for determining the status of the resource followed by the
decisionfor proceeding. In multitasking operating systems, the activities are synchronized by using
thesemaphore techniques.

Semaphore is a mechanism to resolve resources conflicts by tallying resource seekers what is
thestate of sought resources, achieving a mutual exclusive access to resources. Often
semaphoreoperates as a type of mutual exclusive counters (such as mutexes) where it holds a
number ofaccess keys to the resources. Process that seeks the resources must obtain one of those
accesskeys, one of semaphores, before it proceeds further to utilize the resource. If there is no more
sucha key available to the process, it has to wait for the current resource user to release the key.

Lovely Professional University140

Unit 08: Process Synchronization

Notes

A semaphore could have the value 0,indicating that no wakeups were saved, or some
positivevalues if one or more wakeups were pending.

A semaphore s is an integer variable that apart from initialization, is accessed only through
twostandard atomic operations, wait and signal. these operations were originally, termed p(for
waitto test) and v(for signal to increment).

The classical definition of wait in pseudocode is:

wait(s)

{

while(s<=0)

;// no-op

s--;

}

The classical defination of signal in pseudocode is:

signal(s)

{

s++;

}

Modification to the integer value of semaphore in wait and signal operations must be
executedindividually.That is, when one process modifies the semaphore value no other process can
simultaneouslymodifiy that same semaphore value.

8.6 Monitors
A monitor is a software synchronization tool with high-level of abstraction that provides
aconvenient and effective mechanism for process synchronization. It allows only one process tobe
active within the monitor at a time. One simple implementation is shown below.

monitor monitor_name

{
// shared variable declarations
procedure P1 (…) { …. }
…
procedure Pn(…) {……}
Initialization code (….) { …}
…
}

8.7 Schedule
A series of operation from one transaction to another transaction is known as schedule. It is used to
preserve the order of the operation in each of the individual transaction.

Figure: Different Types of Schedules

1) Serial Schedule - The serial schedule is a type of schedule where one transaction is executed
completely before starting another transaction. In the serial schedule, when the first transaction
completes its cycle, then the next transaction is executed.

Unit 08: Process Synchronization

Notes

A semaphore could have the value 0,indicating that no wakeups were saved, or some
positivevalues if one or more wakeups were pending.

A semaphore s is an integer variable that apart from initialization, is accessed only through
twostandard atomic operations, wait and signal. these operations were originally, termed p(for
waitto test) and v(for signal to increment).

The classical definition of wait in pseudocode is:

wait(s)

{

while(s<=0)

;// no-op

s--;

}

The classical defination of signal in pseudocode is:

signal(s)

{

s++;

}

Modification to the integer value of semaphore in wait and signal operations must be
executedindividually.That is, when one process modifies the semaphore value no other process can
simultaneouslymodifiy that same semaphore value.

8.6 Monitors
A monitor is a software synchronization tool with high-level of abstraction that provides
aconvenient and effective mechanism for process synchronization. It allows only one process tobe
active within the monitor at a time. One simple implementation is shown below.

monitor monitor_name

{
// shared variable declarations
procedure P1 (…) { …. }
…
procedure Pn(…) {……}
Initialization code (….) { …}
…
}

8.7 Schedule
A series of operation from one transaction to another transaction is known as schedule. It is used to
preserve the order of the operation in each of the individual transaction.

Figure: Different Types of Schedules

1) Serial Schedule - The serial schedule is a type of schedule where one transaction is executed
completely before starting another transaction. In the serial schedule, when the first transaction
completes its cycle, then the next transaction is executed.

Unit 08: Process Synchronization

Notes

A semaphore could have the value 0,indicating that no wakeups were saved, or some
positivevalues if one or more wakeups were pending.

A semaphore s is an integer variable that apart from initialization, is accessed only through
twostandard atomic operations, wait and signal. these operations were originally, termed p(for
waitto test) and v(for signal to increment).

The classical definition of wait in pseudocode is:

wait(s)

{

while(s<=0)

;// no-op

s--;

}

The classical defination of signal in pseudocode is:

signal(s)

{

s++;

}

Modification to the integer value of semaphore in wait and signal operations must be
executedindividually.That is, when one process modifies the semaphore value no other process can
simultaneouslymodifiy that same semaphore value.

8.6 Monitors
A monitor is a software synchronization tool with high-level of abstraction that provides
aconvenient and effective mechanism for process synchronization. It allows only one process tobe
active within the monitor at a time. One simple implementation is shown below.

monitor monitor_name

{
// shared variable declarations
procedure P1 (…) { …. }
…
procedure Pn(…) {……}
Initialization code (….) { …}
…
}

8.7 Schedule
A series of operation from one transaction to another transaction is known as schedule. It is used to
preserve the order of the operation in each of the individual transaction.

Figure: Different Types of Schedules

1) Serial Schedule - The serial schedule is a type of schedule where one transaction is executed
completely before starting another transaction. In the serial schedule, when the first transaction
completes its cycle, then the next transaction is executed.

Lovely Professional University 141

Operating System

Notes

Example:

Suppose there are two transactions T1 and T2 which have some operations. If it has no interleaving
of operations, then there are the following two possible outcomes:

• Execute all the operations of T1 which was followed by all the operations of T2.

• Execute all the operations of T1 which was followed by all the operations of T2.

Figure: Serial Schedule Types

In the given figure, Schedule A shows the serial schedule where T1 followed by T2.

2) Non-serial Schedule - If interleaving of operations is allowed, then there will be non-serial
schedule.It contains many possible orders in which the system can execute the individual
operations of the transactions.

Figure:

In the given figure, Schedule C and Schedule D are the non-serial schedules. It has interleaving of
operations.

3) Serializable schedule - The serializability of schedules is used to find non-serial schedules that
allow the transaction to execute concurrently without interfering with one another.It identifies
which schedules are correct when executions of the transaction have interleaving of their
operations.A non-serial schedule will be serializable if its result is equal to the result of its
transactions executed serially.

Summary

• Race condition is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

• It may arise in multi-process environment, especially when communicating betweenseparate
processes or threads of execution.

Operating System

Notes

Example:

Suppose there are two transactions T1 and T2 which have some operations. If it has no interleaving
of operations, then there are the following two possible outcomes:

• Execute all the operations of T1 which was followed by all the operations of T2.

• Execute all the operations of T1 which was followed by all the operations of T2.

Figure: Serial Schedule Types

In the given figure, Schedule A shows the serial schedule where T1 followed by T2.

2) Non-serial Schedule - If interleaving of operations is allowed, then there will be non-serial
schedule.It contains many possible orders in which the system can execute the individual
operations of the transactions.

Figure:

In the given figure, Schedule C and Schedule D are the non-serial schedules. It has interleaving of
operations.

3) Serializable schedule - The serializability of schedules is used to find non-serial schedules that
allow the transaction to execute concurrently without interfering with one another.It identifies
which schedules are correct when executions of the transaction have interleaving of their
operations.A non-serial schedule will be serializable if its result is equal to the result of its
transactions executed serially.

Summary

• Race condition is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

• It may arise in multi-process environment, especially when communicating betweenseparate
processes or threads of execution.

Operating System

Notes

Example:

Suppose there are two transactions T1 and T2 which have some operations. If it has no interleaving
of operations, then there are the following two possible outcomes:

• Execute all the operations of T1 which was followed by all the operations of T2.

• Execute all the operations of T1 which was followed by all the operations of T2.

Figure: Serial Schedule Types

In the given figure, Schedule A shows the serial schedule where T1 followed by T2.

2) Non-serial Schedule - If interleaving of operations is allowed, then there will be non-serial
schedule.It contains many possible orders in which the system can execute the individual
operations of the transactions.

Figure:

In the given figure, Schedule C and Schedule D are the non-serial schedules. It has interleaving of
operations.

3) Serializable schedule - The serializability of schedules is used to find non-serial schedules that
allow the transaction to execute concurrently without interfering with one another.It identifies
which schedules are correct when executions of the transaction have interleaving of their
operations.A non-serial schedule will be serializable if its result is equal to the result of its
transactions executed serially.

Summary

• Race condition is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

• It may arise in multi-process environment, especially when communicating betweenseparate
processes or threads of execution.

Lovely Professional University142

Unit 08: Process Synchronization

Notes

• Mutual exclusion means that only one of the processes is allowed to execute its criticalsection at
a time. Mutex, semaphores and motors are some of the process synchronizationtools. Mutex is a
software tool used in concurrency control. It is short form of mutualexclusion.

• A mutex is a program element that allows multiple program processes to share the
sameresource but not simultaneously. Semaphore is a software concurrency control tool.It bears
analogy to old Roman system of message transmission using flags. It enforcessynchronization
among communicating processes and does not require busy waiting.

• In counting semaphore, the integer value can range over an unrestricted domain. In
binarysemaphore the integer value can range only between 0 and 1.

• A monitor is a software synchronization tool with high-level of abstraction that providesa
convenient and effective mechanism for process synchronization. It allows only oneprocess to
be active within the monitor at a time.

• Bounded Buffer Problem, readers and writer’s problem, sleeping barber problem, anddining
philosopher problem are some of the classical synchronization problems taken fromreal life
situations.

Keywords
Monitor: It is a software synchronization tool with high-level of abstraction that provides
aconvenient and effective mechanism for process synchronization.

Mute: It is a program element that allows multiple program processes to share the same
resourcebut not simultaneously.

Mutex: It is a software tool used in concurrency control. It is short form of mutual exclusion.

Mutual exclusion: It means that only one of the processes is allowed to execute its critical
sectionat a time.

Race condition: It is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

Semaphore: It is a software concurrency control tool.

Self Assessment

1. Process synchronization facilitates in getting the maximum ……………..
2. are used in software systems in much the same way as they are in

railwaysystems.
3. Part of the program where the shared memory is accessed is called the
4. A is a software synchronization tool with high-level of abstraction

thatprovides a convenient and effective mechanism for process synchronization?
5. To avoid the race condition, the number of processes that may be simultaneously inside

their critical section is ……………
6. Algorithms that avoid mutual exclusion are called

synchronizationalgorithms.
7. abstracted the key notion of mutual exclusion in his concepts ofsemaphores.
8. “No preemption” condition also known as
9. processes share a common, fixed-size (bounded) buffer.
10. Binary Semaphores can assume only the value 0 or the value
11. Process Synchronization coordinates the execution of processes such that no two processes

can have access to the same shared data and resources.

Lovely Professional University 143

Operating System

Notes

A. True
B. False

12. Maintaining data consistency requiresa mechanism to ensure the orderly execution of
cooperating processes.

A. True
B. False

13. A critical region is a piece of code which only one process executes at a time
A. True
B. False

14. When a process is executing in the critical section, then only one additional process can
execute in the critical section.

A. True
B. False

15. The critical section is a code segment where the shared variables can be accessed.
A. True
B. False

16. Race conditions in critical sections can be avoided if the critical section is treated as non-
atomic instruction

A. True
B. False

17. The schedules which have interleaving of operations are called serial schedules.
A. True
B. False

Answers for Self Assessment

1. Throughput 2. Semaphores 3. Critical
Section

4. Monitor 5. one

6. non-
blocking

7. E.W.
Dijkstra
(1965)

8. lockout 9. Two 10. 1

11. A 12. A 13. A 14. B 15. A

16. B 17. B

Lovely Professional University144

Unit 08: Process Synchronization

Notes

Review Questions

1. What is the meaning of the term busy waiting? What other kinds of waiting are there in an
operating system? Can busy waiting be avoided altogether? Explain your answer.

2. What do you mean by mutual exclusion conditions? Explain
3. Show that, if the wait and signal operations are not executed atomically, then mutual

exclusion may be violated.
4. Demonstrate that monitors, conditional critical regions, and semaphores are all equivalent,

insofar as the same types of synchronization problems can be implemented with them. 6.10
Write a bounded-buffer monitor in which the buffers (portions) are embedded within the
monitor itself.

5. Consider a system consisting of processes P₁, P2, P, each of which has a unique priority
number. Write a monitor that allocates three identical line printers to these processes, using
the priority numbers for deciding the order of allocation.

6. A file is to be shared among different processes, each of which has a unique number. The file
can be accessed simultaneously by severalprocesses, subject to the following constraint. The
sum of all unique numbers associated with all the processes currently accessing the file must
be less than n. Write a monitor to coordinate access to the file.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation, Prentice
Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 08: Process Synchronization

Notes

Review Questions

1. What is the meaning of the term busy waiting? What other kinds of waiting are there in an
operating system? Can busy waiting be avoided altogether? Explain your answer.

2. What do you mean by mutual exclusion conditions? Explain
3. Show that, if the wait and signal operations are not executed atomically, then mutual

exclusion may be violated.
4. Demonstrate that monitors, conditional critical regions, and semaphores are all equivalent,

insofar as the same types of synchronization problems can be implemented with them. 6.10
Write a bounded-buffer monitor in which the buffers (portions) are embedded within the
monitor itself.

5. Consider a system consisting of processes P₁, P2, P, each of which has a unique priority
number. Write a monitor that allocates three identical line printers to these processes, using
the priority numbers for deciding the order of allocation.

6. A file is to be shared among different processes, each of which has a unique number. The file
can be accessed simultaneously by severalprocesses, subject to the following constraint. The
sum of all unique numbers associated with all the processes currently accessing the file must
be less than n. Write a monitor to coordinate access to the file.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation, Prentice
Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 08: Process Synchronization

Notes

Review Questions

1. What is the meaning of the term busy waiting? What other kinds of waiting are there in an
operating system? Can busy waiting be avoided altogether? Explain your answer.

2. What do you mean by mutual exclusion conditions? Explain
3. Show that, if the wait and signal operations are not executed atomically, then mutual

exclusion may be violated.
4. Demonstrate that monitors, conditional critical regions, and semaphores are all equivalent,

insofar as the same types of synchronization problems can be implemented with them. 6.10
Write a bounded-buffer monitor in which the buffers (portions) are embedded within the
monitor itself.

5. Consider a system consisting of processes P₁, P2, P, each of which has a unique priority
number. Write a monitor that allocates three identical line printers to these processes, using
the priority numbers for deciding the order of allocation.

6. A file is to be shared among different processes, each of which has a unique number. The file
can be accessed simultaneously by severalprocesses, subject to the following constraint. The
sum of all unique numbers associated with all the processes currently accessing the file must
be less than n. Write a monitor to coordinate access to the file.

Further Readings
Andrew M. Lister, Fundamentals of Operating Systems, Wiley.

Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation, Prentice
Hall.

Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.

Colin Ritchie, Operating Systems, BPB Publications.

Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

I.A. Dhotre, Operating System, Technical Publications.

Milankovic, Operating System, Tata MacGraw Hill, New Delhi.

Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, Seventh
Edition.

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University 145

Unit 09: Deadlocks

Notes

Unit 09: Deadlocks

CONTENTS

Objectives

Introduction

9.1 Deadlock

9.2 Deadlock Characterization

9.3 Deadlock Avoidance

9.4 Deadlock Detection and Recovery

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the system model
 learn the meaning, and causes of deadlocks
 Identify the various characteristics of deadlocks
 learn the methods of handling deadlocks
 understand the basics of resource allocation graph
 learn the various deadlock prevention techniques.
 understanding how these conditions can be eliminated to prevent deadlocks from

occurring.
 learn the deadlock avoidance techniques
 understand the safe and the unsafe deadlock states
 explore the various detection algorithms
 learn the techniques to recover from deadlocks

Introduction
Deadlock is a situation that occurs in OS when any process enters a waiting state because another
waiting process is holding the demanded resource. Deadlock is a common problem in multi-
processing where several processes share a specific type of mutually exclusive resource known as a
soft lock or software. It’s important to prevent a deadlock before it can occur. A resource can be
released only voluntarily by the process holding it after that process has finished its task. It is better
to avoid a deadlock instead of taking an action after the Deadlock has occurred. It needs additional
information, like how resources should be used. Deadlock avoidance is the simplest and most
useful model that each process declares the maximum number of resources of each type that it may
need.

Lovely Professional University146

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

9.1 Deadlock
Deadlock occurs when you have a set of processes [not necessarily all the processes in the
system],each holding some resources, each requesting some resources, and none of them is able to
obtainwhat it needs, i.e. to make progress. Those processes are deadlocked because all the
processesare waiting. None of them will ever cause any of the events that could wake up any of the
othermembers of the set, and all the processes continue to wait forever. For this model, I assume
thatprocesses have only a single thread and that there are no interrupts possible to wake up a
blockedprocess. The no-interrupts condition is needed to prevent an otherwise deadlocked process
frombeing awakened by, say, an alarm, and then causing events that release other processes in the
set.

Figure: Bridge Crossing Example

It can be seen in Figure that traffic flows only in one direction.Each section of a bridge can be
viewed as a resource.If a deadlock occurs, it can be resolved if one car backs up (preempt resources
and rollback).Several cars may have to be backed up if a deadlock occurs. In this case starvation is
possible.

In most cases, the event that each process is waiting for is the release of some resource
currentlypossessed by another member of the set. In other words, each member of the set of
deadlockedprocesses is waiting for a resource that is owned by another deadlocked process. None
of theprocesses can run, none of them can release any resources, and none of them can be
awakened.The number of processes and the number and kind of resources possessed and requested
areunimportant. This result holds for any kind of resource, including both hardware and software.

Figure 9.1: Processes are in Deadlock Situation

Understanding the System Model
A system consists of a number of resources(like R1, R2, . . ., Rm.), CPU cycles, memory spaceand
I/O devices. Each resource type Ri has Wi instances.Each process utilizes a resource as a request,
use and a release.

A process in operating systems uses different resources and uses resources in the following way.

1) Requests a resource

2) Use the resource

3) Releases the resource

Operating System

Notes

9.1 Deadlock
Deadlock occurs when you have a set of processes [not necessarily all the processes in the
system],each holding some resources, each requesting some resources, and none of them is able to
obtainwhat it needs, i.e. to make progress. Those processes are deadlocked because all the
processesare waiting. None of them will ever cause any of the events that could wake up any of the
othermembers of the set, and all the processes continue to wait forever. For this model, I assume
thatprocesses have only a single thread and that there are no interrupts possible to wake up a
blockedprocess. The no-interrupts condition is needed to prevent an otherwise deadlocked process
frombeing awakened by, say, an alarm, and then causing events that release other processes in the
set.

Figure: Bridge Crossing Example

It can be seen in Figure that traffic flows only in one direction.Each section of a bridge can be
viewed as a resource.If a deadlock occurs, it can be resolved if one car backs up (preempt resources
and rollback).Several cars may have to be backed up if a deadlock occurs. In this case starvation is
possible.

In most cases, the event that each process is waiting for is the release of some resource
currentlypossessed by another member of the set. In other words, each member of the set of
deadlockedprocesses is waiting for a resource that is owned by another deadlocked process. None
of theprocesses can run, none of them can release any resources, and none of them can be
awakened.The number of processes and the number and kind of resources possessed and requested
areunimportant. This result holds for any kind of resource, including both hardware and software.

Figure 9.1: Processes are in Deadlock Situation

Understanding the System Model
A system consists of a number of resources(like R1, R2, . . ., Rm.), CPU cycles, memory spaceand
I/O devices. Each resource type Ri has Wi instances.Each process utilizes a resource as a request,
use and a release.

A process in operating systems uses different resources and uses resources in the following way.

1) Requests a resource

2) Use the resource

3) Releases the resource

Operating System

Notes

9.1 Deadlock
Deadlock occurs when you have a set of processes [not necessarily all the processes in the
system],each holding some resources, each requesting some resources, and none of them is able to
obtainwhat it needs, i.e. to make progress. Those processes are deadlocked because all the
processesare waiting. None of them will ever cause any of the events that could wake up any of the
othermembers of the set, and all the processes continue to wait forever. For this model, I assume
thatprocesses have only a single thread and that there are no interrupts possible to wake up a
blockedprocess. The no-interrupts condition is needed to prevent an otherwise deadlocked process
frombeing awakened by, say, an alarm, and then causing events that release other processes in the
set.

Figure: Bridge Crossing Example

It can be seen in Figure that traffic flows only in one direction.Each section of a bridge can be
viewed as a resource.If a deadlock occurs, it can be resolved if one car backs up (preempt resources
and rollback).Several cars may have to be backed up if a deadlock occurs. In this case starvation is
possible.

In most cases, the event that each process is waiting for is the release of some resource
currentlypossessed by another member of the set. In other words, each member of the set of
deadlockedprocesses is waiting for a resource that is owned by another deadlocked process. None
of theprocesses can run, none of them can release any resources, and none of them can be
awakened.The number of processes and the number and kind of resources possessed and requested
areunimportant. This result holds for any kind of resource, including both hardware and software.

Figure 9.1: Processes are in Deadlock Situation

Understanding the System Model
A system consists of a number of resources(like R1, R2, . . ., Rm.), CPU cycles, memory spaceand
I/O devices. Each resource type Ri has Wi instances.Each process utilizes a resource as a request,
use and a release.

A process in operating systems uses different resources and uses resources in the following way.

1) Requests a resource

2) Use the resource

3) Releases the resource

Lovely Professional University 147

Unit 09: Deadlocks

Notes

The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a resource held by
another process in the set.

For example a system has 2 tape drives.P1 and P2 each hold one tape drive and each needs another
one. Semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

9.2 Deadlock Characterization
Necessary Conditions

Deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Resources are used in mutual exclusion.
2. Resources are acquired piecemeal (i.e. not all the resources that are needed to complete

anactivity are obtained at the same time in a single indivisible action).
3. Resources are not preempted (i.e. a process does not take away resources being held byanother

process).
4. Resources are not spontaneously given up by a process until it has satisfied all itsoutstanding

requests for resources (i.e. a process, being that it cannot obtain some neededresource it does
not kindly give up the resources that it is currently holding).

Resource Allocation Graphs

Resource Allocation Graphs (RAGs) are directed labeled graphs used to represent, from the pointof
view of deadlocks, the current state of a system.

State transitions can be represented as transitions between the corresponding resource
allocationgraphs. Here are the rules for state transitions:

1. Request: If process Pi has no outstanding request, it can request simultaneously anynumber
(up to multiplicity) of resources R1, R2, ..Rm. The request is represented by addingappropriate
requests edges to the RAG of the current state.

2. Acquisition: If process Pi has outstanding requests and they can all be simultaneouslysatisfied,
then the request edges of these requests are replaced by assignment edges in theRAG of the
current state

Unit 09: Deadlocks

Notes

The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a resource held by
another process in the set.

For example a system has 2 tape drives.P1 and P2 each hold one tape drive and each needs another
one. Semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

9.2 Deadlock Characterization
Necessary Conditions

Deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Resources are used in mutual exclusion.
2. Resources are acquired piecemeal (i.e. not all the resources that are needed to complete

anactivity are obtained at the same time in a single indivisible action).
3. Resources are not preempted (i.e. a process does not take away resources being held byanother

process).
4. Resources are not spontaneously given up by a process until it has satisfied all itsoutstanding

requests for resources (i.e. a process, being that it cannot obtain some neededresource it does
not kindly give up the resources that it is currently holding).

Resource Allocation Graphs

Resource Allocation Graphs (RAGs) are directed labeled graphs used to represent, from the pointof
view of deadlocks, the current state of a system.

State transitions can be represented as transitions between the corresponding resource
allocationgraphs. Here are the rules for state transitions:

1. Request: If process Pi has no outstanding request, it can request simultaneously anynumber
(up to multiplicity) of resources R1, R2, ..Rm. The request is represented by addingappropriate
requests edges to the RAG of the current state.

2. Acquisition: If process Pi has outstanding requests and they can all be simultaneouslysatisfied,
then the request edges of these requests are replaced by assignment edges in theRAG of the
current state

Unit 09: Deadlocks

Notes

The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a resource held by
another process in the set.

For example a system has 2 tape drives.P1 and P2 each hold one tape drive and each needs another
one. Semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

9.2 Deadlock Characterization
Necessary Conditions

Deadlock situation can arise if the following four conditions hold simultaneously in a system:

1. Resources are used in mutual exclusion.
2. Resources are acquired piecemeal (i.e. not all the resources that are needed to complete

anactivity are obtained at the same time in a single indivisible action).
3. Resources are not preempted (i.e. a process does not take away resources being held byanother

process).
4. Resources are not spontaneously given up by a process until it has satisfied all itsoutstanding

requests for resources (i.e. a process, being that it cannot obtain some neededresource it does
not kindly give up the resources that it is currently holding).

Resource Allocation Graphs

Resource Allocation Graphs (RAGs) are directed labeled graphs used to represent, from the pointof
view of deadlocks, the current state of a system.

State transitions can be represented as transitions between the corresponding resource
allocationgraphs. Here are the rules for state transitions:

1. Request: If process Pi has no outstanding request, it can request simultaneously anynumber
(up to multiplicity) of resources R1, R2, ..Rm. The request is represented by addingappropriate
requests edges to the RAG of the current state.

2. Acquisition: If process Pi has outstanding requests and they can all be simultaneouslysatisfied,
then the request edges of these requests are replaced by assignment edges in theRAG of the
current state

Lovely Professional University148

Operating System

Notes

3. Release: If process Pi has no outstanding request then it can release any of the resources itis
holding, and remove the corresponding assignment edges from the RAG of the currentstate.

Here are some important propositions about deadlocks and resource allocation graphs:

1. If a RAG of a state of a system is fully reducible (i.e. it can be reduced to a graph withoutany
edges using ACQUISITION and RELEASE operations) then that state is not a deadlockstate.

2. If a state is not a deadlock state then its RAG is fully reducible [this holds only if you
aredealing with reusable resources; it is false if you have consumable resources]

3. A cycle in the RAG of a state is a necessary condition for that being a deadlock state
4. A cycle in the RAG of a state is a sufficient condition for that being a deadlock state only inthe

case of reusable resources with multiplicity one.Example:Here is an example of reduction of a RAG:

And here is a deadlock-free system with a loop.

Deadlocks can be prevented by ensuring that at least one of the following four conditions occur:

1. Mutual exclusion: Removing the mutual exclusion condition means that no process
mayhave exclusive access to a resource. This proves impossible for resources that cannot
bespooled, and even with spooled resources deadlock could still occur. Algorithms
thatavoid mutual exclusion are called non-blocking synchronization algorithms.

Operating System

Notes

3. Release: If process Pi has no outstanding request then it can release any of the resources itis
holding, and remove the corresponding assignment edges from the RAG of the currentstate.

Here are some important propositions about deadlocks and resource allocation graphs:

1. If a RAG of a state of a system is fully reducible (i.e. it can be reduced to a graph withoutany
edges using ACQUISITION and RELEASE operations) then that state is not a deadlockstate.

2. If a state is not a deadlock state then its RAG is fully reducible [this holds only if you
aredealing with reusable resources; it is false if you have consumable resources]

3. A cycle in the RAG of a state is a necessary condition for that being a deadlock state
4. A cycle in the RAG of a state is a sufficient condition for that being a deadlock state only inthe

case of reusable resources with multiplicity one.Example:Here is an example of reduction of a RAG:

And here is a deadlock-free system with a loop.

Deadlocks can be prevented by ensuring that at least one of the following four conditions occur:

1. Mutual exclusion: Removing the mutual exclusion condition means that no process
mayhave exclusive access to a resource. This proves impossible for resources that cannot
bespooled, and even with spooled resources deadlock could still occur. Algorithms
thatavoid mutual exclusion are called non-blocking synchronization algorithms.

Operating System

Notes

3. Release: If process Pi has no outstanding request then it can release any of the resources itis
holding, and remove the corresponding assignment edges from the RAG of the currentstate.

Here are some important propositions about deadlocks and resource allocation graphs:

1. If a RAG of a state of a system is fully reducible (i.e. it can be reduced to a graph withoutany
edges using ACQUISITION and RELEASE operations) then that state is not a deadlockstate.

2. If a state is not a deadlock state then its RAG is fully reducible [this holds only if you
aredealing with reusable resources; it is false if you have consumable resources]

3. A cycle in the RAG of a state is a necessary condition for that being a deadlock state
4. A cycle in the RAG of a state is a sufficient condition for that being a deadlock state only inthe

case of reusable resources with multiplicity one.Example:Here is an example of reduction of a RAG:

And here is a deadlock-free system with a loop.

Deadlocks can be prevented by ensuring that at least one of the following four conditions occur:

1. Mutual exclusion: Removing the mutual exclusion condition means that no process
mayhave exclusive access to a resource. This proves impossible for resources that cannot
bespooled, and even with spooled resources deadlock could still occur. Algorithms
thatavoid mutual exclusion are called non-blocking synchronization algorithms.

Lovely Professional University 149

Unit 09: Deadlocks

Notes

2. 2. Hold and wait: The “hold and wait” conditions may be removed by requiring
processesto request all the resources they will need before starting up (or before
embarking upona particular set of operations); this advance knowledge is frequently
difficult to satisfyand, in any case, is an inefficient use of resources. Another way is to
require processes torelease all their resources before requesting all the resources they will
need. This too isoften impractical. (Such algorithms, such as serializing tokens, are known
as the all-ornonealgorithms.)

3. No preemption: A “no preemption” (lockout) condition may also be difficult or
impossibleto avoid as a process has to be able to have a resource for a certain amount of
time, or theprocessing outcome may be inconsistent or thrashing may occur. However,
inability toenforce preemption may interfere with a priority algorithm.Notes: Preemption of a “locked out” resource generally implies a rollback, and is tobeavoided, since it is very costly in overhead.
Algorithms that allow preemption include lock-free and wait-free algorithms and
optimisticconcurrency control.

4. Circular wait: The circular wait condition: Algorithms that avoid circular waits
include“disable interrupts during critical sections”, and “use a hierarchy to determine a
partialordering of resources” (where no obvious hierarchy exists, even the memory
address ofresources has been used to determine ordering) and Dijkstra’s solution.

9.3 Deadlock Avoidance
Deadlock Avoidance, assuming that you are in a safe state (i.e. a state from which there is
asequence of allocations and releases of resources that allows all processes to terminate) and youare
requested certain resources, simulates the allocation of those resources and determines if
theresultant state is safe. If it is safe the request is satisfied, otherwise it is delayed until it
becomessafe.

The Banker’s Algorithm is used to determine if a request can be satisfied. It uses requiresknowledge
of who are the competing transactions and what are their resource needs. Deadlockavoidance is
essentially not used in distributed systems.

9.4 Deadlock Detection and Recovery
Often neither deadlock avoidance nor deadlock prevention may be used. Instead deadlockdetection
and recovery are used by employing an algorithm that tracks resource allocation andprocess states,
and rolls back and restarts one or more of the processes in order to remove thedeadlock. Detecting
a deadlock that has already occurred is easily possible since the resourcesthat each process has
locked and/or currently requested are known to the resource scheduleror OS.Detecting the
possibility of a deadlock before it occurs is much more difficult and is, in fact,generally
undecidable, because the halting problem can be rephrased as a deadlock scenario.However, in
specific environments, using specific means of locking resources, deadlock detectionmay be
decidable. In the general case, it is not possible to distinguish between algorithms that aremerely
waiting for a very unlikely set of circumstances to occur and algorithms that will neverfinish
because of deadlock.

Ignore Deadlock
In the Ostrich Algorithm it is hoped that deadlock doesn’t happen. In general, this is a
reasonablestrategy. Deadlock is unlikely to occur very often; a system can run for years without
deadlockoccurring. If the operating system has a deadlock prevention or detection system in place,
thiswill have a negative impact on performance (slow the system down) because whenever a
processor thread requests a resource, the system will have to check whether granting this request
couldcause a potential deadlock situation.If deadlock does occur, it may be necessary to bring the

Unit 09: Deadlocks

Notes

2. 2. Hold and wait: The “hold and wait” conditions may be removed by requiring
processesto request all the resources they will need before starting up (or before
embarking upona particular set of operations); this advance knowledge is frequently
difficult to satisfyand, in any case, is an inefficient use of resources. Another way is to
require processes torelease all their resources before requesting all the resources they will
need. This too isoften impractical. (Such algorithms, such as serializing tokens, are known
as the all-ornonealgorithms.)

3. No preemption: A “no preemption” (lockout) condition may also be difficult or
impossibleto avoid as a process has to be able to have a resource for a certain amount of
time, or theprocessing outcome may be inconsistent or thrashing may occur. However,
inability toenforce preemption may interfere with a priority algorithm.Notes: Preemption of a “locked out” resource generally implies a rollback, and is tobeavoided, since it is very costly in overhead.
Algorithms that allow preemption include lock-free and wait-free algorithms and
optimisticconcurrency control.

4. Circular wait: The circular wait condition: Algorithms that avoid circular waits
include“disable interrupts during critical sections”, and “use a hierarchy to determine a
partialordering of resources” (where no obvious hierarchy exists, even the memory
address ofresources has been used to determine ordering) and Dijkstra’s solution.

9.3 Deadlock Avoidance
Deadlock Avoidance, assuming that you are in a safe state (i.e. a state from which there is
asequence of allocations and releases of resources that allows all processes to terminate) and youare
requested certain resources, simulates the allocation of those resources and determines if
theresultant state is safe. If it is safe the request is satisfied, otherwise it is delayed until it
becomessafe.

The Banker’s Algorithm is used to determine if a request can be satisfied. It uses requiresknowledge
of who are the competing transactions and what are their resource needs. Deadlockavoidance is
essentially not used in distributed systems.

9.4 Deadlock Detection and Recovery
Often neither deadlock avoidance nor deadlock prevention may be used. Instead deadlockdetection
and recovery are used by employing an algorithm that tracks resource allocation andprocess states,
and rolls back and restarts one or more of the processes in order to remove thedeadlock. Detecting
a deadlock that has already occurred is easily possible since the resourcesthat each process has
locked and/or currently requested are known to the resource scheduleror OS.Detecting the
possibility of a deadlock before it occurs is much more difficult and is, in fact,generally
undecidable, because the halting problem can be rephrased as a deadlock scenario.However, in
specific environments, using specific means of locking resources, deadlock detectionmay be
decidable. In the general case, it is not possible to distinguish between algorithms that aremerely
waiting for a very unlikely set of circumstances to occur and algorithms that will neverfinish
because of deadlock.

Ignore Deadlock
In the Ostrich Algorithm it is hoped that deadlock doesn’t happen. In general, this is a
reasonablestrategy. Deadlock is unlikely to occur very often; a system can run for years without
deadlockoccurring. If the operating system has a deadlock prevention or detection system in place,
thiswill have a negative impact on performance (slow the system down) because whenever a
processor thread requests a resource, the system will have to check whether granting this request
couldcause a potential deadlock situation.If deadlock does occur, it may be necessary to bring the

Unit 09: Deadlocks

Notes

2. 2. Hold and wait: The “hold and wait” conditions may be removed by requiring
processesto request all the resources they will need before starting up (or before
embarking upona particular set of operations); this advance knowledge is frequently
difficult to satisfyand, in any case, is an inefficient use of resources. Another way is to
require processes torelease all their resources before requesting all the resources they will
need. This too isoften impractical. (Such algorithms, such as serializing tokens, are known
as the all-ornonealgorithms.)

3. No preemption: A “no preemption” (lockout) condition may also be difficult or
impossibleto avoid as a process has to be able to have a resource for a certain amount of
time, or theprocessing outcome may be inconsistent or thrashing may occur. However,
inability toenforce preemption may interfere with a priority algorithm.Notes: Preemption of a “locked out” resource generally implies a rollback, and is tobeavoided, since it is very costly in overhead.
Algorithms that allow preemption include lock-free and wait-free algorithms and
optimisticconcurrency control.

4. Circular wait: The circular wait condition: Algorithms that avoid circular waits
include“disable interrupts during critical sections”, and “use a hierarchy to determine a
partialordering of resources” (where no obvious hierarchy exists, even the memory
address ofresources has been used to determine ordering) and Dijkstra’s solution.

9.3 Deadlock Avoidance
Deadlock Avoidance, assuming that you are in a safe state (i.e. a state from which there is
asequence of allocations and releases of resources that allows all processes to terminate) and youare
requested certain resources, simulates the allocation of those resources and determines if
theresultant state is safe. If it is safe the request is satisfied, otherwise it is delayed until it
becomessafe.

The Banker’s Algorithm is used to determine if a request can be satisfied. It uses requiresknowledge
of who are the competing transactions and what are their resource needs. Deadlockavoidance is
essentially not used in distributed systems.

9.4 Deadlock Detection and Recovery
Often neither deadlock avoidance nor deadlock prevention may be used. Instead deadlockdetection
and recovery are used by employing an algorithm that tracks resource allocation andprocess states,
and rolls back and restarts one or more of the processes in order to remove thedeadlock. Detecting
a deadlock that has already occurred is easily possible since the resourcesthat each process has
locked and/or currently requested are known to the resource scheduleror OS.Detecting the
possibility of a deadlock before it occurs is much more difficult and is, in fact,generally
undecidable, because the halting problem can be rephrased as a deadlock scenario.However, in
specific environments, using specific means of locking resources, deadlock detectionmay be
decidable. In the general case, it is not possible to distinguish between algorithms that aremerely
waiting for a very unlikely set of circumstances to occur and algorithms that will neverfinish
because of deadlock.

Ignore Deadlock
In the Ostrich Algorithm it is hoped that deadlock doesn’t happen. In general, this is a
reasonablestrategy. Deadlock is unlikely to occur very often; a system can run for years without
deadlockoccurring. If the operating system has a deadlock prevention or detection system in place,
thiswill have a negative impact on performance (slow the system down) because whenever a
processor thread requests a resource, the system will have to check whether granting this request
couldcause a potential deadlock situation.If deadlock does occur, it may be necessary to bring the

Lovely Professional University150

Operating System

Notes

system down, or at least manually kill anumber of processes, but even that is not an extreme
solution in most situations.

The Banker’s Algorithm for Detecting/Preventing Deadlocks
Banker’s Algorithm for Single Resource
This is modeled on the way a small-town banker might deal with customers’ lines of credit. In
thecourse of conducting business, our banker would naturally observe that customers rarely
drawtheir credit lines to their limits. This, of course, suggests the idea of extending more credit
thanthe amount the banker actually has in her coffers.Suppose we start with the following situation

Customer Credit Used Credit LineAndy 0 6Barb 0 5Marv 0 4Sue 0 7Funds Available 10Max Commitment 22
Our banker has 10 credits to lend, but a possible liability of 22. Her job is to keep enough inreserve
so that ultimately each customer can be satisfied over time: That is, that each customerwill be able
to access his full credit line, just not all at the same time. Suppose, after a while, thebank’s credit
line book shows.

Customer Credit Used Credit Line

Sue 1 6

Barb 1 5

Marv 2 4

Sue 4 7

Funds Available 2

Max Commitment 22

Eight credits have been allocated to the various customers; two remain. The question then is:Does a
way exist such that each customer can be satisfied? Can each be allowed their maximumcredit line
in some sequence? We presume that, once a customer has been allocated up to hislimit, the banker
can delay the others until that customer repays his loan, at which point thecredits become available
to the remaining customers. If we arrive at a state where no customercan get his maximum because
not enough credits remain, then a deadlock could occur, becausethe first customer to ask to draw
his credit to its maximum would be denied, and all would haveto wait.

To determine whether such a sequence exists, the banker finds the customer closest to his limit:
Ifthe remaining credits will get him to that limit, the banker then assumes that that loan is
repaid,and proceeds to the customer next closest to his limit, and so on. If all can be granted a full
credit,the condition is safe.

In this case, Marv is closest to his limit: assume his loan is repaid. This frees up 4 credits.
AfterMarv, Barb is closest to her limit (actually, she’s tied with Sue, but it makes no difference) and
3of the 4 freed from Marv could be used to award her maximum. Assume her loan is repaid;
wehave now freed 6 credits. Sue is next, and her situation is identical to Barb’s, so assume her
loanis repaid. We have freed enough credits (6) to grant Andy his limit; thus, this state

Lovely Professional University 151

Unit 09: Deadlocks

Notes

safe.Suppose, however, that the banker proceeded to award Barb one more credit after the credit
bookarrived at the state immediately above:

Customer Credit Used Credit Line

Andy 1 6

Barb 2 5

Marv 2 4

Sue 4 7

Funds Available 1

Max Commitment 22

Now it’s easy to see that the remaining credit could do no good toward getting anyone to
theirmaximum.

So, to recap, the banker’s algorithm looks at each request as it occurs, and tests if granting it
willlead to a safe state. If not, the request is delayed. To test for a safe state, the banker checks to
seeif enough resources will remain after granting the request to satisfy the customer closest to
hismaximum. If so, that loan is assumed repaid, and the next customer checked, and so on. If
allloans can be repaid, then the request leads to a safe state, and can be granted. In this case, we
seethat if Barb is awarded another credit, Marv, who is closest to his maximum, cannot be
awardedenough credits, hence Barb’s request can’t be granted —it will lead to an unsafe state3.

Banker’s Algorithm for Multiple Resources

Suppose, for example, we have the following situation, where the first table represents
resourcesassigned, and the second resources still required by five processes, A, B, C, D, and E.

Resources Assigned

Processes Tapes Plotters Printers Toasters

A 3 0 1 1

B 0 1 0 0

C 1 1 1 0

D 1 1 0 1

E 0 0 0 0

Total Existing 6 3 4 2

Total Claimed by Processes 5 3 2 2

Remaining Unclaimed 1 0 2 0

Resources Still Needed

Processes Tapes Plotters Printers ToastersA 1 1 0 0B 0 1 1 2

Lovely Professional University152

Operating System

Notes

C 3 1 0 0D 0 0 1 0E 2 1 1 0

The vectors E, P and A represent Existing, Possessed and Available resources respectively:

E = (6, 3, 4, 2)

P = (5, 3, 2, 2)

A = (1, 0, 2, 0)

Notice that

A = E - P

Now, to state the algorithm more formally, but in essentially the same way as the example
withAndy, Barb, Marv and Sue:

1. Look for a row whose unmet needs don’t exceed what’s available, that is, a row whereP <= A;
if no such row exists, we are deadlocked because no process can acquire theresources it needs
to run to completion. If there’s more than one such row, just pick one.

2. Assume that the process chosen in 1 acquires all the resources it needs and runs tocompletion,
thereby releasing its resources. Mark that process as virtually terminated andadd its resources
to A.

3. Repeat 1 and 2 until all processes are either virtually terminated (safe state), or a deadlockis
detected (unsafe state).

Going thru this algorithm with the foregoing data, we see that process D’s requirements aresmaller
than A, so we virtually terminate D and add its resources back into the available pool:

E = (6, 3, 4, 2)

P = (5, 3, 2, 2) - (1, 1, 0, 1) = (4, 2, 2, 1)

A = (1, 0, 2, 0) + (1, 1, 0, 1) = (2, 1, 2, 1)

Now, A’s requirements are less than A, so do the same thing with A:

P = (4, 2, 2, 1) – (3, 0, 1, 1) = (1, 2, 1, 0)

A = (2, 1, 2, 1) + (3, 0, 1, 1) = (5, 1, 3, 2)

At this point, we see that there are no remaining processes that can’t be satisfied from available

resources, so the illustrated state is safe.

Summary

 Race condition is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

 It may arise in multi-process environment, especially when communicating
betweenseparate processes or threads of execution.

 Mutual exclusion means that only one of the processes is allowed to execute its
criticalsection at a time. Mutex, semaphores and motors are some of the process
synchronizationtools. Mutex is a software tool used in concurrency control. It is short form
of mutualexclusion.

 A mutex is a program element that allows multiple program processes to share the
sameresource but not simultaneously. Semaphore is a software concurrency control tool.It
bears analogy to old Roman system of message transmission using flags. It

Lovely Professional University 153

Unit 09: Deadlocks

Notes

enforcessynchronization among communicating processes and does not require busy
waiting.

 In counting semaphore, the integer value can range over an unrestricted domain. In
binarysemaphore the integer value can range only between 0 and 1.

 A monitor is a software synchronization tool with high-level of abstraction that providesa
convenient and effective mechanism for process synchronization. It allows only
oneprocess to be active within the monitor at a time.

 Bounded Buffer Problem, readers and writer’s problem, sleeping barber problem,
anddining philosopher problem are some of the classical synchronization problems taken
fromreal life situations.

 Deadlock is a state which occurs when there are two or more processes which are in an
indefinite waiting condition waiting for an event which in turn is waiting for some
resources held by some waiting processes. In other words, a deadlock is a situation
wherein two or more competing actions are waiting for the other to finish, and thus
neither ever does.

 The main question here is "How to deal with deadlocks?". There can be three ways by
which deadlocks can be dealt with:

o Using some appropriate protocols that can avoid or prevent deadlocks from
occurring. This is only possible by ensuring that the system never enters an
unsafe deadlocked stage.

o Second approach could be letting the system enter a deadlock state and then
trying to detect and recover it.

o Third approach could be ignoring the deadlock condition altogether and simply
pretending as if nothing has happened in the system. This does not sound to be a
wise approach. However, it is interesting to note that this approach is being used
in operating systems like UNIX and Windows.

So, when does a deadlock occur? There are four necessary conditions that should hold
simultaneously for a deadlock to occur. These four conditions are mutual exclusion, hold
and wait, no preemption and circular wait. In simple words we can say that to prevent
deadlocks, at least one of the necessary conditions should never hold.

 Resource Allocation Graphs (RAGs) are directedlabeled graphs used to represent, from
the point of view of deadlocks, the current stateof a system. There are several ways to
address the problem of deadlock in an operatingsystem

 Prevent, Avoid, Detection and recovery and Ignore.

Keywords
Deadlock: A deadlock is a situation wherein two or more competing actions are waiting for
theother to finish, and thus neither ever does.

Monitor: It is a software synchronization tool with high-level of abstraction that provides
aconvenient and effective mechanism for process synchronization.

Mute: It is a program element that allows multiple program processes to share the same
resourcebut not simultaneously.

Mutex: It is a software tool used in concurrency control. It is short form of mutual exclusion.

Mutual exclusion: It means that only one of the processes is allowed to execute its critical sectionat a
time.

Race condition: It is a flaw in a system of processes whereby the output of the process
isunexpectedly and critically dependent on the sequence of other processes.

Lovely Professional University154

Operating System

Notes

Resource Allocation Graphs (RAGs): Those are directed labeled graphs used to represent, fromthe
point of view of deadlocks, the current state of a system.

Semaphore: It is a software concurrency control tool.

Self Assessment

1. involves the orderly sharing of system resources by processes.
2. are used in software systems in much the same way as they are in railway

systems.
3. Part of the program where the shared memory is accessed is called the
4. A is a software synchronization tool with high-level of abstraction that

provides a convenient and effective mechanism for process synchronization?
5. Resource Allocation Graphs (RAGs) are labeled graphs.
6. Algorithms that avoid mutual exclusion are called synchronization

algorithms.
7. abstracted the key notion of mutual exclusion in his concepts of semaphores.
8. “No preemption” condition also known as
9. processes share a common, fixed-size (bounded) buffer.
10. A process can be said to be in the deadlock state, if it was waiting for an event that will

never occur.
A. True
B. False

11. A system has 3 processes sharing 4 resources. If each process needs a maximum of 2 units,
then deadlocks may occur

A. True
B. False

12. Algorithms that avoid mutual exclusion are called non-blocking synchronization algorithms.
A. True
B. False

13. Algorithms that avoid mutual exclusion are called synchronization
algorithms.

A. Blocking
B. non-blocking
C. restricting
D. non-restricting

14. Which of the following helps us in identifying a deadlock condition?
A. Starvation graph
B. Resource allocation graph
C. Inversion graph
D. None of the given choices

Lovely Professional University 155

Unit 09: Deadlocks

Notes

15. A process can be said to be in the ………. state, if it was waiting for an event that will never
occur.

A. safe

B. unsafe

C. Starvation

D. Deadlock

Answers for Self Assessment

1. Synchronization 2. Semaphores 3. Critical
Section

4. Monitor 5. directed

6. non-blocking 7. E.W.
Dijkstra
(1965)

8. lockout 9. Two 10. A

11. B 12. A 13. B 14. B 15. D

Review Questions

1. What is a safe state? What is its use in deadlock avoidance?
2. Describe briefly any one method of deadlock prevention.
3. What is concurrency? Explain with example deadlock and starvation.
4. Explain the different deadlock strategies.
5. Can a process be allowed to request multiple resources simultaneously in a system

wheredeadlock is avoided? Discuss why or why not.
6. How deadlock situation is avoided and prevented so that no systems are locked bydeadlock?
7. Consider the following resource allocation situation:

Process P = {P1, P2, P3, P4, P5}

Resources R = {R1, R2, R3}

Allocation E = {P1®R1, P1®R2, P2®R2, P3®R2, P4®R3, P5®R2, R2®P4, R3®P1}

Resource instances n(R1) =3, n(R2) =4, n(R3) =1

Draw the precedence graph. Determine whether there is a deadlock in the abovesituation.

8. Explain process synchronization process.
9. What do you mean by mutual exclusion conditions? Explain
10. Write short note on semaphore.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

Unit 09: Deadlocks

Notes

15. A process can be said to be in the ………. state, if it was waiting for an event that will never
occur.

A. safe

B. unsafe

C. Starvation

D. Deadlock

Answers for Self Assessment

1. Synchronization 2. Semaphores 3. Critical
Section

4. Monitor 5. directed

6. non-blocking 7. E.W.
Dijkstra
(1965)

8. lockout 9. Two 10. A

11. B 12. A 13. B 14. B 15. D

Review Questions

1. What is a safe state? What is its use in deadlock avoidance?
2. Describe briefly any one method of deadlock prevention.
3. What is concurrency? Explain with example deadlock and starvation.
4. Explain the different deadlock strategies.
5. Can a process be allowed to request multiple resources simultaneously in a system

wheredeadlock is avoided? Discuss why or why not.
6. How deadlock situation is avoided and prevented so that no systems are locked bydeadlock?
7. Consider the following resource allocation situation:

Process P = {P1, P2, P3, P4, P5}

Resources R = {R1, R2, R3}

Allocation E = {P1®R1, P1®R2, P2®R2, P3®R2, P4®R3, P5®R2, R2®P4, R3®P1}

Resource instances n(R1) =3, n(R2) =4, n(R3) =1

Draw the precedence graph. Determine whether there is a deadlock in the abovesituation.

8. Explain process synchronization process.
9. What do you mean by mutual exclusion conditions? Explain
10. Write short note on semaphore.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

Unit 09: Deadlocks

Notes

15. A process can be said to be in the ………. state, if it was waiting for an event that will never
occur.

A. safe

B. unsafe

C. Starvation

D. Deadlock

Answers for Self Assessment

1. Synchronization 2. Semaphores 3. Critical
Section

4. Monitor 5. directed

6. non-blocking 7. E.W.
Dijkstra
(1965)

8. lockout 9. Two 10. A

11. B 12. A 13. B 14. B 15. D

Review Questions

1. What is a safe state? What is its use in deadlock avoidance?
2. Describe briefly any one method of deadlock prevention.
3. What is concurrency? Explain with example deadlock and starvation.
4. Explain the different deadlock strategies.
5. Can a process be allowed to request multiple resources simultaneously in a system

wheredeadlock is avoided? Discuss why or why not.
6. How deadlock situation is avoided and prevented so that no systems are locked bydeadlock?
7. Consider the following resource allocation situation:

Process P = {P1, P2, P3, P4, P5}

Resources R = {R1, R2, R3}

Allocation E = {P1®R1, P1®R2, P2®R2, P3®R2, P4®R3, P5®R2, R2®P4, R3®P1}

Resource instances n(R1) =3, n(R2) =4, n(R3) =1

Draw the precedence graph. Determine whether there is a deadlock in the abovesituation.

8. Explain process synchronization process.
9. What do you mean by mutual exclusion conditions? Explain
10. Write short note on semaphore.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.
Lovely Professional University156

Operating System

Notes

I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata McGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata McGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata McGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University 157

Unit 10: Memory Management– I

Notes

Unit 10: Memory Management - I

CONTENTS

Objectives

Introduction

10.1 Memory Management

10.2 Multistep Processing of a User Program

10.3 Logical and Physical Address Space

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the significance of main memory and input queue
 analyze the multistep processing of a user program
 learn the concept of logical and physical address space
 describe swapping
 explain segmentation with paging
 know virtual memory
 describe demand paging

Introduction
Memory is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly. When the computer is in normal operation, its memory usually
contains the main parts of the operating system and some or all of the application programs and
related data that are being used. Memory is often used as a shorter synonym for random access
memory (RAM). This kind of memory is located on one or more microchips that are physically
close to the microprocessor in the computer. Most desktop and notebook computers sold today
include at least 16 megabytes of RAM, and are upgradeable to include more. The more RAM you
have, the less frequently the computer has to access instructions and data from the more slowly
accessed hard disk form of storage.

Memory is sometimes distinguished from storage, or the physical medium that holds the much
larger amounts of data that won’t fi t into RAM and may not be immediately needed there. Storagedevices include hard disks, floppy disks, CD-ROM, and tape backup systems. The terms auxiliarystorage, auxiliary memory, and secondary memory have also been used for this kind of data repository.Additional kinds of integrated and quickly accessible memory are read-only memory (ROM),programmable ROM (PROM), erasable programmable ROM (EPROM). These are used to keep specialprograms and data, such as the basic input/output system, that need to be in the computer all the time.The memory is a resource that needs to be managed carefully. Most computers have a memoryhierarchy, with a small amount of very fast, expensive, volatile cache memory, some number ofmegabytes of medium-speed, medium-price, volatile main memory (RAM), and hundreds of thousands

Lovely Professional University158

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

of megabytes of slow, cheap, non-volatile disk storage. It is the job of the operating system tocoordinate how these memories are used.
10.1 Memory Management
In addition to the responsibility of managing processes, the operating system must efficiently
manage the primary memory of the computer. The part of the operating system which handles this
responsibility is called the memory manager. Since every process must have some amount of
primary memory in order to execute, the performance of the memory manager is crucial to the
performance of the entire system. The memory manager is responsible for allocating primary
memory to processes and for assisting the programmer in loading and storing the contents of the
primary memory. Managing the sharing of primary memory and minimizing memory access time
are the basic goals of the memory manager.

Some basic goals of the main memory are:

 Bringing the program in the main memory and placed within a process for it to be run.
 Input queue – collection of processes on the disk that are waiting to be brought into memory to

run the program.
 User programs go through several steps before being run.

When an operating system manages the computer’s memory, there are two broad tasks to be
accomplished:

1. Each process must have enough memory in which to execute, and it can neither run into the
memory space of another process nor be run into by another process.

2. The different types of memory in the system must be used properly so that each process can
run most effectively.

The first task requires the operating system to set up memory boundaries for types of softwareand
for individual applications.

Example:Let’s look at an imaginary small system with 1 megabyte (1,000 kilobytes) ofRAM.
During the boot process, the operating system of our imaginary computer is designedto go to the
top of available memory and then “back up” far enough to meet the needs of theoperating system
itself. Let’s say that the operating system needs 300 kilobytes to run. Now, theoperating system
goes to the bottom of the pool of RAM and starts building up with the variousdriver software
required to control the hardware subsystems of the computer. In our imaginarycomputer, the
drivers take up 200 kilobytes. So, after getting the operating system completelyloaded, there are 500
kilobytes remaining for application processes.When applications begin to be loaded into memory,
they are loaded in block sizes determinedby the operating system. If the block size is 2 kilobytes,
then every process that is loaded will begiven a chunk of memory that is a multiple of 2 kilobytes in
size. Applications will be loaded inthese fixed block sizes, with the blocks starting and ending on
boundaries established by wordsof 4 or 8 bytes. These blocks and boundaries help to ensure that
applications won’t be loadedon top of one another’s space by a poorly calculated bit or two. With
that ensured, the largerquestion is what to do when the 500-kilobyte application space is filled.In
most computers, it’s possible to add memory beyond the original capacity. For example, youmight
expand RAM from 1 to 2 megabytes. This works fi ne, but tends to be relatively expensive.It also
ignores a fundamental fact of computing - most of the information that an applicationstores in
memory is not being used at any given moment. A processor can only access memoryone location
at a time, so the vast majority of RAM is unused at any moment. Since disk spaceis cheap compared
to RAM, then moving information in RAM to hard disk can greatly expandRAM space at no cost.
This technique is called virtual memory management.Disk storage is only one of the memory types
that must be managed by the operating system, andis the slowest. Ranked in order of speed, the
types of memory in a computer system are:1. High-speed cache: This is fast, relatively small amounts of memory that are available totheCPU through the fastest connections. Cache controllers predict which pieces of datathe CPUwill need next and pull it from main memory into high-speed cache to speed upsystemperformance.

2. Main memory: This is the RAM that you see measured in megabytes when you buyacomputer.

Operating System

Notes

of megabytes of slow, cheap, non-volatile disk storage. It is the job of the operating system tocoordinate how these memories are used.
10.1 Memory Management
In addition to the responsibility of managing processes, the operating system must efficiently
manage the primary memory of the computer. The part of the operating system which handles this
responsibility is called the memory manager. Since every process must have some amount of
primary memory in order to execute, the performance of the memory manager is crucial to the
performance of the entire system. The memory manager is responsible for allocating primary
memory to processes and for assisting the programmer in loading and storing the contents of the
primary memory. Managing the sharing of primary memory and minimizing memory access time
are the basic goals of the memory manager.

Some basic goals of the main memory are:

 Bringing the program in the main memory and placed within a process for it to be run.
 Input queue – collection of processes on the disk that are waiting to be brought into memory to

run the program.
 User programs go through several steps before being run.

When an operating system manages the computer’s memory, there are two broad tasks to be
accomplished:

1. Each process must have enough memory in which to execute, and it can neither run into the
memory space of another process nor be run into by another process.

2. The different types of memory in the system must be used properly so that each process can
run most effectively.

The first task requires the operating system to set up memory boundaries for types of softwareand
for individual applications.

Example:Let’s look at an imaginary small system with 1 megabyte (1,000 kilobytes) ofRAM.
During the boot process, the operating system of our imaginary computer is designedto go to the
top of available memory and then “back up” far enough to meet the needs of theoperating system
itself. Let’s say that the operating system needs 300 kilobytes to run. Now, theoperating system
goes to the bottom of the pool of RAM and starts building up with the variousdriver software
required to control the hardware subsystems of the computer. In our imaginarycomputer, the
drivers take up 200 kilobytes. So, after getting the operating system completelyloaded, there are 500
kilobytes remaining for application processes.When applications begin to be loaded into memory,
they are loaded in block sizes determinedby the operating system. If the block size is 2 kilobytes,
then every process that is loaded will begiven a chunk of memory that is a multiple of 2 kilobytes in
size. Applications will be loaded inthese fixed block sizes, with the blocks starting and ending on
boundaries established by wordsof 4 or 8 bytes. These blocks and boundaries help to ensure that
applications won’t be loadedon top of one another’s space by a poorly calculated bit or two. With
that ensured, the largerquestion is what to do when the 500-kilobyte application space is filled.In
most computers, it’s possible to add memory beyond the original capacity. For example, youmight
expand RAM from 1 to 2 megabytes. This works fi ne, but tends to be relatively expensive.It also
ignores a fundamental fact of computing - most of the information that an applicationstores in
memory is not being used at any given moment. A processor can only access memoryone location
at a time, so the vast majority of RAM is unused at any moment. Since disk spaceis cheap compared
to RAM, then moving information in RAM to hard disk can greatly expandRAM space at no cost.
This technique is called virtual memory management.Disk storage is only one of the memory types
that must be managed by the operating system, andis the slowest. Ranked in order of speed, the
types of memory in a computer system are:1. High-speed cache: This is fast, relatively small amounts of memory that are available totheCPU through the fastest connections. Cache controllers predict which pieces of datathe CPUwill need next and pull it from main memory into high-speed cache to speed upsystemperformance.

2. Main memory: This is the RAM that you see measured in megabytes when you buyacomputer.

Operating System

Notes

of megabytes of slow, cheap, non-volatile disk storage. It is the job of the operating system tocoordinate how these memories are used.
10.1 Memory Management
In addition to the responsibility of managing processes, the operating system must efficiently
manage the primary memory of the computer. The part of the operating system which handles this
responsibility is called the memory manager. Since every process must have some amount of
primary memory in order to execute, the performance of the memory manager is crucial to the
performance of the entire system. The memory manager is responsible for allocating primary
memory to processes and for assisting the programmer in loading and storing the contents of the
primary memory. Managing the sharing of primary memory and minimizing memory access time
are the basic goals of the memory manager.

Some basic goals of the main memory are:

 Bringing the program in the main memory and placed within a process for it to be run.
 Input queue – collection of processes on the disk that are waiting to be brought into memory to

run the program.
 User programs go through several steps before being run.

When an operating system manages the computer’s memory, there are two broad tasks to be
accomplished:

1. Each process must have enough memory in which to execute, and it can neither run into the
memory space of another process nor be run into by another process.

2. The different types of memory in the system must be used properly so that each process can
run most effectively.

The first task requires the operating system to set up memory boundaries for types of softwareand
for individual applications.

Example:Let’s look at an imaginary small system with 1 megabyte (1,000 kilobytes) ofRAM.
During the boot process, the operating system of our imaginary computer is designedto go to the
top of available memory and then “back up” far enough to meet the needs of theoperating system
itself. Let’s say that the operating system needs 300 kilobytes to run. Now, theoperating system
goes to the bottom of the pool of RAM and starts building up with the variousdriver software
required to control the hardware subsystems of the computer. In our imaginarycomputer, the
drivers take up 200 kilobytes. So, after getting the operating system completelyloaded, there are 500
kilobytes remaining for application processes.When applications begin to be loaded into memory,
they are loaded in block sizes determinedby the operating system. If the block size is 2 kilobytes,
then every process that is loaded will begiven a chunk of memory that is a multiple of 2 kilobytes in
size. Applications will be loaded inthese fixed block sizes, with the blocks starting and ending on
boundaries established by wordsof 4 or 8 bytes. These blocks and boundaries help to ensure that
applications won’t be loadedon top of one another’s space by a poorly calculated bit or two. With
that ensured, the largerquestion is what to do when the 500-kilobyte application space is filled.In
most computers, it’s possible to add memory beyond the original capacity. For example, youmight
expand RAM from 1 to 2 megabytes. This works fi ne, but tends to be relatively expensive.It also
ignores a fundamental fact of computing - most of the information that an applicationstores in
memory is not being used at any given moment. A processor can only access memoryone location
at a time, so the vast majority of RAM is unused at any moment. Since disk spaceis cheap compared
to RAM, then moving information in RAM to hard disk can greatly expandRAM space at no cost.
This technique is called virtual memory management.Disk storage is only one of the memory types
that must be managed by the operating system, andis the slowest. Ranked in order of speed, the
types of memory in a computer system are:1. High-speed cache: This is fast, relatively small amounts of memory that are available totheCPU through the fastest connections. Cache controllers predict which pieces of datathe CPUwill need next and pull it from main memory into high-speed cache to speed upsystemperformance.

2. Main memory: This is the RAM that you see measured in megabytes when you buyacomputer.

Lovely Professional University 159

Unit 10: Memory Management– I

Notes

3. Secondary memory: This is most often some sort of rotating magnetic storage that
keepsapplications and data available to be used, and serves as virtual RAM under the
control ofthe operating system.

The operating system must balance the needs of the various processes with the availability of
thedifferent types of memory, moving data in blocks (called pages) between available memory
asthe schedule of processes dictates.

Systems for managing memory can be divided into two categories: the system of movingprocesses
back and forth between main memory and disk during execution (known as swappingand paging)
and the process that does not do so (that is, no swapping and ping).

Figure 10.1: Memory Management

10.2 Multistep Processing of a User Program
We can define a program as a sequence of instructions written by the user for instructing the
computer to solve a problem. For doing so the program goes through a sequence of steps before it
actually gets executed. The program presides on the disc in the form of binary executable file. For
running the program, it has to be brought from the disc to the main memory.

It is important or not that CPU you can only access main memory and registers directly during a
program execution. The sequence of steps that a program goes through are as follows:

As the program to be executed is brought from the disk to the main memory, it is placed within the
context of a process, (which is basically a program under execution) where it becomes available for
execution on the CPU. During the execution, it accesses data and instructions from the memory and
once the execution is completed, the process is terminated and the memory is reclaimed for use by
another process.

The addresses in the source code are generally symbolic (like the variable count). The compiler
binds these addresses to relocatable addresses and these are bonded by the linker or loader to the
absolute addresses (Binding – mapping from one address space to another).

The binding of instructions and data to the memory addresses can be done at any of the following
steps of program execution:

Compile Time: If we initially know where the process is residing in the memory at the time of
compilation, then absolute code can be generated. If the starting location changes, then the code has
to be recompiled.

Load Time: If the memory address where the process resides is not known at the compile time,
then the compiler must generate relocatable code (does not have a static memory address for
running). If the starting address changes, then the program must be reloaded to incorporate this
value.

Execution Time: If the process can be moved from one segment to another during its execution
time, then binding must be delayed till execution time. Special hardware is required for this type of
binding

Unit 10: Memory Management– I

Notes

3. Secondary memory: This is most often some sort of rotating magnetic storage that
keepsapplications and data available to be used, and serves as virtual RAM under the
control ofthe operating system.

The operating system must balance the needs of the various processes with the availability of
thedifferent types of memory, moving data in blocks (called pages) between available memory
asthe schedule of processes dictates.

Systems for managing memory can be divided into two categories: the system of movingprocesses
back and forth between main memory and disk during execution (known as swappingand paging)
and the process that does not do so (that is, no swapping and ping).

Figure 10.1: Memory Management

10.2 Multistep Processing of a User Program
We can define a program as a sequence of instructions written by the user for instructing the
computer to solve a problem. For doing so the program goes through a sequence of steps before it
actually gets executed. The program presides on the disc in the form of binary executable file. For
running the program, it has to be brought from the disc to the main memory.

It is important or not that CPU you can only access main memory and registers directly during a
program execution. The sequence of steps that a program goes through are as follows:

As the program to be executed is brought from the disk to the main memory, it is placed within the
context of a process, (which is basically a program under execution) where it becomes available for
execution on the CPU. During the execution, it accesses data and instructions from the memory and
once the execution is completed, the process is terminated and the memory is reclaimed for use by
another process.

The addresses in the source code are generally symbolic (like the variable count). The compiler
binds these addresses to relocatable addresses and these are bonded by the linker or loader to the
absolute addresses (Binding – mapping from one address space to another).

The binding of instructions and data to the memory addresses can be done at any of the following
steps of program execution:

Compile Time: If we initially know where the process is residing in the memory at the time of
compilation, then absolute code can be generated. If the starting location changes, then the code has
to be recompiled.

Load Time: If the memory address where the process resides is not known at the compile time,
then the compiler must generate relocatable code (does not have a static memory address for
running). If the starting address changes, then the program must be reloaded to incorporate this
value.

Execution Time: If the process can be moved from one segment to another during its execution
time, then binding must be delayed till execution time. Special hardware is required for this type of
binding

Unit 10: Memory Management– I

Notes

3. Secondary memory: This is most often some sort of rotating magnetic storage that
keepsapplications and data available to be used, and serves as virtual RAM under the
control ofthe operating system.

The operating system must balance the needs of the various processes with the availability of
thedifferent types of memory, moving data in blocks (called pages) between available memory
asthe schedule of processes dictates.

Systems for managing memory can be divided into two categories: the system of movingprocesses
back and forth between main memory and disk during execution (known as swappingand paging)
and the process that does not do so (that is, no swapping and ping).

Figure 10.1: Memory Management

10.2 Multistep Processing of a User Program
We can define a program as a sequence of instructions written by the user for instructing the
computer to solve a problem. For doing so the program goes through a sequence of steps before it
actually gets executed. The program presides on the disc in the form of binary executable file. For
running the program, it has to be brought from the disc to the main memory.

It is important or not that CPU you can only access main memory and registers directly during a
program execution. The sequence of steps that a program goes through are as follows:

As the program to be executed is brought from the disk to the main memory, it is placed within the
context of a process, (which is basically a program under execution) where it becomes available for
execution on the CPU. During the execution, it accesses data and instructions from the memory and
once the execution is completed, the process is terminated and the memory is reclaimed for use by
another process.

The addresses in the source code are generally symbolic (like the variable count). The compiler
binds these addresses to relocatable addresses and these are bonded by the linker or loader to the
absolute addresses (Binding – mapping from one address space to another).

The binding of instructions and data to the memory addresses can be done at any of the following
steps of program execution:

Compile Time: If we initially know where the process is residing in the memory at the time of
compilation, then absolute code can be generated. If the starting location changes, then the code has
to be recompiled.

Load Time: If the memory address where the process resides is not known at the compile time,
then the compiler must generate relocatable code (does not have a static memory address for
running). If the starting address changes, then the program must be reloaded to incorporate this
value.

Execution Time: If the process can be moved from one segment to another during its execution
time, then binding must be delayed till execution time. Special hardware is required for this type of
binding

Lovely Professional University160

Operating System

Notes

Figure – Multistep Processing of a User Program

10.3 Logical and Physical Address Space
A memory address identifies a physical location in computer memory, somewhat similar to astreet
address in a town. The address points to the location where data is stored, just like youraddress
points to where you live.In the analogy of a person’s address, the address space would be an area of
locations, such asa neighborhood, town, city, or country. Two addresses may be numerically the
same but referto different locations, if they belong to different address spaces. This is similar to
your addressbeing, say, “32, Main Street”, while another person may reside in “32, Main Street” in
a differenttown from yours.Many programmers prefer to use a flat memory model, in which there

Operating System

Notes

Figure – Multistep Processing of a User Program

10.3 Logical and Physical Address Space
A memory address identifies a physical location in computer memory, somewhat similar to astreet
address in a town. The address points to the location where data is stored, just like youraddress
points to where you live.In the analogy of a person’s address, the address space would be an area of
locations, such asa neighborhood, town, city, or country. Two addresses may be numerically the
same but referto different locations, if they belong to different address spaces. This is similar to
your addressbeing, say, “32, Main Street”, while another person may reside in “32, Main Street” in
a differenttown from yours.Many programmers prefer to use a flat memory model, in which there

Operating System

Notes

Figure – Multistep Processing of a User Program

10.3 Logical and Physical Address Space
A memory address identifies a physical location in computer memory, somewhat similar to astreet
address in a town. The address points to the location where data is stored, just like youraddress
points to where you live.In the analogy of a person’s address, the address space would be an area of
locations, such asa neighborhood, town, city, or country. Two addresses may be numerically the
same but referto different locations, if they belong to different address spaces. This is similar to
your addressbeing, say, “32, Main Street”, while another person may reside in “32, Main Street” in
a differenttown from yours.Many programmers prefer to use a flat memory model, in which there

Lovely Professional University 161

Unit 10: Memory Management– I

Notes

is no distinction betweencode space, data space, and virtual memory – in other words, numerically
identical pointers referto exactly the same byte of RAM in all three address spaces.

Logical Address is generated by CPU while a program is running. The logical address is virtual
address as it does not exist physically, therefore, it is also known as Virtual Address. This address is
used as a reference to access the physical memory location by CPU.

Figure 10.2: Memory Management Unit

Physical AddressA physical address, also real address, or binary address, is the memory address, that is electronically (inthe form of binary number) presented on the computer address bus circuitry in order to enable thedata bus to access a particular storage cell of main memory.
Logical AddressLogical address is the address at which a memory location appears to reside from the perspective of anexecuting application program. This may be different from the physical address due to the operation ofa Memory Management Unit (MMU) between the CPU and the memory bus.
Physical memory may be mapped to different logical addresses for various purposes.

Example: The same physical memory may appear at two logical addresses and if accessed by the
program at one address, data will pass through the processor cache whereas if it is accessed at the
other address, it will bypass the cache.

In a system supporting virtual memory, there may actually not be any physical memory mapped to
a logical address until an access is attempted. The access triggers special functions of the operating
system which reprogram the MMU to map the address to some physical memory, perhaps writing
the old contents of that memory to disk and reading back from disk what the memory should
contain at the new logical address. In this case, the logical address may be referred to as a virtual
address.

Unit 10: Memory Management– I

Notes

is no distinction betweencode space, data space, and virtual memory – in other words, numerically
identical pointers referto exactly the same byte of RAM in all three address spaces.

Logical Address is generated by CPU while a program is running. The logical address is virtual
address as it does not exist physically, therefore, it is also known as Virtual Address. This address is
used as a reference to access the physical memory location by CPU.

Figure 10.2: Memory Management Unit

Physical AddressA physical address, also real address, or binary address, is the memory address, that is electronically (inthe form of binary number) presented on the computer address bus circuitry in order to enable thedata bus to access a particular storage cell of main memory.
Logical AddressLogical address is the address at which a memory location appears to reside from the perspective of anexecuting application program. This may be different from the physical address due to the operation ofa Memory Management Unit (MMU) between the CPU and the memory bus.
Physical memory may be mapped to different logical addresses for various purposes.

Example: The same physical memory may appear at two logical addresses and if accessed by the
program at one address, data will pass through the processor cache whereas if it is accessed at the
other address, it will bypass the cache.

In a system supporting virtual memory, there may actually not be any physical memory mapped to
a logical address until an access is attempted. The access triggers special functions of the operating
system which reprogram the MMU to map the address to some physical memory, perhaps writing
the old contents of that memory to disk and reading back from disk what the memory should
contain at the new logical address. In this case, the logical address may be referred to as a virtual
address.

Unit 10: Memory Management– I

Notes

is no distinction betweencode space, data space, and virtual memory – in other words, numerically
identical pointers referto exactly the same byte of RAM in all three address spaces.

Logical Address is generated by CPU while a program is running. The logical address is virtual
address as it does not exist physically, therefore, it is also known as Virtual Address. This address is
used as a reference to access the physical memory location by CPU.

Figure 10.2: Memory Management Unit

Physical AddressA physical address, also real address, or binary address, is the memory address, that is electronically (inthe form of binary number) presented on the computer address bus circuitry in order to enable thedata bus to access a particular storage cell of main memory.
Logical AddressLogical address is the address at which a memory location appears to reside from the perspective of anexecuting application program. This may be different from the physical address due to the operation ofa Memory Management Unit (MMU) between the CPU and the memory bus.
Physical memory may be mapped to different logical addresses for various purposes.

Example: The same physical memory may appear at two logical addresses and if accessed by the
program at one address, data will pass through the processor cache whereas if it is accessed at the
other address, it will bypass the cache.

In a system supporting virtual memory, there may actually not be any physical memory mapped to
a logical address until an access is attempted. The access triggers special functions of the operating
system which reprogram the MMU to map the address to some physical memory, perhaps writing
the old contents of that memory to disk and reading back from disk what the memory should
contain at the new logical address. In this case, the logical address may be referred to as a virtual
address.

Lovely Professional University162

Operating System

Notes

Logical vs. Physical Address Space

An address generated by the CPU is commonly referred to as a logical address, whereas an address
seen by the memory unit – that is, the one loaded into the memory-address register of the memory
– is commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate identical logical and physical
addresses. However, the execution-time address-binding scheme results in differing logical and
physical addresses. In this case, you usually refer to the logical address as a virtual address. The set
of all logical addresses generated by a program is a logical-address space; the set of all physical
addresses corresponding to these logical addresses is a physical-address space. Thus, in the
execution-time address-binding scheme, the logical- and physical-address spaces differ.

The logical address is referred to as virtual address in this case. At the run time, a hardware device
called Memory Management Unit (MMU) does the mapping from virtual address to physical
address.

Dynamic Loading is used for more efficient memory utilization. The advantage of Dynamic
Loading is that a particular routine is loaded only when it is required. Dynamically Linked
Libraries (DLLs) are the system libraries that are linked to the program when the programs are run.
This is the overall brief summary of the multistep processing of a user program, right from the
source code stage till the execution. The attached diagram depicts the multistep processing of the
program precisely.

Summary

 The part of the operating system that manages the memory hierarchy is the memorymanager.
 It keeps track of parts of memory that are in use and those that are not in use, to

allocatememory to processes when they need it and de-allocate it when they are done, and
tomanage swapping between main memory and disk when main memory is too small tohold
all the processes.

 Memory is the electronic holding place for instructions and data that the
computer’smicroprocessor can reach quickly.

 The memory manager is a part of operating system which is responsible for allocatingprimary
memory to processes and for assisting the programmer in loading and storing thecontents of
the primary memory.

Keywords

 Logical Address: An address generated by the CPU is commonly referred to as a logical
address.

 Memory Management Unit (MMU): It is a computer hardware component responsible for
handling accesses to memory requested by the CPU.

 Memory Manager: The memory manager is a part of operating system which is responsible
for allocating primary memory to processes and for assisting the programmer in loading and
storing the contents of the primary memory.

 Memory: It is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly.

 Physical Address: A physical address, or binary address, is the memory address, that is
electronically presented on the computer address bus circuitry.

Self Assessment
1.The principal of locality of reference justifies the use of ______________

Lovely Professional University 163

Unit 10: Memory Management– I

Notes

2._______________is an address generated by the CPU during execution

3.In address binding, the logical address undergoes translation by the _____________

4.The process of bringing the program from the secondary memory to the main memory is

known as ________

5.___________ loads the entire program into main memory before start of the program

execution

6.In __________linking load time might be reduced if the shared library code is already

present in memory.

7.In the Physical Address Space, the Physical Address identifies a ______ of required data in a
memory.

8.Static loading loads the program into the main memory when required.
A. True
B. False

9.Dynamic loading leads to slow program execution.
A. True
B. False

10. In Physical Address Space, the user directly deals with the physical address but can access
by its corresponding logical address.

A. True
B. False

11. In the concept of locality of reference, the page reference being made by a process
__________.

A. will always be to the page used in the previous page reference.
B. is likely to be, to one of the pages used in the last few page references.
C. will always be to one of the pages existing in memory.
D. will always lead to a Page fault.

12. The load time might be reduced in case of dynamic linking if_____________
A. The shared library code is already present in memory.
B. If we recompile the program
C. If we relink the program
D. If we recompile and relink again

13. Primary memory stores ____________
A. Data alone
B. Programs alone
C. Results alone
D. All of these

14. Memory is made up of ______________
A. Set of wires

Lovely Professional University164

Operating System

Notes

B. Set of circuits
C. Large number of cells
D. All of these

15. The principal of locality of reference justifies the use of
A. re-enterable
B. non-reusable
C. virtual memory
D. cache memory

Answers for Self Assessment

l. cache
memory

2. Logical
address

3. address
translation
unit

4. Loading 5. Static
loading

6. Dynamic 7. physical
location

8. B 9. A 10. B

11. B 12. A 13. D 14. D 15. D

Review Questions

1. Write a short description on:

(a) Binding of Instructions and Data to Memory

(b) Memory-Management Unit

(c) CPU utilization

(d) Memory Relocation

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

Operating System

Notes

B. Set of circuits
C. Large number of cells
D. All of these

15. The principal of locality of reference justifies the use of
A. re-enterable
B. non-reusable
C. virtual memory
D. cache memory

Answers for Self Assessment

l. cache
memory

2. Logical
address

3. address
translation
unit

4. Loading 5. Static
loading

6. Dynamic 7. physical
location

8. B 9. A 10. B

11. B 12. A 13. D 14. D 15. D

Review Questions

1. Write a short description on:

(a) Binding of Instructions and Data to Memory

(b) Memory-Management Unit

(c) CPU utilization

(d) Memory Relocation

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.

Operating System

Notes

B. Set of circuits
C. Large number of cells
D. All of these

15. The principal of locality of reference justifies the use of
A. re-enterable
B. non-reusable
C. virtual memory
D. cache memory

Answers for Self Assessment

l. cache
memory

2. Logical
address

3. address
translation
unit

4. Loading 5. Static
loading

6. Dynamic 7. physical
location

8. B 9. A 10. B

11. B 12. A 13. D 14. D 15. D

Review Questions

1. Write a short description on:

(a) Binding of Instructions and Data to Memory

(b) Memory-Management Unit

(c) CPU utilization

(d) Memory Relocation

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.
Lovely Professional University 165

Unit 10: Memory Management– I

Notes

Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 10: Memory Management– I

Notes

Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 10: Memory Management– I

Notes

Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University166

Unit 11: Memory Management – II

Notes

Unit 11: Memory Management - II

CONTENTS

Objectives

Introduction

11.1 Overlays

11.2 Swapping

11.3 Contiguous Memory Allocation

11.4 Paging

11.5 Segmentation

11.6 Segmentation with Paging

11.7 Virtual Memory

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Define memory management
 Describe swapping
 Explain segmentation with paging
 Know virtual memory
 Describe demand paging

Introduction
Memory is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly. Operating systems at times have to run programs bigger in size
than the physical memory. To deal with this it generally divides the program into modules such
that not all modules need to be in the memory at the same time. For this we need to have a fixed
partition size. Which in itself has a problem because with this approach the process has to be
limited by the maximum partition size. To deal with this problem the concept of overlays is used.
Video release whenever a process is running it will not use the complete program at the same time,
but it will use only some part of it. So whenever apart is required, it will be loaded in the memory
and whenever that part is done they will simply be unloaded or pulled back from the memory. Thisprocess of bringing the portion of the program in the main memory when required and removing itfrom the main memory once it has executed is called swapping. Swapping involves two tasks calledswapping in and swapping out. Swapping-In is the task of placing the pages or blocks of data from thehard disk to the main memory. Swapping out is the task of removing pages or blocks of data from mainmemory to the hard disk.

Lovely Professional University 167

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

11.1 Overlays
Overlay is a technique to run a program that is bigger than the size of the physical memory by
keeping only those instructions and data that are needed at any given time.
Divide the program into modules in such a way that not all modules need to be in the memory at
the same time. The main problem in Fixed partitioning is the size of a process has to be limited by
the maximum size of the partition. Overlay is a solution for such problems. The concept of overlays
is that whenever a process is running it will not use the complete program at the same time, it will
use only some part of it. Then overlays concept says that whatever part you required, you load it on
and once the part is done, then you just unload it, means just pull it back and get the new part you
required and run it. Formally, “The process of transferring a block of program code or other data
into internal memory, replacing what is already stored”. Sometimes it happens that compare to the
size of the biggest partition, the size of the program will be even more, then, in that case, you
should go with overlays.

11.2 Swapping
Any operating system has a fixed amount of physical memory available. Usually, application need
more than the physical memory installed on your system, for that purpose the operating system
uses a swap mechanism: instead of storing data in physical memory, it uses a disk file. Swapping is
the act of moving processes between memory and a backing store. This is done to free up available
memory. Swapping is necessary when there are more processes than available memory. At the
coarsest level, swapping is done a process at a time.

To move a program from fast-access memory to a slow-access memory is known as “swap out”,
and the reverse operation is known as “swap in”. The term often refers specifically to the use of a
hard disk (or a swap fi le) as virtual memory or “swap space”. When a program is to be executed,
possibly as determined by a scheduler, it is swapped into core for processing; when it can no longer
continue executing for some reason, or the scheduler decides its time slice has expired, it is
swapped out again.

Figure 11.1: Memory Swapping

11.3 Contiguous Memory Allocation
The real challenge of efficiently managing memory is seen in the case of a system which has
multiple processes running at the same time. Since primary memory can be space-multiplexed, the
memory manager can allocate a portion of primary memory to each process for its own use.
However, the memory manager must keep track of which processes are running in which memory
locations, and it must also determine how to allocate and deallocate available memory when new
processes are created and when old processes complete execution. While various different
strategies are used to allocate space to processes competing for memory, three of the most popular
are Best fit, Worst fit, and First fit. Each of these strategies is described below:

1. Best fit: The allocator places a process in the smallest block of unallocated memory in which it
will fi t. For example, suppose a process requests 12KB of memory and the memory manager
currently has a list of unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit
strategy will allocate 12KB of the 13KB block to the process.

Operating System

Notes

11.1 Overlays
Overlay is a technique to run a program that is bigger than the size of the physical memory by
keeping only those instructions and data that are needed at any given time.
Divide the program into modules in such a way that not all modules need to be in the memory at
the same time. The main problem in Fixed partitioning is the size of a process has to be limited by
the maximum size of the partition. Overlay is a solution for such problems. The concept of overlays
is that whenever a process is running it will not use the complete program at the same time, it will
use only some part of it. Then overlays concept says that whatever part you required, you load it on
and once the part is done, then you just unload it, means just pull it back and get the new part you
required and run it. Formally, “The process of transferring a block of program code or other data
into internal memory, replacing what is already stored”. Sometimes it happens that compare to the
size of the biggest partition, the size of the program will be even more, then, in that case, you
should go with overlays.

11.2 Swapping
Any operating system has a fixed amount of physical memory available. Usually, application need
more than the physical memory installed on your system, for that purpose the operating system
uses a swap mechanism: instead of storing data in physical memory, it uses a disk file. Swapping is
the act of moving processes between memory and a backing store. This is done to free up available
memory. Swapping is necessary when there are more processes than available memory. At the
coarsest level, swapping is done a process at a time.

To move a program from fast-access memory to a slow-access memory is known as “swap out”,
and the reverse operation is known as “swap in”. The term often refers specifically to the use of a
hard disk (or a swap fi le) as virtual memory or “swap space”. When a program is to be executed,
possibly as determined by a scheduler, it is swapped into core for processing; when it can no longer
continue executing for some reason, or the scheduler decides its time slice has expired, it is
swapped out again.

Figure 11.1: Memory Swapping

11.3 Contiguous Memory Allocation
The real challenge of efficiently managing memory is seen in the case of a system which has
multiple processes running at the same time. Since primary memory can be space-multiplexed, the
memory manager can allocate a portion of primary memory to each process for its own use.
However, the memory manager must keep track of which processes are running in which memory
locations, and it must also determine how to allocate and deallocate available memory when new
processes are created and when old processes complete execution. While various different
strategies are used to allocate space to processes competing for memory, three of the most popular
are Best fit, Worst fit, and First fit. Each of these strategies is described below:

1. Best fit: The allocator places a process in the smallest block of unallocated memory in which it
will fi t. For example, suppose a process requests 12KB of memory and the memory manager
currently has a list of unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit
strategy will allocate 12KB of the 13KB block to the process.

Operating System

Notes

11.1 Overlays
Overlay is a technique to run a program that is bigger than the size of the physical memory by
keeping only those instructions and data that are needed at any given time.
Divide the program into modules in such a way that not all modules need to be in the memory at
the same time. The main problem in Fixed partitioning is the size of a process has to be limited by
the maximum size of the partition. Overlay is a solution for such problems. The concept of overlays
is that whenever a process is running it will not use the complete program at the same time, it will
use only some part of it. Then overlays concept says that whatever part you required, you load it on
and once the part is done, then you just unload it, means just pull it back and get the new part you
required and run it. Formally, “The process of transferring a block of program code or other data
into internal memory, replacing what is already stored”. Sometimes it happens that compare to the
size of the biggest partition, the size of the program will be even more, then, in that case, you
should go with overlays.

11.2 Swapping
Any operating system has a fixed amount of physical memory available. Usually, application need
more than the physical memory installed on your system, for that purpose the operating system
uses a swap mechanism: instead of storing data in physical memory, it uses a disk file. Swapping is
the act of moving processes between memory and a backing store. This is done to free up available
memory. Swapping is necessary when there are more processes than available memory. At the
coarsest level, swapping is done a process at a time.

To move a program from fast-access memory to a slow-access memory is known as “swap out”,
and the reverse operation is known as “swap in”. The term often refers specifically to the use of a
hard disk (or a swap fi le) as virtual memory or “swap space”. When a program is to be executed,
possibly as determined by a scheduler, it is swapped into core for processing; when it can no longer
continue executing for some reason, or the scheduler decides its time slice has expired, it is
swapped out again.

Figure 11.1: Memory Swapping

11.3 Contiguous Memory Allocation
The real challenge of efficiently managing memory is seen in the case of a system which has
multiple processes running at the same time. Since primary memory can be space-multiplexed, the
memory manager can allocate a portion of primary memory to each process for its own use.
However, the memory manager must keep track of which processes are running in which memory
locations, and it must also determine how to allocate and deallocate available memory when new
processes are created and when old processes complete execution. While various different
strategies are used to allocate space to processes competing for memory, three of the most popular
are Best fit, Worst fit, and First fit. Each of these strategies is described below:

1. Best fit: The allocator places a process in the smallest block of unallocated memory in which it
will fi t. For example, suppose a process requests 12KB of memory and the memory manager
currently has a list of unallocated blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit
strategy will allocate 12KB of the 13KB block to the process.

Lovely Professional University168

Unit 11: Memory Management – II

Notes

2. Worst fit: The memory manager places a process in the largest block of unallocated memory
available. The idea is that this placement will create the largest hold after the allocations, thus
increasing the possibility that, compared to best fi t, another process can use the remaining space.
Using the same example as above, worst fi t will allocate 12KB of the 19KB block to the process,
leaving a 7KB block for future use.

3. First fit: There may be many holes in the memory, so the operating system, to reduce the amount
of time it spends analyzing the available spaces, begins at the start of primary memory and
allocates memory from the first hole it encounters large enough to satisfy the request. Using the
same example as above, first fit will allocate 12KB of the 14KB block to the process.

Figure 11.2: Best Fit, Worst Fit and First Fit Memory Allocation Method

Notice in the above figure that the Best fi t and First fi t strategies both leave a tiny segment of
memory unallocated just beyond the new process. Since the amount of memory is small, it is not
likely that any new processes can be loaded here. This condition of splitting primary memory into
segments as the memory is allocated and deallocated is known as fragmentation. The Worst fit
strategy attempts to reduce the problem of fragmentation by allocating the largest fragments to
new processes. Thus, a larger amount of space will be left as seen in the Figure 11.2.

Buddy System

Memory management, especially memory allocation to processes, is a fundamental issue in
operating systems. A fixed partitioning scheme limits the number of active processes and may use
space inefficiently if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the overhead of
compaction. An interesting compromise is the buddy system.

In a buddy system, the entire memory space available for allocation is initially treated as a single
block whose size is a power of 2. When the first request is made, if its size is greater than half of the
initial block then the entire block is allocated. Otherwise, the block is split in two equal companion
buddies. If the size of the request is greater than half of one of the buddies, then allocate one to it.
Otherwise, one of the buddies is split in half again. This method continues until the smallest block
greater than or equal to the size of the request is found and allocated to it. In this method, when a
process terminates the buddy block that was allocated to it is freed.

Whenever possible, an unallocated buddy is merged with a companion buddy in order to form a
larger free block. Two blocks are said to be companion buddies if they resulted from the split of the
same direct parent block. The following Figure 11.3 illustrates the buddy system at work,
considering a 1024k (1-megabyte) initial block and the process requests as shown at the left of the
table.

Unit 11: Memory Management – II

Notes

2. Worst fit: The memory manager places a process in the largest block of unallocated memory
available. The idea is that this placement will create the largest hold after the allocations, thus
increasing the possibility that, compared to best fi t, another process can use the remaining space.
Using the same example as above, worst fi t will allocate 12KB of the 19KB block to the process,
leaving a 7KB block for future use.

3. First fit: There may be many holes in the memory, so the operating system, to reduce the amount
of time it spends analyzing the available spaces, begins at the start of primary memory and
allocates memory from the first hole it encounters large enough to satisfy the request. Using the
same example as above, first fit will allocate 12KB of the 14KB block to the process.

Figure 11.2: Best Fit, Worst Fit and First Fit Memory Allocation Method

Notice in the above figure that the Best fi t and First fi t strategies both leave a tiny segment of
memory unallocated just beyond the new process. Since the amount of memory is small, it is not
likely that any new processes can be loaded here. This condition of splitting primary memory into
segments as the memory is allocated and deallocated is known as fragmentation. The Worst fit
strategy attempts to reduce the problem of fragmentation by allocating the largest fragments to
new processes. Thus, a larger amount of space will be left as seen in the Figure 11.2.

Buddy System

Memory management, especially memory allocation to processes, is a fundamental issue in
operating systems. A fixed partitioning scheme limits the number of active processes and may use
space inefficiently if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the overhead of
compaction. An interesting compromise is the buddy system.

In a buddy system, the entire memory space available for allocation is initially treated as a single
block whose size is a power of 2. When the first request is made, if its size is greater than half of the
initial block then the entire block is allocated. Otherwise, the block is split in two equal companion
buddies. If the size of the request is greater than half of one of the buddies, then allocate one to it.
Otherwise, one of the buddies is split in half again. This method continues until the smallest block
greater than or equal to the size of the request is found and allocated to it. In this method, when a
process terminates the buddy block that was allocated to it is freed.

Whenever possible, an unallocated buddy is merged with a companion buddy in order to form a
larger free block. Two blocks are said to be companion buddies if they resulted from the split of the
same direct parent block. The following Figure 11.3 illustrates the buddy system at work,
considering a 1024k (1-megabyte) initial block and the process requests as shown at the left of the
table.

Unit 11: Memory Management – II

Notes

2. Worst fit: The memory manager places a process in the largest block of unallocated memory
available. The idea is that this placement will create the largest hold after the allocations, thus
increasing the possibility that, compared to best fi t, another process can use the remaining space.
Using the same example as above, worst fi t will allocate 12KB of the 19KB block to the process,
leaving a 7KB block for future use.

3. First fit: There may be many holes in the memory, so the operating system, to reduce the amount
of time it spends analyzing the available spaces, begins at the start of primary memory and
allocates memory from the first hole it encounters large enough to satisfy the request. Using the
same example as above, first fit will allocate 12KB of the 14KB block to the process.

Figure 11.2: Best Fit, Worst Fit and First Fit Memory Allocation Method

Notice in the above figure that the Best fi t and First fi t strategies both leave a tiny segment of
memory unallocated just beyond the new process. Since the amount of memory is small, it is not
likely that any new processes can be loaded here. This condition of splitting primary memory into
segments as the memory is allocated and deallocated is known as fragmentation. The Worst fit
strategy attempts to reduce the problem of fragmentation by allocating the largest fragments to
new processes. Thus, a larger amount of space will be left as seen in the Figure 11.2.

Buddy System

Memory management, especially memory allocation to processes, is a fundamental issue in
operating systems. A fixed partitioning scheme limits the number of active processes and may use
space inefficiently if there is a poor match between available partition sizes and process sizes. A
dynamic partitioning scheme is more complex to maintain and includes the overhead of
compaction. An interesting compromise is the buddy system.

In a buddy system, the entire memory space available for allocation is initially treated as a single
block whose size is a power of 2. When the first request is made, if its size is greater than half of the
initial block then the entire block is allocated. Otherwise, the block is split in two equal companion
buddies. If the size of the request is greater than half of one of the buddies, then allocate one to it.
Otherwise, one of the buddies is split in half again. This method continues until the smallest block
greater than or equal to the size of the request is found and allocated to it. In this method, when a
process terminates the buddy block that was allocated to it is freed.

Whenever possible, an unallocated buddy is merged with a companion buddy in order to form a
larger free block. Two blocks are said to be companion buddies if they resulted from the split of the
same direct parent block. The following Figure 11.3 illustrates the buddy system at work,
considering a 1024k (1-megabyte) initial block and the process requests as shown at the left of the
table.

Lovely Professional University 169

Operating System

Notes

Figure 11.3: Diagram of Buddy System

Notice that, whenever there is a request that corresponds to a block of sizes, your program should
select the block of that size that was most recently declared free. Furthermore, when a block is split
in two, the left-one (lower addresses) should be selected before the right-one. You can assume that
the list of requests is such that all requests can always be served. In other words, you can make the
following assumptions: no process will request more than the available memory; processes are
uniquely identified while active; and no request for process termination is issued before its
corresponding request for memory allocation.

It is preferable when dealing with large amounts of memory to use physically contiguous pages in
memory both for cache related and memory access latency reasons. Unfortunately, due to external
fragmentation problems with the buddy allocator, this is not always possible.

11.4 Paging
It is a technique for increasing the memory space available by moving infrequently-used parts of a
program’s working memory from RAM to a secondary storage medium, usually hard disk. The
unit of transfer is called a page.

A memory management unit (MMU) monitors accesses to memory and splits each address into a
page number (the most significant bits) and an offset within that page (the lower bits). It then looks
up the page number in its page table. The page may be marked as paged in or paged out. If it is
paged in then the memory access can proceed after translating the virtual address to a physical
address. If the requested page is paged out then space must be made for it by paging out some
other page, i.e. copying it to disk. The requested page is then located on the area of the disk
allocated for “swap space” and is read back into RAM. The page table is updated to indicate that
the page is paged in and its physical address recorded.

The MMU also records whether a page has been modified since it was last paged in. If it has not
been modified then there is no need to copy it back to disk and the space can be reused
immediately.

Paging allows the total memory requirements of all running tasks (possibly just one) to exceed the
amount of physical memory, whereas swapping simply allows multiple processes to run
concurrently, so long as each process on its own fits within physical memory.

Operating System

Notes

Figure 11.3: Diagram of Buddy System

Notice that, whenever there is a request that corresponds to a block of sizes, your program should
select the block of that size that was most recently declared free. Furthermore, when a block is split
in two, the left-one (lower addresses) should be selected before the right-one. You can assume that
the list of requests is such that all requests can always be served. In other words, you can make the
following assumptions: no process will request more than the available memory; processes are
uniquely identified while active; and no request for process termination is issued before its
corresponding request for memory allocation.

It is preferable when dealing with large amounts of memory to use physically contiguous pages in
memory both for cache related and memory access latency reasons. Unfortunately, due to external
fragmentation problems with the buddy allocator, this is not always possible.

11.4 Paging
It is a technique for increasing the memory space available by moving infrequently-used parts of a
program’s working memory from RAM to a secondary storage medium, usually hard disk. The
unit of transfer is called a page.

A memory management unit (MMU) monitors accesses to memory and splits each address into a
page number (the most significant bits) and an offset within that page (the lower bits). It then looks
up the page number in its page table. The page may be marked as paged in or paged out. If it is
paged in then the memory access can proceed after translating the virtual address to a physical
address. If the requested page is paged out then space must be made for it by paging out some
other page, i.e. copying it to disk. The requested page is then located on the area of the disk
allocated for “swap space” and is read back into RAM. The page table is updated to indicate that
the page is paged in and its physical address recorded.

The MMU also records whether a page has been modified since it was last paged in. If it has not
been modified then there is no need to copy it back to disk and the space can be reused
immediately.

Paging allows the total memory requirements of all running tasks (possibly just one) to exceed the
amount of physical memory, whereas swapping simply allows multiple processes to run
concurrently, so long as each process on its own fits within physical memory.

Operating System

Notes

Figure 11.3: Diagram of Buddy System

Notice that, whenever there is a request that corresponds to a block of sizes, your program should
select the block of that size that was most recently declared free. Furthermore, when a block is split
in two, the left-one (lower addresses) should be selected before the right-one. You can assume that
the list of requests is such that all requests can always be served. In other words, you can make the
following assumptions: no process will request more than the available memory; processes are
uniquely identified while active; and no request for process termination is issued before its
corresponding request for memory allocation.

It is preferable when dealing with large amounts of memory to use physically contiguous pages in
memory both for cache related and memory access latency reasons. Unfortunately, due to external
fragmentation problems with the buddy allocator, this is not always possible.

11.4 Paging
It is a technique for increasing the memory space available by moving infrequently-used parts of a
program’s working memory from RAM to a secondary storage medium, usually hard disk. The
unit of transfer is called a page.

A memory management unit (MMU) monitors accesses to memory and splits each address into a
page number (the most significant bits) and an offset within that page (the lower bits). It then looks
up the page number in its page table. The page may be marked as paged in or paged out. If it is
paged in then the memory access can proceed after translating the virtual address to a physical
address. If the requested page is paged out then space must be made for it by paging out some
other page, i.e. copying it to disk. The requested page is then located on the area of the disk
allocated for “swap space” and is read back into RAM. The page table is updated to indicate that
the page is paged in and its physical address recorded.

The MMU also records whether a page has been modified since it was last paged in. If it has not
been modified then there is no need to copy it back to disk and the space can be reused
immediately.

Paging allows the total memory requirements of all running tasks (possibly just one) to exceed the
amount of physical memory, whereas swapping simply allows multiple processes to run
concurrently, so long as each process on its own fits within physical memory.

Lovely Professional University170

Unit 11: Memory Management – II

Notes

Figure 11.4: Paging

On operating systems, such as Windows NT, Windows 2000 or UNIX, the memory is logically
divided in pages. When the system needs a certain portion of memory which is currently in the
swap (this is called a page fault) it will load all the corresponding pages into RAM. When a page is
not accessed for a long time, it is saved back to disk and discarded.

In a virtual memory system, it is common to map between virtual addresses and physical addresses
by means of a data structure called a page table. A page table is the data structure used by a virtual
memory system in a computer operating system to store the mapping between virtual addresses
and physical addresses. Virtual addresses are those unique to the accessing process. Physical
addresses are those unique to the CPU, i.e., RAM. The page number of an address is usually found
from the most significant bits of the address; the remaining bits yield the offset of the location
within the page. The page table is normally indexed by page number and contains information on
whether the page is currently in main memory, and where it is in main memory or on disk.

Conventional page tables are sized to the virtual address space and store the entire virtual address
space description of each process. Because of the need to keep the virtual-to-physical translation
time low, a conventional page table is structured as a fixed, multi-level hierarchy, and can be very
inefficient at representing a sparse virtual address space, unless the allocated pages are carefully
aligned to the page table hierarchy.

11.5 Segmentation
It is very common for the size of program modules to change dynamically. For instance, the
programmer may have no knowledge of the size of a growing data structure. If a single address
space is used, as in the paging form of virtual memory, once the memory is allocated for modules
they cannot vary in size. This restriction results in either wastage or shortage of memory. To avoid
the above problem, some computer systems are provided with many independent address spaces.
Each of these address spaces is called a segment. The address of each segment begins with 0 and
segments may be compiled separately. In addition, segments may be protected individually or
shared between processes. However, segmentation is not transparent to the programmer like
paging. The programmer is involved in establishing and maintaining the segments.

Segmentation is one of the most common ways to achieve memory protection like paging. An
instruction operand that refers to a memory location includes a value that identifies a segment and
an offset within that segment. A segment has a set of permissions, and a length, associated with it.
If the currently running process is allowed by the permissions to make the type of reference to
memory that it is attempting to make, and the offset within the segment is within the range

Unit 11: Memory Management – II

Notes

Figure 11.4: Paging

On operating systems, such as Windows NT, Windows 2000 or UNIX, the memory is logically
divided in pages. When the system needs a certain portion of memory which is currently in the
swap (this is called a page fault) it will load all the corresponding pages into RAM. When a page is
not accessed for a long time, it is saved back to disk and discarded.

In a virtual memory system, it is common to map between virtual addresses and physical addresses
by means of a data structure called a page table. A page table is the data structure used by a virtual
memory system in a computer operating system to store the mapping between virtual addresses
and physical addresses. Virtual addresses are those unique to the accessing process. Physical
addresses are those unique to the CPU, i.e., RAM. The page number of an address is usually found
from the most significant bits of the address; the remaining bits yield the offset of the location
within the page. The page table is normally indexed by page number and contains information on
whether the page is currently in main memory, and where it is in main memory or on disk.

Conventional page tables are sized to the virtual address space and store the entire virtual address
space description of each process. Because of the need to keep the virtual-to-physical translation
time low, a conventional page table is structured as a fixed, multi-level hierarchy, and can be very
inefficient at representing a sparse virtual address space, unless the allocated pages are carefully
aligned to the page table hierarchy.

11.5 Segmentation
It is very common for the size of program modules to change dynamically. For instance, the
programmer may have no knowledge of the size of a growing data structure. If a single address
space is used, as in the paging form of virtual memory, once the memory is allocated for modules
they cannot vary in size. This restriction results in either wastage or shortage of memory. To avoid
the above problem, some computer systems are provided with many independent address spaces.
Each of these address spaces is called a segment. The address of each segment begins with 0 and
segments may be compiled separately. In addition, segments may be protected individually or
shared between processes. However, segmentation is not transparent to the programmer like
paging. The programmer is involved in establishing and maintaining the segments.

Segmentation is one of the most common ways to achieve memory protection like paging. An
instruction operand that refers to a memory location includes a value that identifies a segment and
an offset within that segment. A segment has a set of permissions, and a length, associated with it.
If the currently running process is allowed by the permissions to make the type of reference to
memory that it is attempting to make, and the offset within the segment is within the range

Unit 11: Memory Management – II

Notes

Figure 11.4: Paging

On operating systems, such as Windows NT, Windows 2000 or UNIX, the memory is logically
divided in pages. When the system needs a certain portion of memory which is currently in the
swap (this is called a page fault) it will load all the corresponding pages into RAM. When a page is
not accessed for a long time, it is saved back to disk and discarded.

In a virtual memory system, it is common to map between virtual addresses and physical addresses
by means of a data structure called a page table. A page table is the data structure used by a virtual
memory system in a computer operating system to store the mapping between virtual addresses
and physical addresses. Virtual addresses are those unique to the accessing process. Physical
addresses are those unique to the CPU, i.e., RAM. The page number of an address is usually found
from the most significant bits of the address; the remaining bits yield the offset of the location
within the page. The page table is normally indexed by page number and contains information on
whether the page is currently in main memory, and where it is in main memory or on disk.

Conventional page tables are sized to the virtual address space and store the entire virtual address
space description of each process. Because of the need to keep the virtual-to-physical translation
time low, a conventional page table is structured as a fixed, multi-level hierarchy, and can be very
inefficient at representing a sparse virtual address space, unless the allocated pages are carefully
aligned to the page table hierarchy.

11.5 Segmentation
It is very common for the size of program modules to change dynamically. For instance, the
programmer may have no knowledge of the size of a growing data structure. If a single address
space is used, as in the paging form of virtual memory, once the memory is allocated for modules
they cannot vary in size. This restriction results in either wastage or shortage of memory. To avoid
the above problem, some computer systems are provided with many independent address spaces.
Each of these address spaces is called a segment. The address of each segment begins with 0 and
segments may be compiled separately. In addition, segments may be protected individually or
shared between processes. However, segmentation is not transparent to the programmer like
paging. The programmer is involved in establishing and maintaining the segments.

Segmentation is one of the most common ways to achieve memory protection like paging. An
instruction operand that refers to a memory location includes a value that identifies a segment and
an offset within that segment. A segment has a set of permissions, and a length, associated with it.
If the currently running process is allowed by the permissions to make the type of reference to
memory that it is attempting to make, and the offset within the segment is within the range

Lovely Professional University 171

Operating System

Notes

specified by the length of the segment, the reference is permitted; otherwise, a hardware exception
is delivered.

In addition to the set of permissions and length, a segment also has associated with its information
indicating where the segment is located in memory. It may also have a flag indicating whether the
segment is present in main memory or not; if the segment is not present in main memory, an
exception is delivered, and the operating system will read the segment into memory from
secondary storage. The information indicating where the segment is located in memory might be
the address of the first location in the segment, or might be the address of a page table for the
segment. In the first case, if a reference to a location within a segment is made, the offset within the
segment will be added to address of the first location in the segment to give the address in memory
of the referred-to item; in the second case, the offset of the segment is translated to a memory
address using the page table. A memory management unit (MMU) is responsible for translating a
segment and offset within that segment into a memory address, and for performing checks to make
sure the translation can be done and that the reference to that segment and offset is permitted.

Figure 11.5: Sharing of Segments in a Segmented Memory System

11.6 Segmentation with Paging

Figure 11.6: Diagram of Segmentation with Paging

Segments can be of different lengths, so it is harder to find a place for a segment in memory than a
page. With segmented virtual memory, you get the benefits of virtual memory but you still have to
do dynamic storage allocation of physical memory. In order to avoid this, it is possible

Operating System

Notes

specified by the length of the segment, the reference is permitted; otherwise, a hardware exception
is delivered.

In addition to the set of permissions and length, a segment also has associated with its information
indicating where the segment is located in memory. It may also have a flag indicating whether the
segment is present in main memory or not; if the segment is not present in main memory, an
exception is delivered, and the operating system will read the segment into memory from
secondary storage. The information indicating where the segment is located in memory might be
the address of the first location in the segment, or might be the address of a page table for the
segment. In the first case, if a reference to a location within a segment is made, the offset within the
segment will be added to address of the first location in the segment to give the address in memory
of the referred-to item; in the second case, the offset of the segment is translated to a memory
address using the page table. A memory management unit (MMU) is responsible for translating a
segment and offset within that segment into a memory address, and for performing checks to make
sure the translation can be done and that the reference to that segment and offset is permitted.

Figure 11.5: Sharing of Segments in a Segmented Memory System

11.6 Segmentation with Paging

Figure 11.6: Diagram of Segmentation with Paging

Segments can be of different lengths, so it is harder to find a place for a segment in memory than a
page. With segmented virtual memory, you get the benefits of virtual memory but you still have to
do dynamic storage allocation of physical memory. In order to avoid this, it is possible

Operating System

Notes

specified by the length of the segment, the reference is permitted; otherwise, a hardware exception
is delivered.

In addition to the set of permissions and length, a segment also has associated with its information
indicating where the segment is located in memory. It may also have a flag indicating whether the
segment is present in main memory or not; if the segment is not present in main memory, an
exception is delivered, and the operating system will read the segment into memory from
secondary storage. The information indicating where the segment is located in memory might be
the address of the first location in the segment, or might be the address of a page table for the
segment. In the first case, if a reference to a location within a segment is made, the offset within the
segment will be added to address of the first location in the segment to give the address in memory
of the referred-to item; in the second case, the offset of the segment is translated to a memory
address using the page table. A memory management unit (MMU) is responsible for translating a
segment and offset within that segment into a memory address, and for performing checks to make
sure the translation can be done and that the reference to that segment and offset is permitted.

Figure 11.5: Sharing of Segments in a Segmented Memory System

11.6 Segmentation with Paging

Figure 11.6: Diagram of Segmentation with Paging

Segments can be of different lengths, so it is harder to find a place for a segment in memory than a
page. With segmented virtual memory, you get the benefits of virtual memory but you still have to
do dynamic storage allocation of physical memory. In order to avoid this, it is possible

Lovely Professional University172

Unit 11: Memory Management – II

Notes

to combine segmentation and paging into a two-level virtual memory system. Each segment
descriptor points to page table for that segment. This give some of the advantages of paging (easy
placement) with some of the advantages of segments (logical division of the program).

Figure 11.7: Intel 80386 Address Translation

Some operating systems allow for the combination of segmentation with paging. If the size of a
segment exceeds the size of main memory, the segment may be divided into equal size pages. The
virtual address consists of three parts: (1) segment number (2) the page within the segment and (3)
the offset within the page. The segment number is used to find the segment descriptor and the
address within the segment is used to find the page frame and the offset within that page.

11.7 Virtual Memory
Many of us use computers on a daily basis. Although you use it for many different purposes in
many different ways, you share one common reason of using them; to make our job more efficient
and easier. However, there are times when computers cannot run as fast as you want it to or just
cannot handle certain processes effectively, due to the shortage of system resources. When the
limitations of system resources become a major barrier to achieving your maximum productivity,
you often consider the apparent ways of upgrading the system, such as switching to a faster CPU,
adding more physical memory (RAM), installing utility programs, and so on. As a computer user,
you want to make the most of the resources available; the process of preparing plans to coordinate
the total system to operate in the most efficient manner. This is called a system optimization. When
it comes to system optimization, there is one great invention of modern computing called virtual
memory. It is an imaginary memory area supported by some operating system (for example,Windows but not DOS) in conjunction with the hardware. You can think of virtual memory as analternate set of memory addresses. Programs use these virtual addresses rather than real addresses tostore instructions and data. When the program is actually executed, the virtual addresses are convertedinto real memory addresses. The purpose of virtual memory is to enlarge the address space, the set ofaddresses a program can utilize.
Example: Virtual memory might contain twice as many addresses as main memory. A program
using all of virtual memory, therefore, would not be able to fi t in main memory all at once.
Nevertheless, the computer could execute such a program by copying into main memory thoseportions of the program needed at any given point during execution.

Unit 11: Memory Management – II

Notes

to combine segmentation and paging into a two-level virtual memory system. Each segment
descriptor points to page table for that segment. This give some of the advantages of paging (easy
placement) with some of the advantages of segments (logical division of the program).

Figure 11.7: Intel 80386 Address Translation

Some operating systems allow for the combination of segmentation with paging. If the size of a
segment exceeds the size of main memory, the segment may be divided into equal size pages. The
virtual address consists of three parts: (1) segment number (2) the page within the segment and (3)
the offset within the page. The segment number is used to find the segment descriptor and the
address within the segment is used to find the page frame and the offset within that page.

11.7 Virtual Memory
Many of us use computers on a daily basis. Although you use it for many different purposes in
many different ways, you share one common reason of using them; to make our job more efficient
and easier. However, there are times when computers cannot run as fast as you want it to or just
cannot handle certain processes effectively, due to the shortage of system resources. When the
limitations of system resources become a major barrier to achieving your maximum productivity,
you often consider the apparent ways of upgrading the system, such as switching to a faster CPU,
adding more physical memory (RAM), installing utility programs, and so on. As a computer user,
you want to make the most of the resources available; the process of preparing plans to coordinate
the total system to operate in the most efficient manner. This is called a system optimization. When
it comes to system optimization, there is one great invention of modern computing called virtual
memory. It is an imaginary memory area supported by some operating system (for example,Windows but not DOS) in conjunction with the hardware. You can think of virtual memory as analternate set of memory addresses. Programs use these virtual addresses rather than real addresses tostore instructions and data. When the program is actually executed, the virtual addresses are convertedinto real memory addresses. The purpose of virtual memory is to enlarge the address space, the set ofaddresses a program can utilize.
Example: Virtual memory might contain twice as many addresses as main memory. A program
using all of virtual memory, therefore, would not be able to fi t in main memory all at once.
Nevertheless, the computer could execute such a program by copying into main memory thoseportions of the program needed at any given point during execution.

Unit 11: Memory Management – II

Notes

to combine segmentation and paging into a two-level virtual memory system. Each segment
descriptor points to page table for that segment. This give some of the advantages of paging (easy
placement) with some of the advantages of segments (logical division of the program).

Figure 11.7: Intel 80386 Address Translation

Some operating systems allow for the combination of segmentation with paging. If the size of a
segment exceeds the size of main memory, the segment may be divided into equal size pages. The
virtual address consists of three parts: (1) segment number (2) the page within the segment and (3)
the offset within the page. The segment number is used to find the segment descriptor and the
address within the segment is used to find the page frame and the offset within that page.

11.7 Virtual Memory
Many of us use computers on a daily basis. Although you use it for many different purposes in
many different ways, you share one common reason of using them; to make our job more efficient
and easier. However, there are times when computers cannot run as fast as you want it to or just
cannot handle certain processes effectively, due to the shortage of system resources. When the
limitations of system resources become a major barrier to achieving your maximum productivity,
you often consider the apparent ways of upgrading the system, such as switching to a faster CPU,
adding more physical memory (RAM), installing utility programs, and so on. As a computer user,
you want to make the most of the resources available; the process of preparing plans to coordinate
the total system to operate in the most efficient manner. This is called a system optimization. When
it comes to system optimization, there is one great invention of modern computing called virtual
memory. It is an imaginary memory area supported by some operating system (for example,Windows but not DOS) in conjunction with the hardware. You can think of virtual memory as analternate set of memory addresses. Programs use these virtual addresses rather than real addresses tostore instructions and data. When the program is actually executed, the virtual addresses are convertedinto real memory addresses. The purpose of virtual memory is to enlarge the address space, the set ofaddresses a program can utilize.
Example: Virtual memory might contain twice as many addresses as main memory. A program
using all of virtual memory, therefore, would not be able to fi t in main memory all at once.
Nevertheless, the computer could execute such a program by copying into main memory thoseportions of the program needed at any given point during execution.

Lovely Professional University 173

Operating System

Notes

Figure 11.8: Virtual Memory

To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses. Each page is stored on a
disk until it is needed. When the page is needed, the operating system copies it from disk to main
memory, translating the virtual addresses into real addresses.

The process of translating virtual addresses into real addresses is called mapping. The copying of
virtual pages from disk to main memory is known as paging or swapping.

Some physical memory is used to keep a list of references to the most recently accessed information
on an I/O (input/output) device, such as the hard disk. The optimization it provides, is that it is
faster to read the information from physical memory, than use the relevant I/O channel to get that
information. This is called caching. It is implemented inside the OS.

Demand Paging
As there is much less physical memory than virtual memory the operating system must be careful
that it does not use the physical memory inefficiently. One way to save physical memory is to only
load virtual pages that are currently being used by the executing program. For example, a database
program may be run to query a database. In this case not the entire database needs to be loaded
into memory, just those data records that are being examined. Also, if the database query is a search
query then it does not make sense to load the code from the database program that deals with
adding new records. This technique of only loading virtual pages into memory as they are accessed
is known as demand paging.

Figure 11.9: Abstract Model of Virtual to Physical Address Mapping

Operating System

Notes

Figure 11.8: Virtual Memory

To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses. Each page is stored on a
disk until it is needed. When the page is needed, the operating system copies it from disk to main
memory, translating the virtual addresses into real addresses.

The process of translating virtual addresses into real addresses is called mapping. The copying of
virtual pages from disk to main memory is known as paging or swapping.

Some physical memory is used to keep a list of references to the most recently accessed information
on an I/O (input/output) device, such as the hard disk. The optimization it provides, is that it is
faster to read the information from physical memory, than use the relevant I/O channel to get that
information. This is called caching. It is implemented inside the OS.

Demand Paging
As there is much less physical memory than virtual memory the operating system must be careful
that it does not use the physical memory inefficiently. One way to save physical memory is to only
load virtual pages that are currently being used by the executing program. For example, a database
program may be run to query a database. In this case not the entire database needs to be loaded
into memory, just those data records that are being examined. Also, if the database query is a search
query then it does not make sense to load the code from the database program that deals with
adding new records. This technique of only loading virtual pages into memory as they are accessed
is known as demand paging.

Figure 11.9: Abstract Model of Virtual to Physical Address Mapping

Operating System

Notes

Figure 11.8: Virtual Memory

To facilitate copying virtual memory into real memory, the operating system divides virtual
memory into pages, each of which contains a fixed number of addresses. Each page is stored on a
disk until it is needed. When the page is needed, the operating system copies it from disk to main
memory, translating the virtual addresses into real addresses.

The process of translating virtual addresses into real addresses is called mapping. The copying of
virtual pages from disk to main memory is known as paging or swapping.

Some physical memory is used to keep a list of references to the most recently accessed information
on an I/O (input/output) device, such as the hard disk. The optimization it provides, is that it is
faster to read the information from physical memory, than use the relevant I/O channel to get that
information. This is called caching. It is implemented inside the OS.

Demand Paging
As there is much less physical memory than virtual memory the operating system must be careful
that it does not use the physical memory inefficiently. One way to save physical memory is to only
load virtual pages that are currently being used by the executing program. For example, a database
program may be run to query a database. In this case not the entire database needs to be loaded
into memory, just those data records that are being examined. Also, if the database query is a search
query then it does not make sense to load the code from the database program that deals with
adding new records. This technique of only loading virtual pages into memory as they are accessed
is known as demand paging.

Figure 11.9: Abstract Model of Virtual to Physical Address Mapping

Lovely Professional University174

Unit 11: Memory Management – II

Notes

When a process attempts to access a virtual address that is not currently in memory the CPU cannot
find a page table entry for the virtual page referenced. For example, in Figure 7.11 there is no entry
in Process X’s page table for virtual PFN 2 and so if Process X attempts to read from an address
within virtual PFN 2 the CPU cannot translate the address into a physical one. At this point the
CPU cannot cope and needs the operating system to fi x things up. It notifies the operating system
that a page fault has occurred and the operating system makes the process wait whilst it fixes
things up. The CPU must bring the appropriate page into memory from the image on disk. Disk
access takes a long time, relatively speaking, and so the process must wait quite a while until the
page has been fetched. If there are other processes that could run then the operating system will
select one of them to run. The fetched page is written into a free physical page frame and an entry
for the virtual PFN is added to the processes page table. The process is then restarted at the point
where the memory fault occurred. This time the virtual memory access is made, the CPU can make
the address translation and so the process continues to run. This is known as demand paging and
occurs when the system is busy but also when an image is first loaded into memory. This
mechanism means that a process can execute an image that only partially resides in physical
memory at any one time.

Summary

 The part of the operating system that manages the memory hierarchy is the memory
manager.

 It keeps track of parts of memory that are in use and those that are not in use, to allocate
memory to processes when they need it and de-allocate it when they are done, and to
manage swapping between main memory and disk when main memory is too small to hold
all the processes.

 Memory is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly.

 The memory manager is a part of operating system which is responsible for allocating
primary memory to processes and for assisting the programmer in loading and storing the
contents of the primary memory.

 Overlaying means replacement of a block of stored instructions or data with another.
Overlay Manager is part of the operating system, which loads the required overlay from
external memory into its destination region in order to be used.

 An address generated by the CPU is commonly referred to as a logical address and an
address seen by the memory unit – that is, the one loaded into the memory-address register
of the memory – is commonly referred to as a physical address.

 Memory Management Unit (MMU) is a computer hardware component responsible for
handling accesses to memory requested by the CPU. It is also known as Paged Memory
Management Unit (PMMU).

Keywords

 Logical Address: An address generated by the CPU is commonly referred to as a logical
address.

 Memory Management Unit (MMU): It is a computer hardware component responsible for
handling accesses to memory requested by the CPU.

 Memory Manager: The memory manager is a part of operating system which is responsible
for allocating primary memory to processes and for assisting the programmer in loading
and storing the contents of the primary memory.

 Memory: It is the electronic holding place for instructions and data that the computer’s
microprocessor can reach quickly.

Lovely Professional University 175

Operating System

Notes

 Overlay Manager: It is part of the operating system, which loads the required overlay from
external memory into its destination region in order to be used.

 Overlaying: It means replacement of a block of stored instructions or data with another.
 Paged Memory Management Unit (PMMU): Same as MMU.
 Physical Address: An address seen by the memory unit-that is, the one loaded into the

memory address register of the memory-is commonly referred to as a physical address.

Self Assessment
1. In the concept of ____________, whenever a process is running, it will not use the complete

program at the same time

2. The place in memory where an overlay is loaded is called a _______________region.

3. The method assumes dividing a program into self-contained object code blocks called

4. In ________________ memory allocation method the memory manager places a process in

the largest block of unallocated memory available.

5. Belady’s Optimal Algorithm is also known as _____________________

6. The Best-Fit approach in the Dynamic Storage-Allocation Problem allocate the smallest hole

that is big enough.

A. True
B. False

7. The main problem in Fixed partitioning is that the size of process is independent of the
maximum size of the partition.

A. True
B. False

8. In the concept of overlays, once a part of the program is done with the execution, it is pulled
back and a new required part is run.

A. True
B. False

9. Purpose of the swapping is to access the data present in the hard disk and bring it to RAM.

A. True

B. False

10. Program counter (PC) contains
A. Address of an instruction to be fetched
B. Instructions most recently fetched
C. Data to be written into memory
D. Data to be read from memory

11. To move a program from fast-access memory to a slow-access memory is known as

Lovely Professional University176

Unit 11: Memory Management – II

Notes

A. Swap-in
B. Swap-out
C. Memory reallocation
D. None of the given choices

12. The process of translating virtual addresses into real addresses is called
A. Mapping
B. Loading
C. Linking
D. None of the above

13. happens when a hard drive has to move its heads over the swap area
many times due to the high number of page faults.

A. Thrashing
B. Spooling
C. Mapping
D. None of the given choices

14. Thecontiguous memory allocation is the one in which____________
A. every process is contained in a single contiguous section of memory
B. all processes are contained in a single contiguous section of memory
C. the memory space is contiguous
D. none of the mentioned

15. Which of the following is not a partition allocation method used in contiguous memory
allocations?

A. Best Fit
B. Average Fit
C. Worst Fit
D. First Fit

Answers for Self Assessment

1. overlays 2. destination 3. Overlays 4. worst fit 5. perfect
prediction

6. A 7. B 8. A 9. A 10. A

11. B 12. A 13. A 14. A 15. B

Review Questions

1. Write a short description on:
a) Binding of Instructions and Data to Memory
b) Memory-Management Unit
c) CPU utilization
d) Memory Relocation

Lovely Professional University 177

Operating System

Notes

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would each of

the first-fit, best-fit, and worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does not own?
How could the operating system allow access to other memory? Why should it or should it
not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.
13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,Seventh Edition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.Andrew M. Lister, Fundamentals of Operating Systems, Wiley.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would each of

the first-fit, best-fit, and worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does not own?
How could the operating system allow access to other memory? Why should it or should it
not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.
13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,Seventh Edition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.Andrew M. Lister, Fundamentals of Operating Systems, Wiley.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

2. What is high-speed cache?
3. What is overlaying? Explain it.
4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical

memory of 32 frames.
5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?
8. Describe a mechanism by which one segment could belong to the address space of two

different processes.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would each of

the first-fit, best-fit, and worst-fit algorithms place processes of 212K, 417K, 112K, and 426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does not own?
How could the operating system allow access to other memory? Why should it or should it
not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.
13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons,Seventh Edition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.Andrew M. Lister, Fundamentals of Operating Systems, Wiley.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University178

Unit 12: Memory Management – III

Notes

Unit 12: Memory Management - III

CONTENTS

Objectives

Introduction

12.1 Page Replacement

12.2 Page Allocation Algorithm

12.3 Thrashing

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Define memory management
 Describe swapping
 Explain segmentation with paging
 Know virtual memory
 Describe demand paging

Introduction
Paging is a technique in which the main memory of computer system is organized in the form of
equal sized blocks called pages. The address of occupied pages of physical memory are stored
inside the Page tables. Paging enables the operating system to obtain data from the physical
memory location without specifying lengthy memory address in the instruction. In this technique,
the virtual address is used to map the physical address of the data. The length of virtual address is
specified in the instruction and is smaller than physical address of the data. It consists of two
different numbers; first number is the address of page called virtual page in the page table and the
second number is the offset value of the actual data in the page. In an operating system that uses
paging for memory management, a page replacement algorithm is needed to decide which page
needs to be replaced when new page comes in. A page fault happens when a running program
accesses a memory page that is mapped into the virtual address space, but not loaded in physical
memory. Since actual physical memory is much smaller than virtual memory, page faults happen.
In case of page fault, Operating System might have to replace one of the existing pages with the
newly needed page. Different page replacement algorithms suggest different ways to decide which
page to replace. The target for all algorithms is to reduce the number of page faults.

12.1 Page Replacement
When the number of available real memory frames on the free list becomes low, a page stealer is
invoked. A page stealer moves through the Page Frame Table (PFT), looking for pages to steal. The
PFT includes flags to signal which pages have been referenced and which have been modified. If
the page stealer encounters a page that has been referenced, it does not steal that page, but instead,

Lovely Professional University 179

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

resets the reference flag for that page. The next time the clock hand (page stealer) passes that page
and the reference bit is still off, that page is stolen. A page that was not referenced in the first pass is
immediately stolen.The modify flag indicates that the data on that page has been changed since it was brought intomemory.When a page is to be stolen, if the modify flag is set, a page out call is made beforestealing the page.Pages that are part of working segments are written to paging space; persistentsegments are written todisk.All paging algorithms function on three basic policies: a fetch policy, a replacement policy, andaplacement policy. In the case of static paging, describes the process with a shortcut: the pagethat hasbeen removed is always replaced by the incoming page; this means that the placementpolicy is alwaysfixed. Since you are also assuming demand paging, the fetch policy is also aconstant; the page fetched isthat which has been requested by a page fault. This leaves only theexamination of replacementmethods.
Static Page Replacement Algorithms
Optimal Replacement Theory
In a best-casescenario, the only pages replaced are those that will either never be needed again,
orhave the longest number of page requests before they are referenced. This “perfect” scenario
isusually used only as a benchmark by which other algorithms can be judged, and is referred to
aseither Belady’s Optimal Algorithm or Perfect Prediction (PP). Such a feat cannot be accomplishedwithout full prior knowledge of the reference stream, or a record of past behavior that isincrediblyconsistent. Although usually a pipe dream for system designers, suggests it can be seen inveryrare cases, such as large weather prediction programs that carry out the same operationsonconsistently sized data.
In this algorithm, pages are replaced which would not be used for the longest duration of time in
the future.

Example

Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.
Find number of page fault.

Total Page Fault=6

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots (so, 4 Page faults)
0 is already there (so, 0Page faults)

 When 3 came it will take the place of 7 because it is not used for the longest duration of time in
the future.(So, 1 Page fault)

 0 is already there (so,Page faults)
 4 will takes place of 1 (so, 1 Page Fault).

Now for the further page reference string there are 0 Page faults because they are already available
in the memory.Optimal page replacement is perfect, but not possible in practice as the operating
system cannot know future requests. The use of Optimal Page replacement is to set up a benchmark
so that other replacement algorithms can be analyzed against it.

Random Replacement

Operating System

Notes

resets the reference flag for that page. The next time the clock hand (page stealer) passes that page
and the reference bit is still off, that page is stolen. A page that was not referenced in the first pass is
immediately stolen.The modify flag indicates that the data on that page has been changed since it was brought intomemory.When a page is to be stolen, if the modify flag is set, a page out call is made beforestealing the page.Pages that are part of working segments are written to paging space; persistentsegments are written todisk.All paging algorithms function on three basic policies: a fetch policy, a replacement policy, andaplacement policy. In the case of static paging, describes the process with a shortcut: the pagethat hasbeen removed is always replaced by the incoming page; this means that the placementpolicy is alwaysfixed. Since you are also assuming demand paging, the fetch policy is also aconstant; the page fetched isthat which has been requested by a page fault. This leaves only theexamination of replacementmethods.
Static Page Replacement Algorithms
Optimal Replacement Theory
In a best-casescenario, the only pages replaced are those that will either never be needed again,
orhave the longest number of page requests before they are referenced. This “perfect” scenario
isusually used only as a benchmark by which other algorithms can be judged, and is referred to
aseither Belady’s Optimal Algorithm or Perfect Prediction (PP). Such a feat cannot be accomplishedwithout full prior knowledge of the reference stream, or a record of past behavior that isincrediblyconsistent. Although usually a pipe dream for system designers, suggests it can be seen inveryrare cases, such as large weather prediction programs that carry out the same operationsonconsistently sized data.
In this algorithm, pages are replaced which would not be used for the longest duration of time in
the future.

Example

Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.
Find number of page fault.

Total Page Fault=6

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots (so, 4 Page faults)
0 is already there (so, 0Page faults)

 When 3 came it will take the place of 7 because it is not used for the longest duration of time in
the future.(So, 1 Page fault)

 0 is already there (so,Page faults)
 4 will takes place of 1 (so, 1 Page Fault).

Now for the further page reference string there are 0 Page faults because they are already available
in the memory.Optimal page replacement is perfect, but not possible in practice as the operating
system cannot know future requests. The use of Optimal Page replacement is to set up a benchmark
so that other replacement algorithms can be analyzed against it.

Random Replacement

Operating System

Notes

resets the reference flag for that page. The next time the clock hand (page stealer) passes that page
and the reference bit is still off, that page is stolen. A page that was not referenced in the first pass is
immediately stolen.The modify flag indicates that the data on that page has been changed since it was brought intomemory.When a page is to be stolen, if the modify flag is set, a page out call is made beforestealing the page.Pages that are part of working segments are written to paging space; persistentsegments are written todisk.All paging algorithms function on three basic policies: a fetch policy, a replacement policy, andaplacement policy. In the case of static paging, describes the process with a shortcut: the pagethat hasbeen removed is always replaced by the incoming page; this means that the placementpolicy is alwaysfixed. Since you are also assuming demand paging, the fetch policy is also aconstant; the page fetched isthat which has been requested by a page fault. This leaves only theexamination of replacementmethods.
Static Page Replacement Algorithms
Optimal Replacement Theory
In a best-casescenario, the only pages replaced are those that will either never be needed again,
orhave the longest number of page requests before they are referenced. This “perfect” scenario
isusually used only as a benchmark by which other algorithms can be judged, and is referred to
aseither Belady’s Optimal Algorithm or Perfect Prediction (PP). Such a feat cannot be accomplishedwithout full prior knowledge of the reference stream, or a record of past behavior that isincrediblyconsistent. Although usually a pipe dream for system designers, suggests it can be seen inveryrare cases, such as large weather prediction programs that carry out the same operationsonconsistently sized data.
In this algorithm, pages are replaced which would not be used for the longest duration of time in
the future.

Example

Consider the page references 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, with 4 page frame.
Find number of page fault.

Total Page Fault=6

 Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots (so, 4 Page faults)
0 is already there (so, 0Page faults)

 When 3 came it will take the place of 7 because it is not used for the longest duration of time in
the future.(So, 1 Page fault)

 0 is already there (so,Page faults)
 4 will takes place of 1 (so, 1 Page Fault).

Now for the further page reference string there are 0 Page faults because they are already available
in the memory.Optimal page replacement is perfect, but not possible in practice as the operating
system cannot know future requests. The use of Optimal Page replacement is to set up a benchmark
so that other replacement algorithms can be analyzed against it.

Random Replacement

Lovely Professional University180

Unit 12: Memory Management – III

Notes

On the flip-side of complete optimization is the most basic approach to page replacement:simply
choosing the victim, or page to be removed, at random. Each page frame involved has anequal
chance of being chosen, without taking into consideration the reference stream or localityprincipals.
Due to its random nature, the behavior of this algorithm is quite obviously, randomand unreliable.
With most reference streams this method produces an unacceptable number ofpage faults, as well
as victim pages being thrashed unnecessarily. A better performance can almostalways be achieved
by employing a different algorithm. Most systems stopped experimentingwith this method as early
as the 1960’s.

First-In, First-Out (FIFO)

First-in, first-out is as easy to implement as Random Replacement, and although its performanceis
equally unreliable or worse, its behavior does follow a predictable pattern. Rather than choosinga
victim page at random, the oldest page (or first-in) is the first to be removed.

Figure 12.1: LRU using a matrix when pages are referenced in the order 0, 1, 2, 3, 2 , 1, 0, 3, 2, 3

Conceptually compares FIFO to a limited size queue, with items being added to the queue at the
tail. When the queue fills (all of the physical memory has been allocated), the first page to enter is
pushed out of head of the queue. Similar to Random Replacement, FIFO blatantly ignores trends,
and although it produces less page faults, still does not take advantage of locality trends unless by
coincidence as pages move along the queue. A modification to FIFO that makes its operation much
more useful is First-In Not-Used First-Out (FINUFO). The only modification here is that a single bit
is used to identify whether or not a page has been referenced during its time in the FIFO queue.
This utility, or referenced bit, is then used to determine if a page is identified as a victim. If, since it
has been fetched, the page has been referenced at least once, its bit becomes set. When a page must
be swapped out, the first to enter the queue whose bit has not been set is removed; if every active
page has been referenced, a likely occurrence taking locality into consideration, all of the bits are
reset. In a worst-case scenario this could cause minor and temporary thrashing, but is generally
very effective given its low cost.

Example

Consider page reference string 1, 3, 0, 3, 5, 6 with 3-page frames. Find number of
page faults.

Total Page Faults = 6

Unit 12: Memory Management – III

Notes

On the flip-side of complete optimization is the most basic approach to page replacement:simply
choosing the victim, or page to be removed, at random. Each page frame involved has anequal
chance of being chosen, without taking into consideration the reference stream or localityprincipals.
Due to its random nature, the behavior of this algorithm is quite obviously, randomand unreliable.
With most reference streams this method produces an unacceptable number ofpage faults, as well
as victim pages being thrashed unnecessarily. A better performance can almostalways be achieved
by employing a different algorithm. Most systems stopped experimentingwith this method as early
as the 1960’s.

First-In, First-Out (FIFO)

First-in, first-out is as easy to implement as Random Replacement, and although its performanceis
equally unreliable or worse, its behavior does follow a predictable pattern. Rather than choosinga
victim page at random, the oldest page (or first-in) is the first to be removed.

Figure 12.1: LRU using a matrix when pages are referenced in the order 0, 1, 2, 3, 2 , 1, 0, 3, 2, 3

Conceptually compares FIFO to a limited size queue, with items being added to the queue at the
tail. When the queue fills (all of the physical memory has been allocated), the first page to enter is
pushed out of head of the queue. Similar to Random Replacement, FIFO blatantly ignores trends,
and although it produces less page faults, still does not take advantage of locality trends unless by
coincidence as pages move along the queue. A modification to FIFO that makes its operation much
more useful is First-In Not-Used First-Out (FINUFO). The only modification here is that a single bit
is used to identify whether or not a page has been referenced during its time in the FIFO queue.
This utility, or referenced bit, is then used to determine if a page is identified as a victim. If, since it
has been fetched, the page has been referenced at least once, its bit becomes set. When a page must
be swapped out, the first to enter the queue whose bit has not been set is removed; if every active
page has been referenced, a likely occurrence taking locality into consideration, all of the bits are
reset. In a worst-case scenario this could cause minor and temporary thrashing, but is generally
very effective given its low cost.

Example

Consider page reference string 1, 3, 0, 3, 5, 6 with 3-page frames. Find number of
page faults.

Total Page Faults = 6

Unit 12: Memory Management – III

Notes

On the flip-side of complete optimization is the most basic approach to page replacement:simply
choosing the victim, or page to be removed, at random. Each page frame involved has anequal
chance of being chosen, without taking into consideration the reference stream or localityprincipals.
Due to its random nature, the behavior of this algorithm is quite obviously, randomand unreliable.
With most reference streams this method produces an unacceptable number ofpage faults, as well
as victim pages being thrashed unnecessarily. A better performance can almostalways be achieved
by employing a different algorithm. Most systems stopped experimentingwith this method as early
as the 1960’s.

First-In, First-Out (FIFO)

First-in, first-out is as easy to implement as Random Replacement, and although its performanceis
equally unreliable or worse, its behavior does follow a predictable pattern. Rather than choosinga
victim page at random, the oldest page (or first-in) is the first to be removed.

Figure 12.1: LRU using a matrix when pages are referenced in the order 0, 1, 2, 3, 2 , 1, 0, 3, 2, 3

Conceptually compares FIFO to a limited size queue, with items being added to the queue at the
tail. When the queue fills (all of the physical memory has been allocated), the first page to enter is
pushed out of head of the queue. Similar to Random Replacement, FIFO blatantly ignores trends,
and although it produces less page faults, still does not take advantage of locality trends unless by
coincidence as pages move along the queue. A modification to FIFO that makes its operation much
more useful is First-In Not-Used First-Out (FINUFO). The only modification here is that a single bit
is used to identify whether or not a page has been referenced during its time in the FIFO queue.
This utility, or referenced bit, is then used to determine if a page is identified as a victim. If, since it
has been fetched, the page has been referenced at least once, its bit becomes set. When a page must
be swapped out, the first to enter the queue whose bit has not been set is removed; if every active
page has been referenced, a likely occurrence taking locality into consideration, all of the bits are
reset. In a worst-case scenario this could cause minor and temporary thrashing, but is generally
very effective given its low cost.

Example

Consider page reference string 1, 3, 0, 3, 5, 6 with 3-page frames. Find number of
page faults.

Total Page Faults = 6

Lovely Professional University 181

Operating System

Notes

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots. (3 Page
Faults).
when 3 comes, it is already in memory so (0 Page Faults).

Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e. 1. (So, 1 Page
Fault).
6 comes, it is also not available in memory so it replaces the oldest page slot i.e. 3 (So, 1 Page Fault).
Finally, when 3 come it is not available so it replaces 0 (So, 1page fault)

Note

Belady’s anomaly proves that it is possible to have more page faults when increasing the
number of page frames while using the First in First Out (FIFO) page replacement
algorithm. For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3
slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

Least Frequently Used (LFU)

Often confused with LRU, Least Frequently Used (LFU) selects a page for replacement if ithas not
been used often in the past. Instead of using a single age as in the case of LRU, LFUdefines a
frequency of use associated with each page. This frequency is calculated throughoutthe reference
stream, and its value can be calculated in a variety of ways. The most commonfrequency
implementation begins at the beginning of the page reference stream, and continuesto calculate the
frequency over an ever-increasing interval. Although this is the most accuraterepresentation of the
actual frequency of use, it does have some serious drawbacks. Primarily,reactions to locality
changes will be extremely slow. Assuming that a program either changes itsset of active pages, or
terminates and is replaced by a completely different program, the frequencycount will cause pages
in the new locality to be immediately replaced since their frequency ismuch less than the pages
associated with the previous program. Since the context has changed,and the pages swapped out
will most likely be needed again soon (due to the new program’sprincipal of locality), a period of
thrashing will likely occur. If the beginning of the referencestream is used, initialization code of a
program can also have a profound influence. The pagesassociated with initial code can influence
the page replacement policy long after the main bodyof the program has begun execution. One way
to remedy this is to use a popular variant of LFU,which uses frequency counts of a page since it was
last loaded rather than since the beginning ofthe page reference stream. Each time a page is loaded,
its frequency counter is reset rather thanbeing allowed to increase indefinitely throughout the
execution of the program. Although thispolicy will for the most part prevent “old” pages from
having a huge influence in the future ofthe stream, it will still tend to respond slowly to locality
changes.

Dynamic Page Replacement Algorithms
All of the static page replacement algorithms considered have one thing in common: theyassumed
that each program is allocated a fixed amount of memory when it begins execution,and does not
request further memory during its lifetime. Although static algorithms will workin this scenario,
they are hardly optimized to handle the common occurrence of adjusting topage allocation
changes. This can lead to problems when a program rapidly switches betweenneeding relatively
large and relatively small page sets or localities. Depending on the size ofthe memory requirements
of a program, the number of page faults may increase or decreaserapidly; for Stack Algorithms, you
know that as the memory size is decreased, the numbersof page faults will increase. Other static
algorithms may become completely unpredictable.Generally speaking, any program can have its
number of page faults statistically analyzed for avariety of memory allocations. At some point the
rate of increase of the page faults (derivativeof the curve) will peak; this point is sometimes referred
to as the hysteresis point. If the memoryallocated to the program is less than the hysteresis point,
the program is likely to thrash its pagereplacement. Past the point, there is generally little
noticeable change in the fault rate, making thehysteresis the target page allocation. Since a full
analysis is rarely available to a virtual memorycontroller, and that program behavior is quite
dynamic, finding the optimal page allocation can beincredibly difficult. A variety of methods must
be employed to develop replacement algorithmsthat work hand-in-hand with the locality changes
present in complex programs. Dynamic pagingalgorithms accomplish this by attempting to predict
program memory requirements, whileadjusting available pages based on reoccurring trends. This
policy of controlling available pagesis also referred to as “prefetch” paging, and is contrary to the
idea of demand paging. Althoughlocalities (within the scope of a set of operations) may change,

Operating System

Notes

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots. (3 Page
Faults).
when 3 comes, it is already in memory so (0 Page Faults).

Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e. 1. (So, 1 Page
Fault).
6 comes, it is also not available in memory so it replaces the oldest page slot i.e. 3 (So, 1 Page Fault).
Finally, when 3 come it is not available so it replaces 0 (So, 1page fault)

Note

Belady’s anomaly proves that it is possible to have more page faults when increasing the
number of page frames while using the First in First Out (FIFO) page replacement
algorithm. For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3
slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

Least Frequently Used (LFU)

Often confused with LRU, Least Frequently Used (LFU) selects a page for replacement if ithas not
been used often in the past. Instead of using a single age as in the case of LRU, LFUdefines a
frequency of use associated with each page. This frequency is calculated throughoutthe reference
stream, and its value can be calculated in a variety of ways. The most commonfrequency
implementation begins at the beginning of the page reference stream, and continuesto calculate the
frequency over an ever-increasing interval. Although this is the most accuraterepresentation of the
actual frequency of use, it does have some serious drawbacks. Primarily,reactions to locality
changes will be extremely slow. Assuming that a program either changes itsset of active pages, or
terminates and is replaced by a completely different program, the frequencycount will cause pages
in the new locality to be immediately replaced since their frequency ismuch less than the pages
associated with the previous program. Since the context has changed,and the pages swapped out
will most likely be needed again soon (due to the new program’sprincipal of locality), a period of
thrashing will likely occur. If the beginning of the referencestream is used, initialization code of a
program can also have a profound influence. The pagesassociated with initial code can influence
the page replacement policy long after the main bodyof the program has begun execution. One way
to remedy this is to use a popular variant of LFU,which uses frequency counts of a page since it was
last loaded rather than since the beginning ofthe page reference stream. Each time a page is loaded,
its frequency counter is reset rather thanbeing allowed to increase indefinitely throughout the
execution of the program. Although thispolicy will for the most part prevent “old” pages from
having a huge influence in the future ofthe stream, it will still tend to respond slowly to locality
changes.

Dynamic Page Replacement Algorithms
All of the static page replacement algorithms considered have one thing in common: theyassumed
that each program is allocated a fixed amount of memory when it begins execution,and does not
request further memory during its lifetime. Although static algorithms will workin this scenario,
they are hardly optimized to handle the common occurrence of adjusting topage allocation
changes. This can lead to problems when a program rapidly switches betweenneeding relatively
large and relatively small page sets or localities. Depending on the size ofthe memory requirements
of a program, the number of page faults may increase or decreaserapidly; for Stack Algorithms, you
know that as the memory size is decreased, the numbersof page faults will increase. Other static
algorithms may become completely unpredictable.Generally speaking, any program can have its
number of page faults statistically analyzed for avariety of memory allocations. At some point the
rate of increase of the page faults (derivativeof the curve) will peak; this point is sometimes referred
to as the hysteresis point. If the memoryallocated to the program is less than the hysteresis point,
the program is likely to thrash its pagereplacement. Past the point, there is generally little
noticeable change in the fault rate, making thehysteresis the target page allocation. Since a full
analysis is rarely available to a virtual memorycontroller, and that program behavior is quite
dynamic, finding the optimal page allocation can beincredibly difficult. A variety of methods must
be employed to develop replacement algorithmsthat work hand-in-hand with the locality changes
present in complex programs. Dynamic pagingalgorithms accomplish this by attempting to predict
program memory requirements, whileadjusting available pages based on reoccurring trends. This
policy of controlling available pagesis also referred to as “prefetch” paging, and is contrary to the
idea of demand paging. Althoughlocalities (within the scope of a set of operations) may change,

Operating System

Notes

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots. (3 Page
Faults).
when 3 comes, it is already in memory so (0 Page Faults).

Then 5 comes, it is not available in memory so it replaces the oldest page slot i.e. 1. (So, 1 Page
Fault).
6 comes, it is also not available in memory so it replaces the oldest page slot i.e. 3 (So, 1 Page Fault).
Finally, when 3 come it is not available so it replaces 0 (So, 1page fault)

Note

Belady’s anomaly proves that it is possible to have more page faults when increasing the
number of page frames while using the First in First Out (FIFO) page replacement
algorithm. For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3
slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

Least Frequently Used (LFU)

Often confused with LRU, Least Frequently Used (LFU) selects a page for replacement if ithas not
been used often in the past. Instead of using a single age as in the case of LRU, LFUdefines a
frequency of use associated with each page. This frequency is calculated throughoutthe reference
stream, and its value can be calculated in a variety of ways. The most commonfrequency
implementation begins at the beginning of the page reference stream, and continuesto calculate the
frequency over an ever-increasing interval. Although this is the most accuraterepresentation of the
actual frequency of use, it does have some serious drawbacks. Primarily,reactions to locality
changes will be extremely slow. Assuming that a program either changes itsset of active pages, or
terminates and is replaced by a completely different program, the frequencycount will cause pages
in the new locality to be immediately replaced since their frequency ismuch less than the pages
associated with the previous program. Since the context has changed,and the pages swapped out
will most likely be needed again soon (due to the new program’sprincipal of locality), a period of
thrashing will likely occur. If the beginning of the referencestream is used, initialization code of a
program can also have a profound influence. The pagesassociated with initial code can influence
the page replacement policy long after the main bodyof the program has begun execution. One way
to remedy this is to use a popular variant of LFU,which uses frequency counts of a page since it was
last loaded rather than since the beginning ofthe page reference stream. Each time a page is loaded,
its frequency counter is reset rather thanbeing allowed to increase indefinitely throughout the
execution of the program. Although thispolicy will for the most part prevent “old” pages from
having a huge influence in the future ofthe stream, it will still tend to respond slowly to locality
changes.

Dynamic Page Replacement Algorithms
All of the static page replacement algorithms considered have one thing in common: theyassumed
that each program is allocated a fixed amount of memory when it begins execution,and does not
request further memory during its lifetime. Although static algorithms will workin this scenario,
they are hardly optimized to handle the common occurrence of adjusting topage allocation
changes. This can lead to problems when a program rapidly switches betweenneeding relatively
large and relatively small page sets or localities. Depending on the size ofthe memory requirements
of a program, the number of page faults may increase or decreaserapidly; for Stack Algorithms, you
know that as the memory size is decreased, the numbersof page faults will increase. Other static
algorithms may become completely unpredictable.Generally speaking, any program can have its
number of page faults statistically analyzed for avariety of memory allocations. At some point the
rate of increase of the page faults (derivativeof the curve) will peak; this point is sometimes referred
to as the hysteresis point. If the memoryallocated to the program is less than the hysteresis point,
the program is likely to thrash its pagereplacement. Past the point, there is generally little
noticeable change in the fault rate, making thehysteresis the target page allocation. Since a full
analysis is rarely available to a virtual memorycontroller, and that program behavior is quite
dynamic, finding the optimal page allocation can beincredibly difficult. A variety of methods must
be employed to develop replacement algorithmsthat work hand-in-hand with the locality changes
present in complex programs. Dynamic pagingalgorithms accomplish this by attempting to predict
program memory requirements, whileadjusting available pages based on reoccurring trends. This
policy of controlling available pagesis also referred to as “prefetch” paging, and is contrary to the
idea of demand paging. Althoughlocalities (within the scope of a set of operations) may change,

Lovely Professional University182

Unit 12: Memory Management – III

Notes

states, it is likely that within theglobal locality (encompassing the smaller clusters), locality sets will
be repeated.

12.2 Page Allocation Algorithm
How do you allocate the fixed amount of free memory among the various processes? If you have93
free frames and two processes, how many frames does each process get? The simplest case ofvirtual
memory is the single-user system. Consider a single-user system with 128 KB memorycomposed of
pages of size 1 KB. Thus, there are 128 frames. The operating system may take 35KB, leaving 93
frames for the user process. Under pure demand paging, all 93 frames wouldinitially be put on the
free-frame list. When a user process started execution, it would generatea sequence of page faults.
The first 93 page faults would all get free frames from the free-framelist. When the free-frame list
was exhausted, a page replacement algorithm would be used toselect one of the 93 in-memory
pages to be replaced with the ninety-fourth, and so on. When theprocess terminated, the 93 frames
would once again be placed on the free-frame list.There are many variations on this simple
strategy. You can require that the operating systemallocate all its buffer and table space from the
free-frame list. When this space is not in use by theoperating system, it can be used to support user
paging. You can try to keep three free framesreserved on the free-frame list at all times. Thus, when
a page fault occurs, there is a free frameavailable to page into. While the page swap is taking place,
a replacement can be selected, whichis then written to the disk as the user process continues to
execute.

Other variants are also possible, but the basic strategy is clear. The user process is allocated anyfree
frame.

12.3 Thrashing
Thrashing happens when a hard drive has to move its heads over the swap area many timesdue to
the high number of page faults. This happens when memory accesses are causing pagefaults as the
memory is not located in main memory. The thrashing happens as memory pagesare swapped out
to disk only to be paged in again soon afterwards. Instead of memory accesshappening mainly in
main memory, access is mainly to disk causing the processes to becomeslow as disk access is
required for many memory pages and thus thrashing.

The OS can reduce the effects of thrashing and improve performance by choosing a more
suitablereplacement strategy for pages. Having a replacement strategy that does not cause
memoryareas to be written to disk that have not modified since been retrieved reduces thrashing.
Usingreplacement strategies that allow little used rarely accessed pages to remain in memory while
themost required pages are swapped in and out.

Thrashing is a situation where large amounts of computer resources are used to do a
minimalamount of work, with the system in a continual state of resource contention. Once
started,thrashing is typically self-sustaining until something occurs to remove the original situation
thatled to the initial thrashing behavior.Usually thrashing refers to two or more processes accessing
a shared resource repeatedlysuch that serious system performance degradation occurs because the
system is spending adisproportionate amount of time just accessing the shared resource. Resource
access time maygenerally be considered as wasted, since it does not contribute to the advancement
of any process.This is often the case when a CPU can process more information than can be held in
availableRAM; consequently, the system spends more time preparing to execute instructions than
actuallyexecuting them.

Concept of Thrashing

If the number of frames allocated to a low priority process is lower than the minimum
numberrequired by the computer architecture then in this case we must suspend the execution of
thislow priority process. After this we should page out all of its remaining pages and freeing all
ofits allocated frames. This provision introduces a swap in, swap-out level of intermediate
CPUscheduling. Let take a example of a process that does not have enough number of frames. Ifthe
process does not have the number of frames it needs to support pages in active use, it willquickly
page fault. The only option remains here for process is to replace some active pages withthe page
that requires a frame. However, since all of its pages are in active use, it must replace apage that

Lovely Professional University 183

Operating System

Notes

will be needed again right away. Consequently, it quickly faults again and again thatmean
replacing pages that it must bring back in immediately. This high paging activity is
calledThrashing. Or we can say that a process is Thrashing if it is spending more time in paging
thenexecuting. Thrashing results in severe performance problems.

Summary

 The part of the operating system that manages the memory hierarchy is the memorymanager.
 It keeps track of parts of memory that are in use and those that are not in use, to

allocatememory to processes when they need it and de-allocate it when they are done, and
tomanage swapping between main memory and disk when main memory is too small tohold
all the processes.

 Memory is the electronic holding place for instructions and data that the
computer’smicroprocessor can reach quickly.

 The memory manager is a part of operating system which is responsible for allocatingprimary
memory to processes and for assisting the programmer in loading and storing thecontents of
the primary memory.

 Overlaying means replacement of a block of stored instructions or data with another.Overlay
Manager is part of the operating system, which loads the required overlay fromexternal
memory into its destination region in order to be used.

 An address generated by the CPU is commonly referred to as a logical address and anaddress
seen by the memory unit – that is, the one loaded into the memory-address registerof the
memory – is commonly referred to as a physical address.

 Memory Management Unit (MMU) is a computer hardware component responsible
forhandling accesses to memory requested by the CPU. It is also known as Paged
MemoryManagement Unit (PMMU).

Keywords

 Logical Address: An address generated by the CPU is commonly referred to as a
logicaladdress.

 Memory Management Unit (MMU): It is a computer hardware component responsible
forhandling accesses to memory requested by the CPU.

 Memory Manager: The memory manager is a part of operating system which is responsible
forallocating primary memory to processes and for assisting the programmer in loading and
storingthe contents of the primary memory.

 Memory: It is the electronic holding place for instructions and data that the
computer’smicroprocessor can reach quickly.

 Overlay Manager: It is part of the operating system, which loads the required overlay
fromexternal memory into its destination region in order to be used.

 Overlaying: It means replacement of a block of stored instructions or data with another.
 Paged Memory Management Unit (PMMU): Same as MMU.
 Physical Address: An address seen by the memory unit-that is, the one loaded into the

memoryaddressregister of the memory-is commonly referred to as a physical address.

Lovely Professional University184

Unit 12: Memory Management – III

Notes

Self Assessment
1. The algorithm in which we split m frames among n processes, to give everyone an equal

share, m/n frames is known as ____________

2. Thrashing _______ the CPU utilization.

3. A program is generally composed of several different localities, which _____ overlap.

4. A page fault occurs when a page is not available in memory and cannot be accessed.

A. True
B. False

5. At least a minimum number of frames should be allocated to each process because a lesser
number of frames for allocation, leads to a less number of page faults

A. True
B. False

6. Thrashing leads to a constant state of paging and page faults
A. True
B. False

7. When a process becomes inactive, its working set cannot migrate to disk.
A. True
B. False

8. Thrashing
A. reduces page I/O
B. decreases the degree of multiprogramming
C. implies excessive page I/O
D. improves the system performance

9. Dirty bit for a page in a page table
A. helps avoid unnecessary writes on a paging device
B. helps maintain LRU information
C. allows only read on a page
D. none of the above

10. The page replacement algorithm with the lowest fault rate is___________
A. Optimal page replacement algorithm
B. LRU replacement algorithm
C. FIFO
D. Counting based

11. Which of the following algorithms is commonly not used to allocate frames to a process?
A. Equal allocation algorithm
B. Proportional allocation algorithm
C. Final allocation algorithm
D. None of the given choices

Lovely Professional University 185

Operating System

Notes

12. With either equal or proportional algorithm, a high priority process is treated ___________ a
low priority process.

A. greater than
B. same as
C. lesser than
D. none of the mentioned

13. The working set model is used in memory management to implement the concept of____?
A. Thrashing
B. segmentation
C. principle of locality
D. paging

14. in which of the following conditions can we say that a process is thrashing?
A. If it spends a lot of time executing, rather than paging
B. If it spends a lot of time paging than executing
C. If it has no memory allocated to it
D. None of the mentioned

15. By locality we mean______________?
A. a set of pages that are actively used together
B. a space in memory
C. an area near a set of processes
D. none of the mentioned

Answers for Self Assessment

l. equal
allocation
algorithm

2. Decreases 3. May 4. A 5. B

6. A 7. B 8. C 9. A 10. A

11. C 12. B 13. C 14. B 15. A

Review Questions

1. Write a short description on:
a) Binding of Instructions and Data to Memory
b) Memory-Management Unit
c) CPU utilization

(d) Memory Relocation
2. What is high-speed cache?
3. What is overlaying? Explain it.

Lovely Professional University186

Unit 12: Memory Management – III

Notes

4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical
memory of 32 frames.

5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?8. Describe a mechanism by which one segment could belong to the address space of twodifferentprocesses.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would eachof the

first-fi t, best-fi t, and worst-fi t algorithms place processes of 212K, 417K, 112K, and426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does notown?
How could the operating system allow access to other memory? Why should it orshould it not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it
detectsthrashing,

12. What can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.

13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Linkswww.en.wikipedia.orgwww.web-source.netwww.webopedia.com

Unit 12: Memory Management – III

Notes

4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical
memory of 32 frames.

5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?8. Describe a mechanism by which one segment could belong to the address space of twodifferentprocesses.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would eachof the

first-fi t, best-fi t, and worst-fi t algorithms place processes of 212K, 417K, 112K, and426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does notown?
How could the operating system allow access to other memory? Why should it orshould it not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it
detectsthrashing,

12. What can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.

13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Linkswww.en.wikipedia.orgwww.web-source.netwww.webopedia.com

Unit 12: Memory Management – III

Notes

4. Consider a logical address space of eight pages of 1,024 words each, mapped onto a physical
memory of 32 frames.

5. How many bits are there in the logical address?
6. How many bits are there in the physical address?
7. Why are segmentation and paging sometimes combined into one scheme?8. Describe a mechanism by which one segment could belong to the address space of twodifferentprocesses.
9. Given memory partitions of l00K, 500K, 200K, 300K, and 600K (in order), how would eachof the

first-fi t, best-fi t, and worst-fi t algorithms place processes of 212K, 417K, 112K, and426K (in
order)? Which algorithm makes the most efficient use of memory?

10. Why is it that, on a system with paging, a process cannot access memory that it does notown?
How could the operating system allow access to other memory? Why should it orshould it not?

11. What is the cause of thrashing? How does the system detect thrashing? Once it
detectsthrashing,

12. What can the system do to eliminate this problem?

12. What is virtual memory? Explain the working of virtual memory.

13. Describe the dynamic page replacement method.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.Colin Ritchie, Operating Systems, BPB Publications.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Linkswww.en.wikipedia.orgwww.web-source.netwww.webopedia.com

Lovely Professional University 187

Unit 13: Protection

Notes

Unit 13: File Management

CONTENTS

Objectives

Introduction

13.1 File Systems

13.2 Types of File Systems

13.3 File Systems and Operating Systems

13.4 File Concept

13.5 Access Methods

13.6 Directory Structure

13.7 File System Mounting

13.8 File Sharing

13.9 Protection

13.10 File System Implementation

13.11 Allocation Methods

13.12 Free-space Management

13.13 Directory Implementation

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the goals and principles of protection in a modern computer system
 analyze capability and language-based protection system
 understand the different file systems
 learn the concept of file directories
 understand the different types of file directories
 understand the different file systems
 learn the concept of file directories
 understand the different types of file directories

Introduction
Another part of the operating system is the file manager. While the memory manager is
responsiblefor the maintenance of primary memory, the file manager is responsible for the
maintenance ofsecondary storage (e.g., hard disks).

Lovely Professional University188

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

Each file is a named collection of data stored in a device. The file manager implements
thisabstraction and provides directories for organizing files. It also provides a spectrum of
commandsto read and write the contents of a file, to set the file read/write position, to set and use
theprotection mechanism, to change the ownership, to list files in a directory, and to remove a
file.The file manager provides a protection mechanism to allow machine users to administer
howprocesses executing on behalf of different users can access the information in files. File
protectionis a fundamental property of files because it allows different people to store their
information ona shared computer, with the confidence that the information can be kept
confidential.

13.1 File Systems
A file system is a method for storing and organizing computer files and the data they contain
tomake it easy to find and access them. File systems may use a data storage device such as a
harddisk or CD-ROM and involve maintaining the physical location of the files, they might
provideaccess to data on a file server by acting as clients for a network protocol (e.g., NFS, SMB, or
9Pclients), or they may be virtual and exist only as an access method for virtual data.More formally,
a file system is a set of abstract data types that are implemented for the storage,hierarchical
organization, manipulation, navigation, access, and retrieval of data. File systemsshare much in
common with database technology, but it is debatable whether a file system canbe classified as a
special-purpose database (DBMS).

13.2 Types of File Systems
File system types can be classified into disk file systems, network file systems and special
purposefile systems.

1. Disk file systems:

A disk file system is a file system designed for the storage of files on adata storage device, most
commonly a disk drive, which might be directly or indirectlyconnected to the computer.

Example: Disk file systems include FAT, FAT32, NTFS, HFS and HFS+, ext2,ext3, ISO 9660, ODS-5,
and UDF. Some disk file systems are journaling file systems orversioning file systems.

2. Flash file systems:

A flash file system is a file system designed for storing files on flash memory devices. These are
becoming more prevalent as the number of mobile devices is increasing, and the capacity of flash
memories catches up with hard drives.

While a block device layer can emulate a disk drive so that a disk file system can be used on a flash
device, this is suboptimal for several reasons:

a) Erasing blocks: Flash memory blocks have to be explicitly erased before they can be written to.
The time taken to erase blocks can be significant, thus it is beneficial to erase unused blocks
while the device is idle.

b) Random access: Disk file systems are optimized to avoid disk seeks whenever possible, due to
the high cost of seeking. Flash memory devices impose no seek latency.

c) Wear leveling: Flash memory devices tend to wear out when a single block is repeatedly
overwritten; flash file systems are designed to spread out writes evenly.

Log-structured file systems have all the desirable properties for a flash file system. Such file
systems include JFFS2 and YAFFS.

3. Database file systems:

A new concept for file management is the concept of a database-based file system. Instead of, or in
addition to, hierarchical structured management, files are identified by their characteristics, like
type of file, topic, author, or similar metadata. Example: dbfs.

Lovely Professional University 189

Unit 13: Protection

Notes

4. Transactional file systems:

Each disk operation may involve changes to a number of different files and disk structures. In
many cases, these changes are related, meaning that it is important that they all be executed at the
same time. Take for example a bank sending another bank some money electronically. The bank’s
computer will “send” the transfer instruction to the other bank and also update its own records to
indicate the transfer has occurred. If for some reason the computer crashes before it has had a
chance to update its own records, then on reset, there will be no record of the transfer but the bank
will be missing some money.

Transaction processing introduces the guarantee that at any point while it is running, a transaction
can either be finished completely or reverted completely (though not necessarily both at any given
point). This means that if there is a crash or power failure, after recovery, the stored state will be
consistent. (Either the money will be transferred or it will not be transferred, but it won’t ever go
missing “in transit”.)

This type of file system is designed to be fault tolerant, but may incur additional overhead to do so.Journaling file systems are one technique used to introduce transaction-level consistency to file systemstructures.
5. Network file systems:

A network file system is a file system that acts as a client for a remote file access protocol,
providing access to files on a server.

Example: Network file systems include clients for the NFS, SMB protocols, and file-
system-like clients for FTP and WebDAV.

6. Special purpose file systems: A special purpose file system is basically any file system thatis
not a disk file system or network file system. This includes systems where the files arearranged
dynamically by software, intended for such purposes as communication betweencomputer
processes or temporary file space.Special purpose file systems are most commonly used by file-
centric operating systemssuch as Unix. Examples include the procfs (/proc) file system used by
some Unix variants,which grants access to information about processes and other operating
system features.

Deep space science exploration craft, like Voyager I & II used digital tape based specialfile systems.
Most modern space exploration craft like Cassini-Huygens used Real-timeoperating system file
systems or RTOS influenced file systems. The Mars Rovers are onesuch example of an RTOS file
system, important in this case because they are implementedin flash memory.

Task

Discuss NTFS type of file system. Also explain the various benefits of NTFS filesystem over FAT
file.

13.3 File Systems and Operating Systems
Most operating systems provide a file system, as a file system is an integral part of any modern
operating system. Early microcomputer operating systems’ only real task was file management - a
fact reflected in their names. Some early operating systems had a separate component for handling
file systems which was called a disk operating system. On some microcomputers, the disk
operating system was loaded separately from the rest of the operating system. On early operating
systems, there was usually support for only one, native, unnamed file system; for example, CP/M
supports only its own file system, which might be called “CP/M file system” if needed, but which
didn’t bear any official name at all. Because of this, there needs to be an interface provided by the
operating system software between the user and the file system. This interface can be textual (such
as provided by a command line interface, such as the Unix shell, or OpenVMS DCL) or graphical
(such as provided by a graphical user interface, such as file browsers). If graphical, the metaphor of
the folder, containing documents, other files, and nested folders is often used.

Unit 13: Protection

Notes

4. Transactional file systems:

Each disk operation may involve changes to a number of different files and disk structures. In
many cases, these changes are related, meaning that it is important that they all be executed at the
same time. Take for example a bank sending another bank some money electronically. The bank’s
computer will “send” the transfer instruction to the other bank and also update its own records to
indicate the transfer has occurred. If for some reason the computer crashes before it has had a
chance to update its own records, then on reset, there will be no record of the transfer but the bank
will be missing some money.

Transaction processing introduces the guarantee that at any point while it is running, a transaction
can either be finished completely or reverted completely (though not necessarily both at any given
point). This means that if there is a crash or power failure, after recovery, the stored state will be
consistent. (Either the money will be transferred or it will not be transferred, but it won’t ever go
missing “in transit”.)

This type of file system is designed to be fault tolerant, but may incur additional overhead to do so.Journaling file systems are one technique used to introduce transaction-level consistency to file systemstructures.
5. Network file systems:

A network file system is a file system that acts as a client for a remote file access protocol,
providing access to files on a server.

Example: Network file systems include clients for the NFS, SMB protocols, and file-
system-like clients for FTP and WebDAV.

6. Special purpose file systems: A special purpose file system is basically any file system thatis
not a disk file system or network file system. This includes systems where the files arearranged
dynamically by software, intended for such purposes as communication betweencomputer
processes or temporary file space.Special purpose file systems are most commonly used by file-
centric operating systemssuch as Unix. Examples include the procfs (/proc) file system used by
some Unix variants,which grants access to information about processes and other operating
system features.

Deep space science exploration craft, like Voyager I & II used digital tape based specialfile systems.
Most modern space exploration craft like Cassini-Huygens used Real-timeoperating system file
systems or RTOS influenced file systems. The Mars Rovers are onesuch example of an RTOS file
system, important in this case because they are implementedin flash memory.

Task

Discuss NTFS type of file system. Also explain the various benefits of NTFS filesystem over FAT
file.

13.3 File Systems and Operating Systems
Most operating systems provide a file system, as a file system is an integral part of any modern
operating system. Early microcomputer operating systems’ only real task was file management - a
fact reflected in their names. Some early operating systems had a separate component for handling
file systems which was called a disk operating system. On some microcomputers, the disk
operating system was loaded separately from the rest of the operating system. On early operating
systems, there was usually support for only one, native, unnamed file system; for example, CP/M
supports only its own file system, which might be called “CP/M file system” if needed, but which
didn’t bear any official name at all. Because of this, there needs to be an interface provided by the
operating system software between the user and the file system. This interface can be textual (such
as provided by a command line interface, such as the Unix shell, or OpenVMS DCL) or graphical
(such as provided by a graphical user interface, such as file browsers). If graphical, the metaphor of
the folder, containing documents, other files, and nested folders is often used.

Unit 13: Protection

Notes

4. Transactional file systems:

Each disk operation may involve changes to a number of different files and disk structures. In
many cases, these changes are related, meaning that it is important that they all be executed at the
same time. Take for example a bank sending another bank some money electronically. The bank’s
computer will “send” the transfer instruction to the other bank and also update its own records to
indicate the transfer has occurred. If for some reason the computer crashes before it has had a
chance to update its own records, then on reset, there will be no record of the transfer but the bank
will be missing some money.

Transaction processing introduces the guarantee that at any point while it is running, a transaction
can either be finished completely or reverted completely (though not necessarily both at any given
point). This means that if there is a crash or power failure, after recovery, the stored state will be
consistent. (Either the money will be transferred or it will not be transferred, but it won’t ever go
missing “in transit”.)

This type of file system is designed to be fault tolerant, but may incur additional overhead to do so.Journaling file systems are one technique used to introduce transaction-level consistency to file systemstructures.
5. Network file systems:

A network file system is a file system that acts as a client for a remote file access protocol,
providing access to files on a server.

Example: Network file systems include clients for the NFS, SMB protocols, and file-
system-like clients for FTP and WebDAV.

6. Special purpose file systems: A special purpose file system is basically any file system thatis
not a disk file system or network file system. This includes systems where the files arearranged
dynamically by software, intended for such purposes as communication betweencomputer
processes or temporary file space.Special purpose file systems are most commonly used by file-
centric operating systemssuch as Unix. Examples include the procfs (/proc) file system used by
some Unix variants,which grants access to information about processes and other operating
system features.

Deep space science exploration craft, like Voyager I & II used digital tape based specialfile systems.
Most modern space exploration craft like Cassini-Huygens used Real-timeoperating system file
systems or RTOS influenced file systems. The Mars Rovers are onesuch example of an RTOS file
system, important in this case because they are implementedin flash memory.

Task

Discuss NTFS type of file system. Also explain the various benefits of NTFS filesystem over FAT
file.

13.3 File Systems and Operating Systems
Most operating systems provide a file system, as a file system is an integral part of any modern
operating system. Early microcomputer operating systems’ only real task was file management - a
fact reflected in their names. Some early operating systems had a separate component for handling
file systems which was called a disk operating system. On some microcomputers, the disk
operating system was loaded separately from the rest of the operating system. On early operating
systems, there was usually support for only one, native, unnamed file system; for example, CP/M
supports only its own file system, which might be called “CP/M file system” if needed, but which
didn’t bear any official name at all. Because of this, there needs to be an interface provided by the
operating system software between the user and the file system. This interface can be textual (such
as provided by a command line interface, such as the Unix shell, or OpenVMS DCL) or graphical
(such as provided by a graphical user interface, such as file browsers). If graphical, the metaphor of
the folder, containing documents, other files, and nested folders is often used.

Lovely Professional University190

Operating System

Notes

Flat file systems: In a flat file system, there are no subdirectories-everything is stored at the same
(root) level on the media, be it a hard disk, floppy disk, etc. While simple, this system
rapidlybecomes inefficient as the number of files grows, and makes it difficult for users to organize
datainto related groups.

Like many small systems before it, the original Apple Macintosh featured a flat file system,
calledMacintosh File System. Its version of Mac OS was unusual in that the file management
software(Macintosh Finder) created the illusion of a partially hierarchical filing system on top of
MFS.This structure meant that every file on a disk had to have a unique name, even if it appeared
to bein a separate folder. MFS was quickly replaced with Hierarchical File System, which
supportedreal directories.

13.4 File Concept
A file is a collection of letters, numbers and special characters: it may be a program, a database,
adissertation, a reading list, a simple letter etc. Sometimes you may import a file from elsewhere,for
example from another computer. If you want to enter your own text or data, you will start
bycreating a file. Whether you copied a file from elsewhere or created your own, you will need
toreturn to it later in order to edit its contents.

The most familiar file systems make use of an underlying data storage device that offers accessto an
array of fixed-size blocks, sometimes called sector, generally 512 bytes each. The file
systemsoftware is responsible for organizing these sectors into files and directories, and keeping
trackof which sectors belong to which file and which are not being used. Most file systems
addressdata in fixed-sized units called “clusters” or “blocks” which contain a certain number of
disksectors (usually 1-64). This is the smallest logical amount of disk space that can be allocated
tohold a file.

However, file systems need not make use of a storage device at all. A file system can be used
toorganize and represent access to any data, whether it be stored or dynamically generated
(e.g,from a network connection).

Whether the file system has an underlying storage device or not, file systems typically
havedirectories which associate file names with files, usually by connecting the file name to an
indexinto a file allocation table of some sort, such as the FAT in an MS-DOS file system, or an inode
ina Unix-like file system. Directory structures may be flat, or allow hierarchies where
directoriesmay contain subdirectories. In some file systems, file names are structured, with special
syntaxfor filename extensions and version numbers. In others, file names are simple strings, and
per-filemetadata is stored elsewhere.

Other bookkeeping information is typically associated with each file within a file system. Thelength
of the data contained in a file may be stored as the number of blocks allocated for thefile or as an
exact byte count. The time that the file was last modified may be stored as the file’stimestamp.
Some file systems also store the file creation time, the time it was last accessed, andthe time that the
file’s meta-data was changed.

Note Many early PC operating systems did not keep track of file times. Otherinformation can
include the file’s device type (e.g., block, character, socket, subdirectory,etc.), its owner user-ID and
group-ID, and its access permission settings (e.g., whether thefile is read-only, executable, etc.).

The hierarchical file system was an early research interest of Dennis Ritchie of Unix fame;previous
implementations were restricted to only a few levels, notably the IBM fame;
previousimplementations were restricted to only a few levels, notably the IBM implementations,
even oftheir early databases like IMS. After the success of Unix, Ritchie extended the file system
conceptto every object in his later operating system developments, such as Plan 9 and Inferno.

Traditional file systems offer facilities to create, move and delete both files and directories. Theylack
facilities to create additional links to a directory (hard links in Unix), rename parent links(“..” in
Unix-like OS), and create bidirectional links to files.

Traditional file systems also offer facilities to truncate, append to, create, move, delete andin-place
modify files. They do not offer facilities to prepend to or truncate from the beginning ofa file, let
alone arbitrary insertion into or deletion from a file. The operations provided are highlyasymmetric
and lack the generality to be useful in unexpected contexts.

Lovely Professional University 191

Unit 13: Protection

Notes

Example: Inter-process pipes in Unix have to be implemented outside of the file systembecause the
pipes concept does not offer truncation from the beginning of files.

Secure access to basic file system operations can be based on a scheme of access control lists
orcapabilities. Research has shown access control lists to be difficult to secure properly, which
iswhy research operating systems tend to use capabilities. Commercial file systems still use
accesscontrollists.

13.5 Access Methods
There are several ways that the information in the file can be accessed. Some systems provide
onlyone access method for files. On other systems, many different access methods are supported.

Sequential Access

Information in the file is processed in order, one record after the other. This is by far the
mostcommon mode of access of files. For example, computer editors usually access files in this
fashion.A read operation reads the next portion of the file and automatically advances the file
pointer.Similarly, a write appends to the end of the file and the file pointer. Similarly, a write
appends tothe end of the file and the file pointer. Similarly, a write appends to the end of the end of
the fileand advances to the end of the newly written material (the new end of file). Such a file can
be resetto the beginning, and, on some systems, a program may be able to skip forward or
backward nrecords, for some integer n. This scheme is known as sequential access to a file.
Sequential accessis based on a tape model of a file.

A sequential file may consist of either formatted or unformatted records. If the records
areformatted, you can use formatted I/O statements to operate on them. If the records
areunformatted, you must use unformatted I/O statements only. The last record of a sequential
fileis the end-of-file record.

Direct Access

Direct access is based on a disk model of a file. For direct access, the file is viewed as a
numberedsequence of block or records. A direct-access file allows arbitrary blocks to be read or
written.Thus, after block 18 has been read, block 57 could be next, and then block 3. There are
norestrictions on the order of reading and writing for a direct access file. Direct access files are
ofgreat use for intermediate access to large amounts of information.

The file operations must be modified to include the block number as a parameter. Thus, you
have“read n”, where n is the block number, rather than “read next”, and “write n”, rather than
“writenext”. An alternative approach is to retain “read next” and “write next” and to add an
operation;“position file to n” where n is the block number. Then, to affect a “read n”, you would
issue thecommands “position to n” and then “read next”.

Not all OS support both sequential and direct access for files. Some systems allow only
sequentialfile access; others allow only direct access. Some systems require that a file be defined as
sequentialor direct when it is created; such a file can be accessed only in a manner consistent with
itsdeclaration.

Direct-access files support both formatted and unformatted record types. Both formatted
andunformatted I/O work exactly as they do for sequential files.

Other Access Methods

Other access methods can be built on top of a direct-access method. These additional
methodsgenerally involve the construction of an index for a file. The index contains pointers to the
variousblocks. To find an entry in the file, the index is searched first and the pointer is then used to
accessthe file directly to find the desired entry. With a large file, the index itself may become too
largeto be kept in memory. One solution is to create an index for the index file. The primary index
filewould contain pointers to secondary index files, which would point to the actual data items.
Forexample, IBM’s indexed sequential access method (ISAM) uses a small master index that
pointsto disk blocks of a secondary index. The secondary index blocks point to the actual file
blocks.The file is kept sorted on a defined key. To find a particular item, I first make a binary search
ofthe master index, which provides the block number of the secondary index. This block is readin,
and again a binary search is used to find the block containing the desired record. Finally, thisblock

Lovely Professional University192

Operating System

Notes

is searched sequentially. In this way, any record can be located from its key by at mostdirect access
reads.

13.6 Directory Structure
The directories themselves are simply files indexing other files, which may in turn be directoriesif a
hierarchical indexing scheme is used. In order to protect the integrity of the file system inspite of
user of program error, all modifications to these particular directory files are commonlyrestricted to
the file management system. The typical contents of a directory are:1) file name (string uniquely identifying the file), type (e.g. text, binary data, executable,library),organization (for systems that support different organizations);2) device (where the file is physically stored), size (in blocks), starting address on device (tobe usedby the device I/O subsystem to physically locate the file);3) creator, owner, access information (who is allowed to access the file, and what they may dowithit);4) date of creation/of last modification;5) locking information (for the system that provide file/record locking).
As far as organization, by far the most common scheme is the hierarchical one: a multi-
levelindexing scheme is used, in which a top-level directory indexes both files and other
directories,which in turn index files and directories, and so on. Usually this scheme is represented
in theform of a tree.The hierarchical architecture has distinct advantages over a simple, one-level
indexing one:

the tree structure can be effectively used to reflect a logical organization of the data stored in
thefiles; names can be reused (they must uniquely identify files within each directory, not across
thewhole file system); in a multi-user system, name conflicts between files owned by different
userscan be solved by assigning to each user a directory for her own files and sub-directories, the
socalled user’s “home” directory.

A complete indexing of a file is obtained by navigating the tree starting from the top-level,
“root”,directory, and walking along a path to the tree leaf corresponding to the file.A “pathname”
is thus obtained, which uniquely identifies the file within the whole file system.

Example: The pathname for file “File-6” in Figure 8.1 is “Root-dir:Subdir-1:File-6”, wherea colon is
used to separate tree nodes.

Figure 13.1: Tree Representation of a Hierarchical Directory Structure

A complete pathname is not the only way to identify a file in the directory tree structure:
a“relative” pathname, starting from a parent directory is suited just as well, provided that theFMS
already knows about that directory. This addressing method can be usefully exploited bymaking
the FMS assign to all processes a “current working directory” (CWD) attribute, i.e. thecomplete

Operating System

Notes

is searched sequentially. In this way, any record can be located from its key by at mostdirect access
reads.

13.6 Directory Structure
The directories themselves are simply files indexing other files, which may in turn be directoriesif a
hierarchical indexing scheme is used. In order to protect the integrity of the file system inspite of
user of program error, all modifications to these particular directory files are commonlyrestricted to
the file management system. The typical contents of a directory are:1) file name (string uniquely identifying the file), type (e.g. text, binary data, executable,library),organization (for systems that support different organizations);2) device (where the file is physically stored), size (in blocks), starting address on device (tobe usedby the device I/O subsystem to physically locate the file);3) creator, owner, access information (who is allowed to access the file, and what they may dowithit);4) date of creation/of last modification;5) locking information (for the system that provide file/record locking).
As far as organization, by far the most common scheme is the hierarchical one: a multi-
levelindexing scheme is used, in which a top-level directory indexes both files and other
directories,which in turn index files and directories, and so on. Usually this scheme is represented
in theform of a tree.The hierarchical architecture has distinct advantages over a simple, one-level
indexing one:

the tree structure can be effectively used to reflect a logical organization of the data stored in
thefiles; names can be reused (they must uniquely identify files within each directory, not across
thewhole file system); in a multi-user system, name conflicts between files owned by different
userscan be solved by assigning to each user a directory for her own files and sub-directories, the
socalled user’s “home” directory.

A complete indexing of a file is obtained by navigating the tree starting from the top-level,
“root”,directory, and walking along a path to the tree leaf corresponding to the file.A “pathname”
is thus obtained, which uniquely identifies the file within the whole file system.

Example: The pathname for file “File-6” in Figure 8.1 is “Root-dir:Subdir-1:File-6”, wherea colon is
used to separate tree nodes.

Figure 13.1: Tree Representation of a Hierarchical Directory Structure

A complete pathname is not the only way to identify a file in the directory tree structure:
a“relative” pathname, starting from a parent directory is suited just as well, provided that theFMS
already knows about that directory. This addressing method can be usefully exploited bymaking
the FMS assign to all processes a “current working directory” (CWD) attribute, i.e. thecomplete

Operating System

Notes

is searched sequentially. In this way, any record can be located from its key by at mostdirect access
reads.

13.6 Directory Structure
The directories themselves are simply files indexing other files, which may in turn be directoriesif a
hierarchical indexing scheme is used. In order to protect the integrity of the file system inspite of
user of program error, all modifications to these particular directory files are commonlyrestricted to
the file management system. The typical contents of a directory are:1) file name (string uniquely identifying the file), type (e.g. text, binary data, executable,library),organization (for systems that support different organizations);2) device (where the file is physically stored), size (in blocks), starting address on device (tobe usedby the device I/O subsystem to physically locate the file);3) creator, owner, access information (who is allowed to access the file, and what they may dowithit);4) date of creation/of last modification;5) locking information (for the system that provide file/record locking).
As far as organization, by far the most common scheme is the hierarchical one: a multi-
levelindexing scheme is used, in which a top-level directory indexes both files and other
directories,which in turn index files and directories, and so on. Usually this scheme is represented
in theform of a tree.The hierarchical architecture has distinct advantages over a simple, one-level
indexing one:

the tree structure can be effectively used to reflect a logical organization of the data stored in
thefiles; names can be reused (they must uniquely identify files within each directory, not across
thewhole file system); in a multi-user system, name conflicts between files owned by different
userscan be solved by assigning to each user a directory for her own files and sub-directories, the
socalled user’s “home” directory.

A complete indexing of a file is obtained by navigating the tree starting from the top-level,
“root”,directory, and walking along a path to the tree leaf corresponding to the file.A “pathname”
is thus obtained, which uniquely identifies the file within the whole file system.

Example: The pathname for file “File-6” in Figure 8.1 is “Root-dir:Subdir-1:File-6”, wherea colon is
used to separate tree nodes.

Figure 13.1: Tree Representation of a Hierarchical Directory Structure

A complete pathname is not the only way to identify a file in the directory tree structure:
a“relative” pathname, starting from a parent directory is suited just as well, provided that theFMS
already knows about that directory. This addressing method can be usefully exploited bymaking
the FMS assign to all processes a “current working directory” (CWD) attribute, i.e. thecomplete

Lovely Professional University 193

Unit 13: Protection

Notes

path name of a directory of interest, and defining a way for the process to identify files byjust
specifying a “relative” pathname starting from that directory. In the same example, if
“:Rootdir:Subdir-1” is the CWD of a process, the above file might be identified simply as “File-6”,
usingthe convention that path names not starting with a color are relative to the CWD. The
advantage istwofold: the entire file system structure up to the CWD need not be known by a
program (henceits data can be safely moved in other directories without having to rewrite the
program), andfile access time is decreased, since it’s no longer necessary to navigate the whole tree
in order tofind the address of a file.

Single Level Directory

In single level directory all files are contained in the same directory. It is easy to support
andunderstand. It has some limitations like:

1. Large number of files (naming).
2. Ability to support different users/topics (grouping)

Figure 13.2: Single Level Directory

Two Level Directory
In two level directory structure one is master file directory and the other is user file directory.Here
each user has their own user file directory. Each entry in the master file directory points to auser file
directory. Each user has rights to access their own directory but can’t access other user’sdirectory, if
permission is not given by the owner of the second one.

Figure 13.3: Two Level Directory

Three Level Directory
In three level directory the directory structure is a tree with arbitrary height. Here users maycreate
their own subdirectories.

Unit 13: Protection

Notes

path name of a directory of interest, and defining a way for the process to identify files byjust
specifying a “relative” pathname starting from that directory. In the same example, if
“:Rootdir:Subdir-1” is the CWD of a process, the above file might be identified simply as “File-6”,
usingthe convention that path names not starting with a color are relative to the CWD. The
advantage istwofold: the entire file system structure up to the CWD need not be known by a
program (henceits data can be safely moved in other directories without having to rewrite the
program), andfile access time is decreased, since it’s no longer necessary to navigate the whole tree
in order tofind the address of a file.

Single Level Directory

In single level directory all files are contained in the same directory. It is easy to support
andunderstand. It has some limitations like:

1. Large number of files (naming).
2. Ability to support different users/topics (grouping)

Figure 13.2: Single Level Directory

Two Level Directory
In two level directory structure one is master file directory and the other is user file directory.Here
each user has their own user file directory. Each entry in the master file directory points to auser file
directory. Each user has rights to access their own directory but can’t access other user’sdirectory, if
permission is not given by the owner of the second one.

Figure 13.3: Two Level Directory

Three Level Directory
In three level directory the directory structure is a tree with arbitrary height. Here users maycreate
their own subdirectories.

Unit 13: Protection

Notes

path name of a directory of interest, and defining a way for the process to identify files byjust
specifying a “relative” pathname starting from that directory. In the same example, if
“:Rootdir:Subdir-1” is the CWD of a process, the above file might be identified simply as “File-6”,
usingthe convention that path names not starting with a color are relative to the CWD. The
advantage istwofold: the entire file system structure up to the CWD need not be known by a
program (henceits data can be safely moved in other directories without having to rewrite the
program), andfile access time is decreased, since it’s no longer necessary to navigate the whole tree
in order tofind the address of a file.

Single Level Directory

In single level directory all files are contained in the same directory. It is easy to support
andunderstand. It has some limitations like:

1. Large number of files (naming).
2. Ability to support different users/topics (grouping)

Figure 13.2: Single Level Directory

Two Level Directory
In two level directory structure one is master file directory and the other is user file directory.Here
each user has their own user file directory. Each entry in the master file directory points to auser file
directory. Each user has rights to access their own directory but can’t access other user’sdirectory, if
permission is not given by the owner of the second one.

Figure 13.3: Two Level Directory

Three Level Directory
In three level directory the directory structure is a tree with arbitrary height. Here users maycreate
their own subdirectories.

Lovely Professional University194

Operating System

Notes

Figure 13.4: Three Level Directory

13.7 File System Mounting
The file system structure is the most basic level of organization in an operating system. Almostall of
the ways an operating system interacts with its users, applications, and security model
aredependent upon the way it organizes files on storage devices. Providing a common file
systemstructure ensures users and programs are able to access and write files.File systems break
files down into two logical categories:

1. Shareable vs. un-sharable files
2. Variable vs. static files

Shareable files are those that can be accessed locally and by remote hosts; un-sharable files areonly
available locally. Variable files, such as documents, can be changed at any time; static files,such as
binaries, do not change without an action from the system administrator.The reason for looking at
files in this manner is to help correlate the function of the file with thepermissions assigned to the
directories which hold them. The way in which the operating systemand its users interact with a
given file determines the directory in which it is placed, whether thatdirectory is mounted with
read-only or read/write permissions, and the level of access each userhas to that file. The top level
of this organization is crucial. Access to the underlying directoriescan be restricted or security
problems could manifest themselves if, from the top level down, itdoes not adhere to a rigid
structure.It is important to understand the difference between a file system and a directory. A file
system isa section of hard disk that has been allocated to contain files. This section of hard disk is
accessedby mounting the file system over a directory. After the file system is mounted, it looks just
likeany other directory to the end user.

However, because of the structural differences between the file systems and directories, the
datawithin these entities can be managed separately.When the operating system is installed for the
first time, it is loaded into a directory structure, asshown in the figure 13.5.

Operating System

Notes

Figure 13.4: Three Level Directory

13.7 File System Mounting
The file system structure is the most basic level of organization in an operating system. Almostall of
the ways an operating system interacts with its users, applications, and security model
aredependent upon the way it organizes files on storage devices. Providing a common file
systemstructure ensures users and programs are able to access and write files.File systems break
files down into two logical categories:

1. Shareable vs. un-sharable files
2. Variable vs. static files

Shareable files are those that can be accessed locally and by remote hosts; un-sharable files areonly
available locally. Variable files, such as documents, can be changed at any time; static files,such as
binaries, do not change without an action from the system administrator.The reason for looking at
files in this manner is to help correlate the function of the file with thepermissions assigned to the
directories which hold them. The way in which the operating systemand its users interact with a
given file determines the directory in which it is placed, whether thatdirectory is mounted with
read-only or read/write permissions, and the level of access each userhas to that file. The top level
of this organization is crucial. Access to the underlying directoriescan be restricted or security
problems could manifest themselves if, from the top level down, itdoes not adhere to a rigid
structure.It is important to understand the difference between a file system and a directory. A file
system isa section of hard disk that has been allocated to contain files. This section of hard disk is
accessedby mounting the file system over a directory. After the file system is mounted, it looks just
likeany other directory to the end user.

However, because of the structural differences between the file systems and directories, the
datawithin these entities can be managed separately.When the operating system is installed for the
first time, it is loaded into a directory structure, asshown in the figure 13.5.

Operating System

Notes

Figure 13.4: Three Level Directory

13.7 File System Mounting
The file system structure is the most basic level of organization in an operating system. Almostall of
the ways an operating system interacts with its users, applications, and security model
aredependent upon the way it organizes files on storage devices. Providing a common file
systemstructure ensures users and programs are able to access and write files.File systems break
files down into two logical categories:

1. Shareable vs. un-sharable files
2. Variable vs. static files

Shareable files are those that can be accessed locally and by remote hosts; un-sharable files areonly
available locally. Variable files, such as documents, can be changed at any time; static files,such as
binaries, do not change without an action from the system administrator.The reason for looking at
files in this manner is to help correlate the function of the file with thepermissions assigned to the
directories which hold them. The way in which the operating systemand its users interact with a
given file determines the directory in which it is placed, whether thatdirectory is mounted with
read-only or read/write permissions, and the level of access each userhas to that file. The top level
of this organization is crucial. Access to the underlying directoriescan be restricted or security
problems could manifest themselves if, from the top level down, itdoes not adhere to a rigid
structure.It is important to understand the difference between a file system and a directory. A file
system isa section of hard disk that has been allocated to contain files. This section of hard disk is
accessedby mounting the file system over a directory. After the file system is mounted, it looks just
likeany other directory to the end user.

However, because of the structural differences between the file systems and directories, the
datawithin these entities can be managed separately.When the operating system is installed for the
first time, it is loaded into a directory structure, asshown in the figure 13.5.

Lovely Professional University 195

Unit 13: Protection

Notes

Figure 13.5: File System Tree.

This tree chart shows a directory structure with the/(root) file system at the top, branching
downward to directories and file systems. Directories branch to/bin, /dev, /etc, and /lib. File
systems branch to /usr, /tmp, /var, and /home.The directories on the right (/usr, /tmp, /var, and /home) are all file systems so they have
separatesections of the hard disk allocated for their use. These file systems are mounted
automaticallywhen the system is started, so the end user does not see the difference between these
file systemsand the directories listed on the left (/bin, /dev, /etc, and /lib).
On standalone machines, the following file systems reside on the associated devices by default:

/File System /Device

/dev/hd1 /home

/dev/hd2 /usr

/dev/hd3 /tmp

/dev/hd4 /(root)

/dev/hd9var /var

/proc /proc

/dev/hd10opt /opt

The file tree has the following characteristics:

1. Files that can be shared by machines of the same hardware architecture are located inthe
/usrfile system.

2. Variable per-client files, for example, spool and mail files, are located in the /var filesystem.
3. The /(root) file system contains files and directories critical for system operation.Example: It

contains
a) A device directory (/dev)
b) Mount points where file systems can be mounted onto the root file system, forexample,

/mnt
4. The /home file system is the mount point for users’ home directories.
5. For servers, the /export directory contains paging-space files, per-client (unshared) root

filesystems, dump, home, and /usr/share directories for diskless clients, as well as
exported/usr directories.

6. The/proc file system contains information about the state of processes and threads in
thesystem.

7. The/opt file system contains optional software, such as applications.

The following list provides information about the contents of some of the subdirectoriesof the
/(root) file system.

/bin Symbolic link to the /usr/bin directory.

/dev Contains device nodes for special files for local devices. The /dev directory contains
special filesfor tape drives, printers, disk partitions, and terminals.

/etc Contains configuration files that vary for each machine. Examples include:

1. /etc/hosts

Lovely Professional University196

Operating System

Notes

2. /etc/passwd

/export Contains the directories and files on a server that are for remote clients.

/home Serves as a mount point for a file system containing user home directories. The /home
file system contains per-user files and directories.

In a standalone machine, a separate local file system is mounted over the /home
directory. In a network, a server might contain user files that should be accessible from
several machines. In this case, the server’s copy of the /home directory is remotely
mounted onto a local /home file system.

/lib Symbolic link to the /usr/lib directory, which contains architecture-independent
libraries with names in the form lib*.a.

/sbin Contains files needed to boot the machine and mount the /usrfile system. Most of
thecommands used during booting come from the boot image’s RAM disk file system;
therefore,very few commands reside in the /sbin directory.

/tmp Serves as a mount point for a file system that contains system-generated temporary
files.

/u Symbolic link to the /home directory.

/usr Serves as a mount point for a file system containing files that do not change and can be
sharedby machines (such as executable programs and ASCII documentation).

Standalone machines mount a separate local file system over the /usr directory.
Diskless anddisk-poor machines mount a directory from a remote server over the
/usrfile system.

/var Serves as a mount point for files that vary on each machine. The /var file system is
configured as a file system because the files that it contains tend to grow. For example,
it is a symbolic link tothe /usr/tmp directory, which contains temporary work files.

13.8 File Sharing
In today’s world where the working is a multiuser environment a file is required to be
sharedamong more than one user. There are several techniques and approaches to affects this
operation.Simple approach is to copy the file at the user’s local hard disk. This approach essentially
createsto different files, in therefore cannot be treated as file sharing.

A file can be shared in three different modes:

1) Read only: The user can only read or copy the file.
2) Linked shared: All the users can share the file and can make the changes but the

changesare reflected in the order defined by the operating systems.
3) Exclusive mode: The file is acquired by one single user who can make the changes

whileothers can only read or copy it.

Sharing can also be done through symbolic links, but there occur certain problems like concurrent
updating problem, deletion problem. Updating cannot be done simultaneously by two users ata
time, also one cannot delete a file if it in use by another user. The solution for this problem isdone
by locking file techniques.

13.9 Protection
The data in the computer system should be protected and kept secure. A major concern is toprotect
data from both physical damage (reliability) and improper access (protection). There isa mechanism

Lovely Professional University 197

Unit 13: Protection

Notes

in the computer system that a system program or manually it can take the backupor duplicate the
files automatically. File systems can be damaged by hardware problems (such aserrors in reading
or writing), power surges or failures, head crashes, dirt, temperature extremes.Also, the data can be
lost due to bugs on system. Protection can be provided in many ways. Fora small single-user
system, you might provide protection by physically removing the floppydisks and locking them in
a desk drawer or file cabinet. In a multi-user system, however, othermechanisms are needed.

13.10File System Implementation
The most important issue in file storage is keeping track of which disk blocks go with whichfile.
Different operating systems use different methods- contiguous allocation and linked list allocation
are important to know. In the former, each file is stored as a contiguous block of data on the disk, in
the latter, the file is kept as a linked list of disk blocks - the first word of each block is used as a
pointer to the next one. UNIX uses i-nodes to keep track of which blocks belong to each file. An i-
node is a table that lists the attributes and disk addresses of the file’s blocks. The first few disk
addresses are stored in the i-node itself, so for small files, all the necessary information is in the i-
node itself which is fetched from disk to main memory when the file is

opened. For larger files, one of the addresses in the i-node is the address of a disk block called a
single indirect block which contains additional disk addresses. If this is insufficient, another
address called the double indirect block may contain the address of a block that contains a list of
single indirect blocks. In order to create the illusion of files from the block-oriented disk drives, the
OS must keep track of the location of the sectors containing the data of the file. This is accomplished
by maintaining

a set of data structures both in memory and on disk that keep track of where data is allocated
toeach file, and the name to file mapping encoded in the directory structure.

The simplest allocation of files is a contiguous allocation of sectors to each file. A directory
entrywould contain the name of the file, its size in bytes and the first and last sector of the file.
Thisresults in a fast read of a given file and a compact representation, but also of sizable external

fragmentation which can require compaction to correct. The analog in memory management isthe
base/limit register system of memory allocation.As with memory management, you turn to more
complex data structures and non-contiguousallocation to solve the problems. I can use a bitmap to
record the allocated and unallocated sectorson the disk, and keep a list of sectors assigned to each
file in its directory entry. This isn’t oftenused, because it makes searching for free space difficult
and replicates the allocation informationin the file itself. (When it is used, the bitmap is kept both
on disk and in memory).The other system that is used in file systems and in memory management
is a linked list. Asimple mechanism is to take one integer out of every file block and us that as the
next sectorfollowing this one (similar to linking the holes in memory management).This is an
improvement over bitmaps in efficiency of storage use, but has a significant drawbackin that
finding the proper sector for a random access is expensive. Finding the right sectorcontaining a
random sector is as expensive as reading to that point in the file.To solve this, we collect the sector
pointers into a table (usually cached in main memory) separatefrom the files. Now the OS can
follow the separate pointers to find the appropriate sector for arandom access without reading each
disk block. Furthermore, the conceptual disk blocks and thephysical disk blocks now have the same
size. This is essentially the FAT file system of MS-DOS.Another organization is one optimized for
small files (which research has shown dominate the file system, in the sense that most files are
small) while accommodating large ones. The system iscalled the index node or i-node system. An i-
node contains the attributes of the file and pointersto its first few blocks.

The last 3 sector pointers are special. The first points to i-node structures that contain only
pointersto sectors; this is an indirect block. The second to pointers to pointers to sectors (a double
indirectnode) and the third to pointers to pointers to sectors (triple indirect).This results in
increasing access times for blocks later in the file. Large files will have longeraccess times to the end
of the file. I-nodes specifically optimize for short files.

Lovely Professional University198

Operating System

Notes

13.11Allocation Methods
One main problem in file management is how to allocate space for files so that disk space isutilized
effectively and files can be accessed quickly. Three major methods of allocating diskspace arecontiguous, linked, and indexed. Each method has its advantages and disadvantages.Accordingly, some systems support all three (e.g. Data General’s RDOS). More commonly, asystem willuse one particular method for all files.
Contiguous Allocation

The contiguous allocation method requires each file to occupy a set of contiguous address on
thedisk. Disk addresses define a linear ordering on the disk. Notice that, with this ordering,
accessingblock b+1 after block b normally requires no head movement. When head movement is
needed(from the last sector of one cylinder to the first sector of the next cylinder), it is only one
track.Thus, the number of disks seeks required for accessing contiguous allocated files in minimal,
asis seek time when a seek is finally needed. Contiguous allocation of a file is defined by the
diskaddress and the length of the first block. If the file is n blocks long, and starts at location b,
thenit occupies blocks b, b+1, b+2, …, b+n-1. The directory entry for each file indicates the address
ofthe starting block and the length of the area allocated for this file.The difficulty with contiguous
allocation is finding space for a new file. If the file to be created isn blocks long, then the OS must
search for n free contiguous blocks. First-fi t, best-fi t, and worst-fi tstrategies are the most common
strategies used to select a free hole from the set of available holes.Simulations have shown that both
first-fi t and best-fi t are better than worst-fi t in terms of bothtime storage utilization. Neither first-
fi t nor best-fi t is clearly best in terms of storage utilization,but first-fit is generally faster.These
algorithms also suffer from external fragmentation. As files are allocated and deleted, thefree disk
space is broken into little pieces. External fragmentation exists when enough total diskspace exists
to satisfy a request, but this space not contiguous; storage is fragmented into a largenumber of
small holes.

Another problem with contiguous allocation is determining how much disk space is needed for
afile. When the file is created, the total amount of space it will need must be known and
allocated.How does the creator (program or person) know the size of the file to be created? In some
cases,this determination may be fairly simple (e.g. copying an existing file), but in general the size
ofan output file may be difficult to estimate.

Figure 13.6: Diagram of Contiguous Allocation

Linked Allocation

The problems in contiguous allocation can be traced directly to the requirement that the spacesbe
allocated contiguously and that the files that need these spaces are of different sizes.
Theserequirements can be avoided by using linked allocation.In linked allocation, each file is a
linked list of disk blocks. The directory contains a pointer to thefirst and (optionally the last) block
of the file. For example, a file of 5 blocks which starts at block4, might continue at block 7, then

Operating System

Notes

13.11Allocation Methods
One main problem in file management is how to allocate space for files so that disk space isutilized
effectively and files can be accessed quickly. Three major methods of allocating diskspace arecontiguous, linked, and indexed. Each method has its advantages and disadvantages.Accordingly, some systems support all three (e.g. Data General’s RDOS). More commonly, asystem willuse one particular method for all files.
Contiguous Allocation

The contiguous allocation method requires each file to occupy a set of contiguous address on
thedisk. Disk addresses define a linear ordering on the disk. Notice that, with this ordering,
accessingblock b+1 after block b normally requires no head movement. When head movement is
needed(from the last sector of one cylinder to the first sector of the next cylinder), it is only one
track.Thus, the number of disks seeks required for accessing contiguous allocated files in minimal,
asis seek time when a seek is finally needed. Contiguous allocation of a file is defined by the
diskaddress and the length of the first block. If the file is n blocks long, and starts at location b,
thenit occupies blocks b, b+1, b+2, …, b+n-1. The directory entry for each file indicates the address
ofthe starting block and the length of the area allocated for this file.The difficulty with contiguous
allocation is finding space for a new file. If the file to be created isn blocks long, then the OS must
search for n free contiguous blocks. First-fi t, best-fi t, and worst-fi tstrategies are the most common
strategies used to select a free hole from the set of available holes.Simulations have shown that both
first-fi t and best-fi t are better than worst-fi t in terms of bothtime storage utilization. Neither first-
fi t nor best-fi t is clearly best in terms of storage utilization,but first-fit is generally faster.These
algorithms also suffer from external fragmentation. As files are allocated and deleted, thefree disk
space is broken into little pieces. External fragmentation exists when enough total diskspace exists
to satisfy a request, but this space not contiguous; storage is fragmented into a largenumber of
small holes.

Another problem with contiguous allocation is determining how much disk space is needed for
afile. When the file is created, the total amount of space it will need must be known and
allocated.How does the creator (program or person) know the size of the file to be created? In some
cases,this determination may be fairly simple (e.g. copying an existing file), but in general the size
ofan output file may be difficult to estimate.

Figure 13.6: Diagram of Contiguous Allocation

Linked Allocation

The problems in contiguous allocation can be traced directly to the requirement that the spacesbe
allocated contiguously and that the files that need these spaces are of different sizes.
Theserequirements can be avoided by using linked allocation.In linked allocation, each file is a
linked list of disk blocks. The directory contains a pointer to thefirst and (optionally the last) block
of the file. For example, a file of 5 blocks which starts at block4, might continue at block 7, then

Operating System

Notes

13.11Allocation Methods
One main problem in file management is how to allocate space for files so that disk space isutilized
effectively and files can be accessed quickly. Three major methods of allocating diskspace arecontiguous, linked, and indexed. Each method has its advantages and disadvantages.Accordingly, some systems support all three (e.g. Data General’s RDOS). More commonly, asystem willuse one particular method for all files.
Contiguous Allocation

The contiguous allocation method requires each file to occupy a set of contiguous address on
thedisk. Disk addresses define a linear ordering on the disk. Notice that, with this ordering,
accessingblock b+1 after block b normally requires no head movement. When head movement is
needed(from the last sector of one cylinder to the first sector of the next cylinder), it is only one
track.Thus, the number of disks seeks required for accessing contiguous allocated files in minimal,
asis seek time when a seek is finally needed. Contiguous allocation of a file is defined by the
diskaddress and the length of the first block. If the file is n blocks long, and starts at location b,
thenit occupies blocks b, b+1, b+2, …, b+n-1. The directory entry for each file indicates the address
ofthe starting block and the length of the area allocated for this file.The difficulty with contiguous
allocation is finding space for a new file. If the file to be created isn blocks long, then the OS must
search for n free contiguous blocks. First-fi t, best-fi t, and worst-fi tstrategies are the most common
strategies used to select a free hole from the set of available holes.Simulations have shown that both
first-fi t and best-fi t are better than worst-fi t in terms of bothtime storage utilization. Neither first-
fi t nor best-fi t is clearly best in terms of storage utilization,but first-fit is generally faster.These
algorithms also suffer from external fragmentation. As files are allocated and deleted, thefree disk
space is broken into little pieces. External fragmentation exists when enough total diskspace exists
to satisfy a request, but this space not contiguous; storage is fragmented into a largenumber of
small holes.

Another problem with contiguous allocation is determining how much disk space is needed for
afile. When the file is created, the total amount of space it will need must be known and
allocated.How does the creator (program or person) know the size of the file to be created? In some
cases,this determination may be fairly simple (e.g. copying an existing file), but in general the size
ofan output file may be difficult to estimate.

Figure 13.6: Diagram of Contiguous Allocation

Linked Allocation

The problems in contiguous allocation can be traced directly to the requirement that the spacesbe
allocated contiguously and that the files that need these spaces are of different sizes.
Theserequirements can be avoided by using linked allocation.In linked allocation, each file is a
linked list of disk blocks. The directory contains a pointer to thefirst and (optionally the last) block
of the file. For example, a file of 5 blocks which starts at block4, might continue at block 7, then

Lovely Professional University 199

Unit 13: Protection

Notes

block 16, block 10, and finally block 27. Each block contains apointer to the next block and the last
block contains a NIL pointer. The value -1 may be used forNIL to differentiate it from block 0.

With linked allocation, each directory entry has a pointer to the first disk block of the file.
Thispointer is initialized to nil (the end-of-list pointer value) to signify an empty file. A write to a
fileremoves the first free block and writes to that block. This new block is then linked to the end
ofthe file. To read a file, the pointers are just followed from block to block.

There is no external fragmentation with linked allocation. Any free block can be used to satisfy
arequest. Notice also that there is no need to declare the size of a file when that file is created. A file

can continue to grow as long as there are free blocks. Linked allocation, does have disadvantages,

however. The major problem is that it is inefficient to support direct-access; it is effective only for

sequential-access files. To fi nd the ith block of a file, it must start at the beginning of that file and

follow the pointers until the ith block is reached.

Another severe problem is reliability. A bug in OS or disk hardware failure might result in

pointers being lost and damaged. The effect of which could be picking up a wrong pointer and

linking it to a free block or into another file.

Figure 13.7: Diagram of Linked Allocation

Indexed AllocationThe indexed allocation method is the solution to the problem of both contiguous andlinked allocation. This is done by bringing all the pointers together into one locationcalled the index block. Of course, the index block will occupy some space and thus couldbe considered as an overhead of the method. In indexed allocation, each file has its ownindex block, which is an array of disk sector of addresses. The ith entry in the index blockpoints to the ith sector of the file. The directory contains the address of the index block of afile. To read the ith sector of the file, the pointer in the ith index block entry is read to fi ndthe desired sector. Indexed allocation supports direct access, without suffering from externalfragmentation. Any free block anywhere on the disk may satisfy a request for more space.

Unit 13: Protection

Notes

block 16, block 10, and finally block 27. Each block contains apointer to the next block and the last
block contains a NIL pointer. The value -1 may be used forNIL to differentiate it from block 0.

With linked allocation, each directory entry has a pointer to the first disk block of the file.
Thispointer is initialized to nil (the end-of-list pointer value) to signify an empty file. A write to a
fileremoves the first free block and writes to that block. This new block is then linked to the end
ofthe file. To read a file, the pointers are just followed from block to block.

There is no external fragmentation with linked allocation. Any free block can be used to satisfy
arequest. Notice also that there is no need to declare the size of a file when that file is created. A file

can continue to grow as long as there are free blocks. Linked allocation, does have disadvantages,

however. The major problem is that it is inefficient to support direct-access; it is effective only for

sequential-access files. To fi nd the ith block of a file, it must start at the beginning of that file and

follow the pointers until the ith block is reached.

Another severe problem is reliability. A bug in OS or disk hardware failure might result in

pointers being lost and damaged. The effect of which could be picking up a wrong pointer and

linking it to a free block or into another file.

Figure 13.7: Diagram of Linked Allocation

Indexed AllocationThe indexed allocation method is the solution to the problem of both contiguous andlinked allocation. This is done by bringing all the pointers together into one locationcalled the index block. Of course, the index block will occupy some space and thus couldbe considered as an overhead of the method. In indexed allocation, each file has its ownindex block, which is an array of disk sector of addresses. The ith entry in the index blockpoints to the ith sector of the file. The directory contains the address of the index block of afile. To read the ith sector of the file, the pointer in the ith index block entry is read to fi ndthe desired sector. Indexed allocation supports direct access, without suffering from externalfragmentation. Any free block anywhere on the disk may satisfy a request for more space.

Unit 13: Protection

Notes

block 16, block 10, and finally block 27. Each block contains apointer to the next block and the last
block contains a NIL pointer. The value -1 may be used forNIL to differentiate it from block 0.

With linked allocation, each directory entry has a pointer to the first disk block of the file.
Thispointer is initialized to nil (the end-of-list pointer value) to signify an empty file. A write to a
fileremoves the first free block and writes to that block. This new block is then linked to the end
ofthe file. To read a file, the pointers are just followed from block to block.

There is no external fragmentation with linked allocation. Any free block can be used to satisfy
arequest. Notice also that there is no need to declare the size of a file when that file is created. A file

can continue to grow as long as there are free blocks. Linked allocation, does have disadvantages,

however. The major problem is that it is inefficient to support direct-access; it is effective only for

sequential-access files. To fi nd the ith block of a file, it must start at the beginning of that file and

follow the pointers until the ith block is reached.

Another severe problem is reliability. A bug in OS or disk hardware failure might result in

pointers being lost and damaged. The effect of which could be picking up a wrong pointer and

linking it to a free block or into another file.

Figure 13.7: Diagram of Linked Allocation

Indexed AllocationThe indexed allocation method is the solution to the problem of both contiguous andlinked allocation. This is done by bringing all the pointers together into one locationcalled the index block. Of course, the index block will occupy some space and thus couldbe considered as an overhead of the method. In indexed allocation, each file has its ownindex block, which is an array of disk sector of addresses. The ith entry in the index blockpoints to the ith sector of the file. The directory contains the address of the index block of afile. To read the ith sector of the file, the pointer in the ith index block entry is read to fi ndthe desired sector. Indexed allocation supports direct access, without suffering from externalfragmentation. Any free block anywhere on the disk may satisfy a request for more space.

Lovely Professional University200

Operating System

Notes

Figure 13.8:

13.12Free-space ManagementSince there is only a limited amount of disk space, it is necessary to reuse the space from deletedfiles for new files. To keep track of free disk space, the system maintains a free-space list. Thefree-space list records all disk blocks that are free (i.e., are not allocated to some file). To create afile, the free-space list has to be searched for the required amount of space, and allocate that spaceto a new file. This space is then removed from the free-space list. When a file is deleted, its diskspace is added to the free-space list.
Bit-VectorFrequently, the free-space list is implemented as a bit map or bit vector. Each block is representedby a 1 bit. If the block is free, the bit is 0; if the block is allocated, the bit is 1.
Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 arefree, and the rest of the blocks are allocated. The free-space bit map would be:11000011000000111001111110001111…The main advantage of this approach is that it is relatively simple and efficient to fi nd n consecutivefree blocks on the disk. Unfortunately, bit vectors are inefficient unless the entire vector is keptin memory for most accesses. Keeping it main memory is possible for smaller disks such as onmicrocomputers, but not for larger ones.

Linked ListAnother approach is to link all the free disk blocks together, keeping a pointer to the fi rst freeblock. This block contains a pointer to the next free disk block, and so on. In the previous example,

Operating System

Notes

Figure 13.8:

13.12Free-space ManagementSince there is only a limited amount of disk space, it is necessary to reuse the space from deletedfiles for new files. To keep track of free disk space, the system maintains a free-space list. Thefree-space list records all disk blocks that are free (i.e., are not allocated to some file). To create afile, the free-space list has to be searched for the required amount of space, and allocate that spaceto a new file. This space is then removed from the free-space list. When a file is deleted, its diskspace is added to the free-space list.
Bit-VectorFrequently, the free-space list is implemented as a bit map or bit vector. Each block is representedby a 1 bit. If the block is free, the bit is 0; if the block is allocated, the bit is 1.
Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 arefree, and the rest of the blocks are allocated. The free-space bit map would be:11000011000000111001111110001111…The main advantage of this approach is that it is relatively simple and efficient to fi nd n consecutivefree blocks on the disk. Unfortunately, bit vectors are inefficient unless the entire vector is keptin memory for most accesses. Keeping it main memory is possible for smaller disks such as onmicrocomputers, but not for larger ones.

Linked ListAnother approach is to link all the free disk blocks together, keeping a pointer to the fi rst freeblock. This block contains a pointer to the next free disk block, and so on. In the previous example,

Operating System

Notes

Figure 13.8:

13.12Free-space ManagementSince there is only a limited amount of disk space, it is necessary to reuse the space from deletedfiles for new files. To keep track of free disk space, the system maintains a free-space list. Thefree-space list records all disk blocks that are free (i.e., are not allocated to some file). To create afile, the free-space list has to be searched for the required amount of space, and allocate that spaceto a new file. This space is then removed from the free-space list. When a file is deleted, its diskspace is added to the free-space list.
Bit-VectorFrequently, the free-space list is implemented as a bit map or bit vector. Each block is representedby a 1 bit. If the block is free, the bit is 0; if the block is allocated, the bit is 1.
Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 arefree, and the rest of the blocks are allocated. The free-space bit map would be:11000011000000111001111110001111…The main advantage of this approach is that it is relatively simple and efficient to fi nd n consecutivefree blocks on the disk. Unfortunately, bit vectors are inefficient unless the entire vector is keptin memory for most accesses. Keeping it main memory is possible for smaller disks such as onmicrocomputers, but not for larger ones.

Linked ListAnother approach is to link all the free disk blocks together, keeping a pointer to the fi rst freeblock. This block contains a pointer to the next free disk block, and so on. In the previous example,
Lovely Professional University 201

Unit 13: Protection

Notes

a pointer could be kept to block 2, as the fi rst free block. Block 2 would contain a pointer to block3, which would point to block 4, which would point to block 5, which would point to block 8, andso on. This scheme is not efficient; to traverse the list, each block must be read, which requiressubstantial I/O time.Next

Grouping
A modification of the free-list approach is to store the addresses of n free blocks in the first
freeblock. The first n-1 of these are actually free. The last one is the disk address of another block
containing addresses of another n free blocks. The importance of this implementation is that
addresses of a large number of free blocks can be found quickly.

Counting
Another approach is to take advantage of the fact that, generally, several contiguous blocks may be
allocated or freed simultaneously, particularly when contiguous allocation is used. Thus, rather
than keeping a list of free disk addresses, the address of the first free block is kept and the number
n of free contiguous blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than would a simple disk
address, the overall list will be shorter, as long as the count is generally greater than 1.

13.13Directory Implementation
Directories are generally simply files with a special interpretation. Some directory structures
contain the name of a file, its attributes and a pointer3 either into its FAT list or to its i-node. This
choice bears directly on the implementation of linking. If attributes are stored directly in the
directory node, (hard) linking is difficult because changes to the file must be mirrored in all
directories. If the directory entry simply points to a structure (like an i-node) that holds the
attributes internally, only that structure needs to be updated. The simplest method is to use a linear
list of file names with pointers to the data blocks. This requires a linear search to find a particular
entry. Hash tables are also used by some operating systems - a linear list stores the directory entries
but a hash function based on some computation from the file name returns a pointer to the file
name in the list. Thus, directory search time is greatly reduced.

In UNIX, each entry in the directory contains just a file name and its i-node number. When a file is
opened, the file system takes the file name and locates its disk blocks. The i-node is read into
memory and kept there until the file is closed.

Unit 13: Protection

Notes

a pointer could be kept to block 2, as the fi rst free block. Block 2 would contain a pointer to block3, which would point to block 4, which would point to block 5, which would point to block 8, andso on. This scheme is not efficient; to traverse the list, each block must be read, which requiressubstantial I/O time.Next

Grouping
A modification of the free-list approach is to store the addresses of n free blocks in the first
freeblock. The first n-1 of these are actually free. The last one is the disk address of another block
containing addresses of another n free blocks. The importance of this implementation is that
addresses of a large number of free blocks can be found quickly.

Counting
Another approach is to take advantage of the fact that, generally, several contiguous blocks may be
allocated or freed simultaneously, particularly when contiguous allocation is used. Thus, rather
than keeping a list of free disk addresses, the address of the first free block is kept and the number
n of free contiguous blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than would a simple disk
address, the overall list will be shorter, as long as the count is generally greater than 1.

13.13Directory Implementation
Directories are generally simply files with a special interpretation. Some directory structures
contain the name of a file, its attributes and a pointer3 either into its FAT list or to its i-node. This
choice bears directly on the implementation of linking. If attributes are stored directly in the
directory node, (hard) linking is difficult because changes to the file must be mirrored in all
directories. If the directory entry simply points to a structure (like an i-node) that holds the
attributes internally, only that structure needs to be updated. The simplest method is to use a linear
list of file names with pointers to the data blocks. This requires a linear search to find a particular
entry. Hash tables are also used by some operating systems - a linear list stores the directory entries
but a hash function based on some computation from the file name returns a pointer to the file
name in the list. Thus, directory search time is greatly reduced.

In UNIX, each entry in the directory contains just a file name and its i-node number. When a file is
opened, the file system takes the file name and locates its disk blocks. The i-node is read into
memory and kept there until the file is closed.

Unit 13: Protection

Notes

a pointer could be kept to block 2, as the fi rst free block. Block 2 would contain a pointer to block3, which would point to block 4, which would point to block 5, which would point to block 8, andso on. This scheme is not efficient; to traverse the list, each block must be read, which requiressubstantial I/O time.Next

Grouping
A modification of the free-list approach is to store the addresses of n free blocks in the first
freeblock. The first n-1 of these are actually free. The last one is the disk address of another block
containing addresses of another n free blocks. The importance of this implementation is that
addresses of a large number of free blocks can be found quickly.

Counting
Another approach is to take advantage of the fact that, generally, several contiguous blocks may be
allocated or freed simultaneously, particularly when contiguous allocation is used. Thus, rather
than keeping a list of free disk addresses, the address of the first free block is kept and the number
n of free contiguous blocks that follow the first block. Each entry in the free-space list then consists
of a disk address and a count. Although each entry requires more space than would a simple disk
address, the overall list will be shorter, as long as the count is generally greater than 1.

13.13Directory Implementation
Directories are generally simply files with a special interpretation. Some directory structures
contain the name of a file, its attributes and a pointer3 either into its FAT list or to its i-node. This
choice bears directly on the implementation of linking. If attributes are stored directly in the
directory node, (hard) linking is difficult because changes to the file must be mirrored in all
directories. If the directory entry simply points to a structure (like an i-node) that holds the
attributes internally, only that structure needs to be updated. The simplest method is to use a linear
list of file names with pointers to the data blocks. This requires a linear search to find a particular
entry. Hash tables are also used by some operating systems - a linear list stores the directory entries
but a hash function based on some computation from the file name returns a pointer to the file
name in the list. Thus, directory search time is greatly reduced.

In UNIX, each entry in the directory contains just a file name and its i-node number. When a file is
opened, the file system takes the file name and locates its disk blocks. The i-node is read into
memory and kept there until the file is closed.

Lovely Professional University202

Operating System

Notes

Summary

 File is a named collection of data stored in a device.
 File manager is an integral part of the operating system which is responsible for the

maintenance of secondary storage.
 File system is a set of abstract data types that are implemented for the storage, hierarchical

organization, manipulation, navigation, access, and retrieval of data.
 Disk file system is a file system designed for the storage of files on a data storage device, most

commonly a disk drive, which might be directly or indirectly connected to the computer.
 Flash file system is a file system designed for storing files on flash memory devices. Network

file system is a file system that acts as a client for a remote file access protocol, providingaccess
to files on a server.

 Flat file system is a file system where is no subdirectories and everything is stored at thesame
(root) level on the media, be it a hard disk, floppy disk, etc.

 Directory is simple file containing the indexing of other files, which may in turn bedirectories if
a hierarchical indexing scheme is used.

Keywords

 Directory: It is simple file containing the indexing of other files, which may in turn be
directoriesif a hierarchical indexing scheme is used.

 Disk file system: It is a file system designed for the storage of files on a data storage device,
mostcommonly a disk drive, which might be directly or indirectly connected to the
computer.

 File manager: It is an integral part of the operating system which is responsible for the
maintenanceof secondary storage.

 File system: It is a set of abstract data types that are implemented for the storage,
hierarchicalorganization, manipulation, navigation, access, and retrieval of data.

 File: It is a named collection of data stored in a device.
 Flash file system: It is a file system designed for storing files on flash memory devices.
 Flat file system: It is a file system where no subdirectories are present and everything is

stored atthe same (root) level on the media, be it a hard disk, floppy disk, etc.
 Network file system: It is a file system that acts as a client for a remote file access

protocol,providing access to files on a server.

Self Assessment
1. Shareable files are those that can be accessed and by

2. Three major methods of allocating disk space are, and..........................

3. The difficulty with contiguous allocation is for a new file.

4. There is no external fragmentation with allocation.

5. FAT stands for

6. NTFS stands for

Lovely Professional University 203

Unit 13: Protection

Notes

7. Direct access is based on a of a file.

8. files support both formatted and unformatted record types.

9. A system is a file system designed for storing files on flash memorydevices.

10. A is a collection of letters, numbers and special characters.

11. Which of the following is an approach to restricting system access to authorized users.
A. Role-based access control
B. Process-based access control
C. Job-based access control
D. None of the mentioned

12. Contiguous allocation of a file is defined by _____________
A. disk address of the first block & length
B. length & size of the block
C. size of the block
D. total size of the file

13. In which method, a filed-length logical record exists that allows the program to read and
write record rapidly in no particular order?

A. Sequential access
B. Direct access
C. Indexed sequential access
D. None of the given choices

14. Which of the following techniques always reads or writes a large block of data, which
contains several file records, from or to the I/O medium?

A. Buffering of records
B. Blocking of records
C. Buffering and blocking of records
D. None of the above

15. A Domain may be defined as a _____________
A. set of all objects
B. collection of protection policies
C. set of access-rights
D. None of the mentioned

Answers for Self Assessment

1. locally,
remote
hosts

2. contiguous,
linked, and
indexed

3. finding
space

4. linked 5. File
allocation
table

6. NT File
system

7. disk model 8. direct-
access

9. flash file 10. file

Lovely Professional University204

Operating System

Notes

11. A 12. A 13. B 14. B 15. C

Review Questions
1. What is a directory? Can we consider a directory as a file? Explain your answer.

2. What is a flash file system? Give an example of it.

3. What are the differences between file system and file manager?

4. Write short notes on:

(a) Disk file system

(b) Flat file system

(c) Network file system

5. What are the differences between a file system and a directory?

6. What is logical damage of data? How can it be recovered?

7. Write a short note on free space management.

8. What is indexed allocation method? How differs does it from linked list allocation?

9. Compare and contrast between contiguous disk space allocation method and linked list

allocation method.

10. What is disk scheduling? Describe different disk scheduling policies.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

11. A 12. A 13. B 14. B 15. C

Review Questions
1. What is a directory? Can we consider a directory as a file? Explain your answer.

2. What is a flash file system? Give an example of it.

3. What are the differences between file system and file manager?

4. Write short notes on:

(a) Disk file system

(b) Flat file system

(c) Network file system

5. What are the differences between a file system and a directory?

6. What is logical damage of data? How can it be recovered?

7. Write a short note on free space management.

8. What is indexed allocation method? How differs does it from linked list allocation?

9. Compare and contrast between contiguous disk space allocation method and linked list

allocation method.

10. What is disk scheduling? Describe different disk scheduling policies.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Operating System

Notes

11. A 12. A 13. B 14. B 15. C

Review Questions
1. What is a directory? Can we consider a directory as a file? Explain your answer.

2. What is a flash file system? Give an example of it.

3. What are the differences between file system and file manager?

4. Write short notes on:

(a) Disk file system

(b) Flat file system

(c) Network file system

5. What are the differences between a file system and a directory?

6. What is logical damage of data? How can it be recovered?

7. Write a short note on free space management.

8. What is indexed allocation method? How differs does it from linked list allocation?

9. Compare and contrast between contiguous disk space allocation method and linked list

allocation method.

10. What is disk scheduling? Describe different disk scheduling policies.

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum And Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University 205

Unit 14: Disk Management

Notes

Unit 14: Disk Management

CONTENTS

Objectives

Introduction

14.1 The Benefits of Secondary Storage

14.2 Disk Scheduling

14.3 Shortest Seek Time First (SSTF)

14.4 Selecting a Disk Scheduling Algorithm

14.5 Disk Management

14.6 Swap Space Management

14.7 Swap Space Parameters

14.8 Swap Space Management

14.9 RAID Structure

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand the goals and principles of protection in a modern computer system
 analyze capability and language-based protection system
 understand the different file systems
 learn the concept of file directories
 understand the different types of file directories
 understand the different file systems
 learn the concept of file directories
 understand the different types of file directories

Introduction
Any non-volatile storage medium that is not directly accessible to the processor. Memory directly
accessible to the processor includes main memory, cache and the CPU registers. Secondary storage
includes hard drives, magnetic tape, CD-ROM, DVD drives, floppy disks, punch cards and paper
tape.

Secondary storage devices are usually accessed via some kind of controller. This contains registers
that can be directly accessed by the CPU like main memory (“memory mapped”). Reading and
writing these registers can cause the device to perform actions like reading a block of data off a disk
or rewinding a tape.

Lovely Professional University206

Dr. Amit Sharma, Lovely Professional University

Operating System

Notes

14.1 The Benefits of Secondary Storage
Picture, if you can, how many filing-cabinet drawers would be required to hold the millionsof files
of, say, tax records kept by the Internal Revenue Service or historical employee recordskept by
General Motors. The record storage rooms would have to be enormous. Computers,in contrast,
permit storage on tape or disk in extremely compressed form. Storage capacity isunquestionably
one of the most valuable assets of the computer.

Secondary storage, sometimes called auxiliary storage, is storage separate from the computeritself,
where you can store software and data on a semi-permanent basis. Secondary storageis necessary
because memory, or primary storage, can be used only temporarily. If you aresharing your
computer, you must yield memory to someone else after your program runs; ifyou are not sharing
your computer, your programs and data will disappear from memory whenyou turn off the
computer. However, you probably want to store the data you have used orthe information you
have derived from processing; that is why secondary storage Is needed.Furthermore, memory is
limited in size, whereas secondary storage media can store as muchdata as necessary. Keep in mind
the characteristics of the memory hierarchy that were describedin the section on the CPU and
memory.

The benefits of secondary storage can be summarized as follows:

Capacity: Organizations may store the equivalent of a roomful of data on sets of disks that takeup
less space than a breadbox. A simple diskette for a personal computer holds the equivalentof 500
printed pages, or one book. An optical disk can hold the equivalent of approximately400 books.

Reliability: Data in secondary storage is basically safe, since secondary storage is physicallyreliable.
Also, it is more difficult for unscrupulous people to tamper with data on disk than datastored on
paper in a file cabinet.

Convenience: With the help of a computer, authorized people can locate and access data quickly.

Cost: Together the three previous benefits indicate significant savings in storage costs. It is
lessexpensive to store data on tape or disk (the principal means of secondary storage) than to
buyand house filing cabinets. Data that is reliable and safe is less expensive to maintain than
datasubject to errors. But the greatest savings can be found in the speed and convenience of
filingand retrieving data.

These benefits apply to all the various secondary storage devices but, as you will see, somedevices
are better than others. We begin with a look at the various storage media, includingthose used for
personal computers, and then consider what it takes to get data organized andprocessed.

Disk Structure
Disks provide the bulk of secondary storage for modern computer systems. Magnetic tape was
used as an early secondary-storage medium, but the access time is much slower than for disks.
Thus, tapes are currently used mainly for backup, for storage of infrequently used information, as a
medium for transferring information from one system to another, and for storing quantities of data
so large that they are impractical as disk systems. Modern disk drives are addressed as large one-
dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. The
size of a logical block is usually 512 bytes, although some disks can be low-level formatted to
choose a different logical block size, such as 1,024 bytes. The one-dimensional array of logical
blocks is mapped onto the sectors of the disk sequentially. Sector 0 is the first sector of the first track
on the outermost cylinder. The mapping proceeds in order through that track, then through the rest

Operating System

Notes

14.1 The Benefits of Secondary Storage
Picture, if you can, how many filing-cabinet drawers would be required to hold the millionsof files
of, say, tax records kept by the Internal Revenue Service or historical employee recordskept by
General Motors. The record storage rooms would have to be enormous. Computers,in contrast,
permit storage on tape or disk in extremely compressed form. Storage capacity isunquestionably
one of the most valuable assets of the computer.

Secondary storage, sometimes called auxiliary storage, is storage separate from the computeritself,
where you can store software and data on a semi-permanent basis. Secondary storageis necessary
because memory, or primary storage, can be used only temporarily. If you aresharing your
computer, you must yield memory to someone else after your program runs; ifyou are not sharing
your computer, your programs and data will disappear from memory whenyou turn off the
computer. However, you probably want to store the data you have used orthe information you
have derived from processing; that is why secondary storage Is needed.Furthermore, memory is
limited in size, whereas secondary storage media can store as muchdata as necessary. Keep in mind
the characteristics of the memory hierarchy that were describedin the section on the CPU and
memory.

The benefits of secondary storage can be summarized as follows:

Capacity: Organizations may store the equivalent of a roomful of data on sets of disks that takeup
less space than a breadbox. A simple diskette for a personal computer holds the equivalentof 500
printed pages, or one book. An optical disk can hold the equivalent of approximately400 books.

Reliability: Data in secondary storage is basically safe, since secondary storage is physicallyreliable.
Also, it is more difficult for unscrupulous people to tamper with data on disk than datastored on
paper in a file cabinet.

Convenience: With the help of a computer, authorized people can locate and access data quickly.

Cost: Together the three previous benefits indicate significant savings in storage costs. It is
lessexpensive to store data on tape or disk (the principal means of secondary storage) than to
buyand house filing cabinets. Data that is reliable and safe is less expensive to maintain than
datasubject to errors. But the greatest savings can be found in the speed and convenience of
filingand retrieving data.

These benefits apply to all the various secondary storage devices but, as you will see, somedevices
are better than others. We begin with a look at the various storage media, includingthose used for
personal computers, and then consider what it takes to get data organized andprocessed.

Disk Structure
Disks provide the bulk of secondary storage for modern computer systems. Magnetic tape was
used as an early secondary-storage medium, but the access time is much slower than for disks.
Thus, tapes are currently used mainly for backup, for storage of infrequently used information, as a
medium for transferring information from one system to another, and for storing quantities of data
so large that they are impractical as disk systems. Modern disk drives are addressed as large one-
dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. The
size of a logical block is usually 512 bytes, although some disks can be low-level formatted to
choose a different logical block size, such as 1,024 bytes. The one-dimensional array of logical
blocks is mapped onto the sectors of the disk sequentially. Sector 0 is the first sector of the first track
on the outermost cylinder. The mapping proceeds in order through that track, then through the rest

Operating System

Notes

14.1 The Benefits of Secondary Storage
Picture, if you can, how many filing-cabinet drawers would be required to hold the millionsof files
of, say, tax records kept by the Internal Revenue Service or historical employee recordskept by
General Motors. The record storage rooms would have to be enormous. Computers,in contrast,
permit storage on tape or disk in extremely compressed form. Storage capacity isunquestionably
one of the most valuable assets of the computer.

Secondary storage, sometimes called auxiliary storage, is storage separate from the computeritself,
where you can store software and data on a semi-permanent basis. Secondary storageis necessary
because memory, or primary storage, can be used only temporarily. If you aresharing your
computer, you must yield memory to someone else after your program runs; ifyou are not sharing
your computer, your programs and data will disappear from memory whenyou turn off the
computer. However, you probably want to store the data you have used orthe information you
have derived from processing; that is why secondary storage Is needed.Furthermore, memory is
limited in size, whereas secondary storage media can store as muchdata as necessary. Keep in mind
the characteristics of the memory hierarchy that were describedin the section on the CPU and
memory.

The benefits of secondary storage can be summarized as follows:

Capacity: Organizations may store the equivalent of a roomful of data on sets of disks that takeup
less space than a breadbox. A simple diskette for a personal computer holds the equivalentof 500
printed pages, or one book. An optical disk can hold the equivalent of approximately400 books.

Reliability: Data in secondary storage is basically safe, since secondary storage is physicallyreliable.
Also, it is more difficult for unscrupulous people to tamper with data on disk than datastored on
paper in a file cabinet.

Convenience: With the help of a computer, authorized people can locate and access data quickly.

Cost: Together the three previous benefits indicate significant savings in storage costs. It is
lessexpensive to store data on tape or disk (the principal means of secondary storage) than to
buyand house filing cabinets. Data that is reliable and safe is less expensive to maintain than
datasubject to errors. But the greatest savings can be found in the speed and convenience of
filingand retrieving data.

These benefits apply to all the various secondary storage devices but, as you will see, somedevices
are better than others. We begin with a look at the various storage media, includingthose used for
personal computers, and then consider what it takes to get data organized andprocessed.

Disk Structure
Disks provide the bulk of secondary storage for modern computer systems. Magnetic tape was
used as an early secondary-storage medium, but the access time is much slower than for disks.
Thus, tapes are currently used mainly for backup, for storage of infrequently used information, as a
medium for transferring information from one system to another, and for storing quantities of data
so large that they are impractical as disk systems. Modern disk drives are addressed as large one-
dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. The
size of a logical block is usually 512 bytes, although some disks can be low-level formatted to
choose a different logical block size, such as 1,024 bytes. The one-dimensional array of logical
blocks is mapped onto the sectors of the disk sequentially. Sector 0 is the first sector of the first track
on the outermost cylinder. The mapping proceeds in order through that track, then through the rest

Lovely Professional University 207

Unit 14: Disk Management

Notes

of the tracks in that cylinder, and then through the rest of the cylinders from outermost to
innermost. By using this mapping, we can-at least in theory-convert a logical block number into an
old-style disk address that consists of a cylinder number, a track number within that cylinder, and a
sector number within that track. In practice, it is difficult to perform this translation, for two
reasons. First, most disks have some defective sectors, but the mapping hides this by substituting
spare sectors from elsewhere on the disk. Second, the number of sectors per track is not a constant
on some drives. On media that use constant linear velocity (CLV), the density of bits per track is
uniform. The farther a track is from the center of the disk, the greater its length, so the more sectors
it can hold. As we move from outer zones to inner zones, the number of sectors per track decreases.
Tracks in the outermost zone typically hold 40 percent more sectors than do tracks in the innermost
zone. The drive increases its rotation speed as the head moves from the outer to the inner tracks to
keep the same rate of data moving under the head. This method is used in CD-ROM and DVD-
ROM drives. Alternatively, the disk rotation speed can stay constant, and the density of bits
decreases from inner tracks to outer tracks to keep the data rate constant. This method is used in
hard disks and is known as constant angular velocity (CAV). The number of sectors per track has
been increasing as disk technology improves, and the outer zone of a disk usually has several
hundred sectors per track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

Did you know?

The number of sectors per track has been increasing as disk technologyimproves, and
the outer zone of a disk usually has several hundred sectorsper track. Similarly, the
number of cylinders per disk has been increasing;large disks have tens of thousands of
cylinders.

14.2 Disk Scheduling
In multiprogramming systems, many processes may be generating requests for reading and writing
disk records. Because these processes often make requests faster than they can be serviced by the
moving head disks, waiting queues are build up for each device. In order to stop unbounded
increase in the queue length these pending requests must be examined and serviced in an efficient
manner. Disk scheduling involves a careful examination of pending requests to determine the most
efficient ways to service the waiting requests terms.

Latency Time: The time it takes for the data block to rotate from its current to just under the read-
write head is called latency time.

Seek Time: The time it takes to position the read-write head on the top of the track where data
block is stored.

Transfer Time: The time it takes to transfer a block of data from the disk to memory.

These times >> CPU processing time.

Example

Transfer rate of RL81 (VAX Disk) = 2.2 mb/sec

Data block size = 512 bytes.

Total block transfer time (Latency + Seek + Transfer) = about 0.1 sec.

CPU will take about 9600 ns (0.0000096 sec) to read this block.

Example
Required tracks: 98, 183, 37, 122, 14, 124, 14, 124, 65 and 67. Head starts at: 53

Unit 14: Disk Management

Notes

of the tracks in that cylinder, and then through the rest of the cylinders from outermost to
innermost. By using this mapping, we can-at least in theory-convert a logical block number into an
old-style disk address that consists of a cylinder number, a track number within that cylinder, and a
sector number within that track. In practice, it is difficult to perform this translation, for two
reasons. First, most disks have some defective sectors, but the mapping hides this by substituting
spare sectors from elsewhere on the disk. Second, the number of sectors per track is not a constant
on some drives. On media that use constant linear velocity (CLV), the density of bits per track is
uniform. The farther a track is from the center of the disk, the greater its length, so the more sectors
it can hold. As we move from outer zones to inner zones, the number of sectors per track decreases.
Tracks in the outermost zone typically hold 40 percent more sectors than do tracks in the innermost
zone. The drive increases its rotation speed as the head moves from the outer to the inner tracks to
keep the same rate of data moving under the head. This method is used in CD-ROM and DVD-
ROM drives. Alternatively, the disk rotation speed can stay constant, and the density of bits
decreases from inner tracks to outer tracks to keep the data rate constant. This method is used in
hard disks and is known as constant angular velocity (CAV). The number of sectors per track has
been increasing as disk technology improves, and the outer zone of a disk usually has several
hundred sectors per track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

Did you know?

The number of sectors per track has been increasing as disk technologyimproves, and
the outer zone of a disk usually has several hundred sectorsper track. Similarly, the
number of cylinders per disk has been increasing;large disks have tens of thousands of
cylinders.

14.2 Disk Scheduling
In multiprogramming systems, many processes may be generating requests for reading and writing
disk records. Because these processes often make requests faster than they can be serviced by the
moving head disks, waiting queues are build up for each device. In order to stop unbounded
increase in the queue length these pending requests must be examined and serviced in an efficient
manner. Disk scheduling involves a careful examination of pending requests to determine the most
efficient ways to service the waiting requests terms.

Latency Time: The time it takes for the data block to rotate from its current to just under the read-
write head is called latency time.

Seek Time: The time it takes to position the read-write head on the top of the track where data
block is stored.

Transfer Time: The time it takes to transfer a block of data from the disk to memory.

These times >> CPU processing time.

Example

Transfer rate of RL81 (VAX Disk) = 2.2 mb/sec

Data block size = 512 bytes.

Total block transfer time (Latency + Seek + Transfer) = about 0.1 sec.

CPU will take about 9600 ns (0.0000096 sec) to read this block.

Example
Required tracks: 98, 183, 37, 122, 14, 124, 14, 124, 65 and 67. Head starts at: 53

Unit 14: Disk Management

Notes

of the tracks in that cylinder, and then through the rest of the cylinders from outermost to
innermost. By using this mapping, we can-at least in theory-convert a logical block number into an
old-style disk address that consists of a cylinder number, a track number within that cylinder, and a
sector number within that track. In practice, it is difficult to perform this translation, for two
reasons. First, most disks have some defective sectors, but the mapping hides this by substituting
spare sectors from elsewhere on the disk. Second, the number of sectors per track is not a constant
on some drives. On media that use constant linear velocity (CLV), the density of bits per track is
uniform. The farther a track is from the center of the disk, the greater its length, so the more sectors
it can hold. As we move from outer zones to inner zones, the number of sectors per track decreases.
Tracks in the outermost zone typically hold 40 percent more sectors than do tracks in the innermost
zone. The drive increases its rotation speed as the head moves from the outer to the inner tracks to
keep the same rate of data moving under the head. This method is used in CD-ROM and DVD-
ROM drives. Alternatively, the disk rotation speed can stay constant, and the density of bits
decreases from inner tracks to outer tracks to keep the data rate constant. This method is used in
hard disks and is known as constant angular velocity (CAV). The number of sectors per track has
been increasing as disk technology improves, and the outer zone of a disk usually has several
hundred sectors per track. Similarly, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

Did you know?

The number of sectors per track has been increasing as disk technologyimproves, and
the outer zone of a disk usually has several hundred sectorsper track. Similarly, the
number of cylinders per disk has been increasing;large disks have tens of thousands of
cylinders.

14.2 Disk Scheduling
In multiprogramming systems, many processes may be generating requests for reading and writing
disk records. Because these processes often make requests faster than they can be serviced by the
moving head disks, waiting queues are build up for each device. In order to stop unbounded
increase in the queue length these pending requests must be examined and serviced in an efficient
manner. Disk scheduling involves a careful examination of pending requests to determine the most
efficient ways to service the waiting requests terms.

Latency Time: The time it takes for the data block to rotate from its current to just under the read-
write head is called latency time.

Seek Time: The time it takes to position the read-write head on the top of the track where data
block is stored.

Transfer Time: The time it takes to transfer a block of data from the disk to memory.

These times >> CPU processing time.

Example

Transfer rate of RL81 (VAX Disk) = 2.2 mb/sec

Data block size = 512 bytes.

Total block transfer time (Latency + Seek + Transfer) = about 0.1 sec.

CPU will take about 9600 ns (0.0000096 sec) to read this block.

Example
Required tracks: 98, 183, 37, 122, 14, 124, 14, 124, 65 and 67. Head starts at: 53

Lovely Professional University208

Operating System

Notes

Figure: Total Tracks Covered: 53 to 98 = 45, 98 to 183 = 85, and so on = 640

Problems: Wild swing. Several close requests can be serviced together such as 37 and 14, 122and
124 etc.

14.3 Shortest Seek Time First (SSTF)
Service all requests close to the current head position together, before moving the head far awayto
service another request. This policy is similar to shortest job first.

Example

Figure: Total Number of Tracks Covered: 236

Problems: May cause starvation to some requests, since requests may arrive at anytime.
Scan
Head starts at one end and moves towards the other end, servicing the requests on its way. Atthe
end the head movement direction is reversed and servicing continues. Example, head positionat 53
movement towards zero, servicing 37, 14 and goes up to zero and then changes direction.

Figure: ScanThis algorithm is sometimes called “elevator” algorithm, since it resembles to the behavior of elevator.
Cscan
A variant of scan designed to provide a more uniform wait. Starts from one end and movestowards
the other end servicing all requests on its way. When the head reaches to the otherend, it

Operating System

Notes

Figure: Total Tracks Covered: 53 to 98 = 45, 98 to 183 = 85, and so on = 640

Problems: Wild swing. Several close requests can be serviced together such as 37 and 14, 122and
124 etc.

14.3 Shortest Seek Time First (SSTF)
Service all requests close to the current head position together, before moving the head far awayto
service another request. This policy is similar to shortest job first.

Example

Figure: Total Number of Tracks Covered: 236

Problems: May cause starvation to some requests, since requests may arrive at anytime.
Scan
Head starts at one end and moves towards the other end, servicing the requests on its way. Atthe
end the head movement direction is reversed and servicing continues. Example, head positionat 53
movement towards zero, servicing 37, 14 and goes up to zero and then changes direction.

Figure: ScanThis algorithm is sometimes called “elevator” algorithm, since it resembles to the behavior of elevator.
Cscan
A variant of scan designed to provide a more uniform wait. Starts from one end and movestowards
the other end servicing all requests on its way. When the head reaches to the otherend, it

Operating System

Notes

Figure: Total Tracks Covered: 53 to 98 = 45, 98 to 183 = 85, and so on = 640

Problems: Wild swing. Several close requests can be serviced together such as 37 and 14, 122and
124 etc.

14.3 Shortest Seek Time First (SSTF)
Service all requests close to the current head position together, before moving the head far awayto
service another request. This policy is similar to shortest job first.

Example

Figure: Total Number of Tracks Covered: 236

Problems: May cause starvation to some requests, since requests may arrive at anytime.
Scan
Head starts at one end and moves towards the other end, servicing the requests on its way. Atthe
end the head movement direction is reversed and servicing continues. Example, head positionat 53
movement towards zero, servicing 37, 14 and goes up to zero and then changes direction.

Figure: ScanThis algorithm is sometimes called “elevator” algorithm, since it resembles to the behavior of elevator.
Cscan
A variant of scan designed to provide a more uniform wait. Starts from one end and movestowards
the other end servicing all requests on its way. When the head reaches to the otherend, it

Lovely Professional University 209

Unit 14: Disk Management

Notes

immediately returns to the beginning of the disk, without servicing any request on itsreturn
journey.

Figure: Cscan

14.4 Selecting a Disk Scheduling Algorithm
The performance of these algorithms depends heavily on the workload (number of requests).Under
light load all algorithms perform the same. If the queue seldom has more than oneoutstanding
request, then all algorithms are effectively the same. Their performance also dependsupon the file
organization and the type of generated requests. In a sequential processing andsequential file, the
head movement will be minimum and therefore the seek time and latencytime will be minimum so
FCFS may perform better. A indexed sequential file, on the other hand,may include blocks that may
be scattered all over the disk and a sequential processing withFCFS will be very slow. SSTF is quite
common and scan and cscan are good for heavy load.

Scheduling Fixed-head Devices
Fixed head disk = DRUM. One head per track on the drum.

Seek time = 0.

Latency time < moving head disk.

Figure: Scheduling Fixed-head DevicesDifferent algorithm is required for this device.
14.5 Disk Management
The hard disk is the secondary storage device that is used in the computer system. Usually the
primary memory is used for the booting up of the computer. But a hard disk drive is necessary in
the computer system since it needs to store the operating system that is used to store the
information of the devices and the management of the user data. The management of the IO
devices that is the Input Output devices, like the printer and the other peripherals like the keyboard
and the etc.; all require the usage of the operating system. Hence the information of the all such
devices and the management of the system are done by the operating system. The operating system
works as an interpreter between the machine and the user. The operating system is a must for the
proper functioning of the computer. The computer is a device that needs to be fed with the
instructions that are to be carried out and executed. Hence there needs to be an interpreter who is

Unit 14: Disk Management

Notes

immediately returns to the beginning of the disk, without servicing any request on itsreturn
journey.

Figure: Cscan

14.4 Selecting a Disk Scheduling Algorithm
The performance of these algorithms depends heavily on the workload (number of requests).Under
light load all algorithms perform the same. If the queue seldom has more than oneoutstanding
request, then all algorithms are effectively the same. Their performance also dependsupon the file
organization and the type of generated requests. In a sequential processing andsequential file, the
head movement will be minimum and therefore the seek time and latencytime will be minimum so
FCFS may perform better. A indexed sequential file, on the other hand,may include blocks that may
be scattered all over the disk and a sequential processing withFCFS will be very slow. SSTF is quite
common and scan and cscan are good for heavy load.

Scheduling Fixed-head Devices
Fixed head disk = DRUM. One head per track on the drum.

Seek time = 0.

Latency time < moving head disk.

Figure: Scheduling Fixed-head DevicesDifferent algorithm is required for this device.
14.5 Disk Management
The hard disk is the secondary storage device that is used in the computer system. Usually the
primary memory is used for the booting up of the computer. But a hard disk drive is necessary in
the computer system since it needs to store the operating system that is used to store the
information of the devices and the management of the user data. The management of the IO
devices that is the Input Output devices, like the printer and the other peripherals like the keyboard
and the etc.; all require the usage of the operating system. Hence the information of the all such
devices and the management of the system are done by the operating system. The operating system
works as an interpreter between the machine and the user. The operating system is a must for the
proper functioning of the computer. The computer is a device that needs to be fed with the
instructions that are to be carried out and executed. Hence there needs to be an interpreter who is

Unit 14: Disk Management

Notes

immediately returns to the beginning of the disk, without servicing any request on itsreturn
journey.

Figure: Cscan

14.4 Selecting a Disk Scheduling Algorithm
The performance of these algorithms depends heavily on the workload (number of requests).Under
light load all algorithms perform the same. If the queue seldom has more than oneoutstanding
request, then all algorithms are effectively the same. Their performance also dependsupon the file
organization and the type of generated requests. In a sequential processing andsequential file, the
head movement will be minimum and therefore the seek time and latencytime will be minimum so
FCFS may perform better. A indexed sequential file, on the other hand,may include blocks that may
be scattered all over the disk and a sequential processing withFCFS will be very slow. SSTF is quite
common and scan and cscan are good for heavy load.

Scheduling Fixed-head Devices
Fixed head disk = DRUM. One head per track on the drum.

Seek time = 0.

Latency time < moving head disk.

Figure: Scheduling Fixed-head DevicesDifferent algorithm is required for this device.
14.5 Disk Management
The hard disk is the secondary storage device that is used in the computer system. Usually the
primary memory is used for the booting up of the computer. But a hard disk drive is necessary in
the computer system since it needs to store the operating system that is used to store the
information of the devices and the management of the user data. The management of the IO
devices that is the Input Output devices, like the printer and the other peripherals like the keyboard
and the etc.; all require the usage of the operating system. Hence the information of the all such
devices and the management of the system are done by the operating system. The operating system
works as an interpreter between the machine and the user. The operating system is a must for the
proper functioning of the computer. The computer is a device that needs to be fed with the
instructions that are to be carried out and executed. Hence there needs to be an interpreter who is

Lovely Professional University210

Operating System

Notes

going to carry out the conversions from the high-level language of the user to the low-level
language of the computer machine.

The hard disk drive as secondary memory is therefore needed for the purpose of installing the
operating system. If there is no operating system then the question arises where to install the
operating system. The operating system obviously cannot be installed in the primary memory
however large that may be. The primary memory is also a volatile memory that cannot be used for
the permanent storage of the system files of the operating system. The operating system requires
the permanent file storage media like the hard disk.

Moreover, the hard disk management is an important part of maintaining the computer, since it
requires an efficient management of the data or the user information. The information regarding
the Master Boot Record is stored in the hard disk drive. This is the information that is required
during the startup of the computer. The computer system needs this information for loading the
operating system.

The file management and the resources management are also a part of the hard disk management.
The hard disk management requires an efficient knowledge of the operating system and its
resources and the methods of how these resources can be employed in order to achieve maximum
benefit. The operating system contains the resources and the tools that are used to manage the files
in the operating system. The partitioning and the installation of the operating system itself may be
considered as the hard disk management.

The hard disk management also involves the formatting of the hard disk drive and to check the
integrity of the file system. The data redundancy check can also be carried out for the consistency of
the hard disk drive. The hard disk drive management is also important in the case of the network
where there are many hard disk drives to be managed.

Managing a single hard disk in a single user operating system is quite easy in comparison with the
management of the hard disk drives in a multi user operating system where there is more than one
user. It is not that much easy since the users are also required to be managed.

Disk Formatting
A new magnetic disk is a blank slate: It is just platters of a magnetic recording material. Before a
disk can store data, it must be divided into sectors that the disk controller can read and write. This
process is called low-level formatting (or physical formatting). Low-level formatting fills the disk
with a special data structure for each sector. The data structure for a sector typically consists of a
header, a data area (usually 512 bytes in size), and a trailer. The header and trailer contain
information used by the disk controller, such as a sector number and an error-correcting code
(ECC). When the controller writes a sector of data during normal I/O, the ECC is updated with a
value calculated from all the bytes in the data area. When the sector is read, the ECC is recalculated
and is compared with the stored value. If the stored and calculated numbers are different, this
mismatch indicates that the data area of the sector has become corrupted and that the disk sector
may be bad. The ECC is an error-correcting code because it contains enough information that, if
only a few bits of data have been corrupted, the controller can identify which bits have changed
and can calculate what their correct values should be. The controller automatically does the ECC
processing whenever a sector is read or written. Most hard disks are low-level formatted at the
factory as a part of the manufacturing process. This formatting enables the manufacturer to test the
Idisk and to initialize the mapping from logical block numbers to defect-free sectors on the disk. For
many hard disks, when the disk controller is instructed to low-level format the disk, it can also be
told how many bytes of data space to leave between the header and trailer of all sectors. It is
usually possible to choose among a few sizes, such as 256, 512, and 1,024 bytes. Formatting a disk
with a larger sector size means that fewer sectors can fit on each track, but that also means fewer
headers and trailers are written on each track, and thus increases the space available for user data.
Some operating systems can handle only a sector size of 512 bytes.To use a disk to hold files, the
operating system still needs to record its own data structures on the disk. It does so in two steps.
The first step is to partition the disk into one or more groups of cylinders. The operating system
can treat each partition as though it were a separate disk.

For instance, one partition can hold a copy of the operating system’s executable code, while another
holds user files. After partitioning, the second step is logical formatting (or creation of a file
system). In this step, the operating system stores the initial file-system data structures onto the disk.

Lovely Professional University 211

Unit 14: Disk Management

Notes

These data structures may include maps of free and allocated space (a FAT or inodes) and an initial
empty directory.

Some operating systems give special programs the ability to use a disk partition as a large
sequential array of logical blocks, without any file-system data structures. This array is sometimes
called the raw disk, and I/O to this array is termed raw I/O. For example, some database systems
prefer raw I/O because it enables them to control the exact disk location where each database
record is stored. Raw 1/0 bypasses all the file-system services, such as the buffer cache, file locking,
prefetching, space allocation, file names, and directories. We can make certain applications more
efficient by implementing their own special-purpose storage services on a raw partition, but most
applications perform better when they use the regular file-system services.

Boot Block
For a computer to start running-for instance, when it is powered up or rebooted-it needsto have an
initial program to run. This initial bootstrap program tends to be simple. Itinitializes all aspects of
the system, from CPU registers to device controllers and the contentsof main memory, and then
starts the operating system. To do its job, the bootstrap programfinds the operating system kernel
on disk, loads that kernel into memory, and jumps to aninitial address to begin the operating-
system execution. For most computers, the bootstrapis stored in read-only memory (ROM). This
location is convenient, because ROM needs noinitialization and is at a fixed location that the
processor can start executing when poweredup or reset. And, since ROM is read only, it cannot be
infected by a computer virus. Theproblem is that changing this bootstrap code requires changing
the ROM hardware chips.For this reason, most systems store a tiny bootstrap loader program in the
boot ROM, whoseonly job is to bring in a full bootstrap program from disk. The full bootstrap
program can bechanged easily: A new version is simply written onto the disk. The full bootstrap
programis stored in a partition called the boot blocks, at a fixed location on the disk. A disk that
hasa boot partition is called a boot disk or system disk.The code in the boot ROM instructs the disk
controller to read the boot blocks into memory (nodevice drivers are loaded at this point), and then
starts executing that code. The full bootstrapprogram is more sophisticated than the bootstrap
loader in the boot ROM; it is able to load theentire operating system from a non-fixed location on
disk, and to start the operating systemrunning.Even so, the full bootstrap code may be small. For
example, MS-DOS uses one 512-byte blockfor its boot program.Be careful during the disk
management because the disk is very importantterm in computer system.

Bad Blocks
Because disks have moving parts and small tolerances (recall that the disk head flies just abovethe
disk surface), they are prone to failure. Sometimes the failure is complete, and the disk needsto be
replaced, and its contents restored from backup media to the new disk. More frequently,one or
more sectors become defective. Most disks even come from the factory with bad blocks.Depending
on the disk and controller in use, these blocks are handled in a variety of ways.On simple disks,
such as some disks with IDE controllers, bad blocks are handled manually.For instance, the MS-
DOS format command does a logical format and, as a part of the process,scans the disk to find bad
blocks. If format finds a bad block, it writes a special value into thecorresponding FAT entry to tell
the allocation routines not to use that block. If blocks go badduring normal operation, a special
program (such as chkdsk) must be run manually to searchfor the bad blocks and to lock them away
as before. Data that resided on the bad blocks usuallyare lost.

Unit 14: Disk Management

Notes

These data structures may include maps of free and allocated space (a FAT or inodes) and an initial
empty directory.

Some operating systems give special programs the ability to use a disk partition as a large
sequential array of logical blocks, without any file-system data structures. This array is sometimes
called the raw disk, and I/O to this array is termed raw I/O. For example, some database systems
prefer raw I/O because it enables them to control the exact disk location where each database
record is stored. Raw 1/0 bypasses all the file-system services, such as the buffer cache, file locking,
prefetching, space allocation, file names, and directories. We can make certain applications more
efficient by implementing their own special-purpose storage services on a raw partition, but most
applications perform better when they use the regular file-system services.

Boot Block
For a computer to start running-for instance, when it is powered up or rebooted-it needsto have an
initial program to run. This initial bootstrap program tends to be simple. Itinitializes all aspects of
the system, from CPU registers to device controllers and the contentsof main memory, and then
starts the operating system. To do its job, the bootstrap programfinds the operating system kernel
on disk, loads that kernel into memory, and jumps to aninitial address to begin the operating-
system execution. For most computers, the bootstrapis stored in read-only memory (ROM). This
location is convenient, because ROM needs noinitialization and is at a fixed location that the
processor can start executing when poweredup or reset. And, since ROM is read only, it cannot be
infected by a computer virus. Theproblem is that changing this bootstrap code requires changing
the ROM hardware chips.For this reason, most systems store a tiny bootstrap loader program in the
boot ROM, whoseonly job is to bring in a full bootstrap program from disk. The full bootstrap
program can bechanged easily: A new version is simply written onto the disk. The full bootstrap
programis stored in a partition called the boot blocks, at a fixed location on the disk. A disk that
hasa boot partition is called a boot disk or system disk.The code in the boot ROM instructs the disk
controller to read the boot blocks into memory (nodevice drivers are loaded at this point), and then
starts executing that code. The full bootstrapprogram is more sophisticated than the bootstrap
loader in the boot ROM; it is able to load theentire operating system from a non-fixed location on
disk, and to start the operating systemrunning.Even so, the full bootstrap code may be small. For
example, MS-DOS uses one 512-byte blockfor its boot program.Be careful during the disk
management because the disk is very importantterm in computer system.

Bad Blocks
Because disks have moving parts and small tolerances (recall that the disk head flies just abovethe
disk surface), they are prone to failure. Sometimes the failure is complete, and the disk needsto be
replaced, and its contents restored from backup media to the new disk. More frequently,one or
more sectors become defective. Most disks even come from the factory with bad blocks.Depending
on the disk and controller in use, these blocks are handled in a variety of ways.On simple disks,
such as some disks with IDE controllers, bad blocks are handled manually.For instance, the MS-
DOS format command does a logical format and, as a part of the process,scans the disk to find bad
blocks. If format finds a bad block, it writes a special value into thecorresponding FAT entry to tell
the allocation routines not to use that block. If blocks go badduring normal operation, a special
program (such as chkdsk) must be run manually to searchfor the bad blocks and to lock them away
as before. Data that resided on the bad blocks usuallyare lost.

Unit 14: Disk Management

Notes

These data structures may include maps of free and allocated space (a FAT or inodes) and an initial
empty directory.

Some operating systems give special programs the ability to use a disk partition as a large
sequential array of logical blocks, without any file-system data structures. This array is sometimes
called the raw disk, and I/O to this array is termed raw I/O. For example, some database systems
prefer raw I/O because it enables them to control the exact disk location where each database
record is stored. Raw 1/0 bypasses all the file-system services, such as the buffer cache, file locking,
prefetching, space allocation, file names, and directories. We can make certain applications more
efficient by implementing their own special-purpose storage services on a raw partition, but most
applications perform better when they use the regular file-system services.

Boot Block
For a computer to start running-for instance, when it is powered up or rebooted-it needsto have an
initial program to run. This initial bootstrap program tends to be simple. Itinitializes all aspects of
the system, from CPU registers to device controllers and the contentsof main memory, and then
starts the operating system. To do its job, the bootstrap programfinds the operating system kernel
on disk, loads that kernel into memory, and jumps to aninitial address to begin the operating-
system execution. For most computers, the bootstrapis stored in read-only memory (ROM). This
location is convenient, because ROM needs noinitialization and is at a fixed location that the
processor can start executing when poweredup or reset. And, since ROM is read only, it cannot be
infected by a computer virus. Theproblem is that changing this bootstrap code requires changing
the ROM hardware chips.For this reason, most systems store a tiny bootstrap loader program in the
boot ROM, whoseonly job is to bring in a full bootstrap program from disk. The full bootstrap
program can bechanged easily: A new version is simply written onto the disk. The full bootstrap
programis stored in a partition called the boot blocks, at a fixed location on the disk. A disk that
hasa boot partition is called a boot disk or system disk.The code in the boot ROM instructs the disk
controller to read the boot blocks into memory (nodevice drivers are loaded at this point), and then
starts executing that code. The full bootstrapprogram is more sophisticated than the bootstrap
loader in the boot ROM; it is able to load theentire operating system from a non-fixed location on
disk, and to start the operating systemrunning.Even so, the full bootstrap code may be small. For
example, MS-DOS uses one 512-byte blockfor its boot program.Be careful during the disk
management because the disk is very importantterm in computer system.

Bad Blocks
Because disks have moving parts and small tolerances (recall that the disk head flies just abovethe
disk surface), they are prone to failure. Sometimes the failure is complete, and the disk needsto be
replaced, and its contents restored from backup media to the new disk. More frequently,one or
more sectors become defective. Most disks even come from the factory with bad blocks.Depending
on the disk and controller in use, these blocks are handled in a variety of ways.On simple disks,
such as some disks with IDE controllers, bad blocks are handled manually.For instance, the MS-
DOS format command does a logical format and, as a part of the process,scans the disk to find bad
blocks. If format finds a bad block, it writes a special value into thecorresponding FAT entry to tell
the allocation routines not to use that block. If blocks go badduring normal operation, a special
program (such as chkdsk) must be run manually to searchfor the bad blocks and to lock them away
as before. Data that resided on the bad blocks usuallyare lost.

Lovely Professional University212

Operating System

Notes

Figure 7.6: MS-DOS Disk Layout

More sophisticated disks, such as the SCSI disks used in high-end PCs and most workstationsand
servers, are smarter about bad-block recovery. The controller maintains a list of bad blockson the
disk. The list is initialized during the low-level format at the factory, and is updated overthe life of
the disk. Low level formatting also sets aside spare sectors not visible to the operatingsystem. The
controller can be told to replace each bad sector logically with one of the sparesectors. This scheme
is known as sector sparing or forwarding. A typical bad-sector transactionmight be as follows: The
operating system tries to read logical block 87. The controller calculatesthe ECC and finds that the
sector is bad. It reports this finding to the operating system. Thenext time that the system is
rebooted, a special command is run to tell the SCSI controller toreplace the bad sector with a spare.
After that, whenever the system requests logical block 87, therequest is translated into the
replacement sector’s address by the controller. Such a redirectionby the controller could invalidate
any optimization by the operating system’s disk-schedulingalgorithm! For this reason, most disks
are formatted to provide a few spare sectors in eachcylinder, and a spare cylinder as well. When a
bad block is remapped, the controller uses a sparesector from the same cylinder, if possible. As an
alternative to sector sparing, some controllerscan be instructed to replace a bad block by sector
slipping. Here is an example: Suppose thatlogical block 17 becomes defective, and the first available
spare follows sector 202. Then, sectorslipping would remap all the sectors from 17 to 202, moving
them all down one spot. That is,sector 202 would be copied into the spare, then sector 201 into 202,
and then 200 into 201, andso on, until sector 18 is copied into sector 19. Slipping the sectors in this
way frees up the spaceof sector 18, so sector 17 can be mapped to it. The replacement of a bad block
generally is not atotally automatic process because the data in the bad block are usually lost. Thus,
whatever filewas using that block must be repaired (for instance, by restoration from a backup
tape), andthat requires manual intervention.The operating system tries to read logical block 87. The
controller calculatesthe ECC and finds that the sector is bad. It reports this finding to the
operatingsystem.

14.6 Swap Space Management
Swap space is an area on a high-speed storage device (almost always a disk drive), reserved for use
by the virtual memory system for deactivation and paging processes. At least one swap for use by
the virtual memory system for deactivation and paging processes. At least one swap device
(primary swap) must be present on the system. During system startup, the location (disk block
number) and size of each swap device is displayed in 512 KB blocks. The swapperreserves swap
space at process creation time, but does not allocate swap space from the diskuntil pages need to go
out to disk. Reserving swap at process creation protects the swapperfrom running out of swap
space. You can add or remove swap as needed (that is, dynamically)while the system is running,
without having to regenerate the kernel. HP-UX uses both physicaland pseudo swap to enable
efficient execution of programs.

Pseudo-Swap Space
System memory used for swap space is called pseudo-swap space. It allows users to
executeprocesses in memory without allocating physical swap. Pseudo-swap is controlled by
anoperating-system parameter; by default, swapmem on is set to 1, enabling pseudo-
swap.Typically, when the system executes a process, swap space is reserved for the entire process,
incase it must be paged out. According to this model, to run one gigabyte of processes, the
systemwould have to have one gigabyte of configured swap space. Although this protects the
systemfrom running out of swap space, disk space reserved for swap is under-utilized if minimal
orno swapping occurs.

To avoid such waste of resources, HP-UX is configured to access up to three-quarters of
systemmemory capacity as pseudo-swap. This means that system memory serves two functions:
asprocess-execution space and as swap space. By using pseudo-swap space, a one-gigabyte
memorysystem with one-gigabyte of swap can run up to 1.75 GB of processes. As before, if a
processattempts to grow or be created beyond this extended threshold, it will fail. When using
pseudoswap for swap, the pages are locked; as the amount of pseudo-swap increases, the amount
oflockable memory decreases.For factory-floor systems (such as controllers), which perform best
when the entire application isresident in memory, pseudo-swap space can be used to enhance
performance: you can either lockthe application in memory or make sure the total number of

Lovely Professional University 213

Unit 14: Disk Management

Notes

processes created does not exceedthree-quarters of system memory. Pseudo-swap space is set to a
maximum of three-quarters ofsystem memory because the system can begin paging once three-
quarters of system availablememory has been used. The unused quarter of memory allows a buffer
between the system andthe swapper to give the system computational flexibility. When the number
of processes createdapproaches capacity, the system might exhibit thrashing and a decrease in
system response time.If necessary, you can disable pseudo-swap space by setting the tunable
parameter swapmemon in /usr/conf/master.d/core-hpux to zero. At the head of a doubly linked
list of regions thathave pseudo-swap allocated is a null terminated list called pswaplist.

Physical Swap Space

There are two kinds of physical swap space—device swap and file-system swap.

Device Swap Space

Device swap space resides in its own reserved area (an entire disk or logical volume of an
LVMdisk) and is faster than file-system swap because the system can write an entire request
(256KB) to a device at once.

File-system Swap Space

File-system swap space is located on a mounted file system and can vary in size with thesystem’s
swapping activity. However, its throughput is slower than device swap, becausefree file-system
blocks may not always be contiguous; therefore, separate read/write requests must be made for
each file-system block. To optimize system performance, file-system swapspace is allocated and de-
allocated in swchunk-sized chunks. Swchunk is a configurableoperating system parameter; its
default is 2048 KB (2 MB). Once a it is released for filesystem use, unless it has been pre-allocated
with swapon. If swapping to file-system swapspace, each chunk of swap space is a file in the file
system swap directory, and has a nameconstructed from the system name and the swaptab index
(such as becky.6 for swaptab[6]on a system named becky).

14.7 Swap Space Parameters
Several configurable parameters deal with swapping.

Table 14.1: Configurable Swap Space Parameters

Swap Space Global Variables

When the kernel is initialized, conf.c includes globals.h, which contains numerous
characteristicsrelated to swap space, shown in the next table. The most important to swap space
reservationare swapspc_cnt, swapspc_max, swapmem_cnt, swapmem_max, and sys_mem.

14.8 Swap Space Management
Swap space is an area on a high-speed storage device (almost always a disk drive), reserved for use
by the virtual memory system for deactivation and paging processes. At least one swap device
(primary swap) must be present on the system.

Unit 14: Disk Management

Notes

processes created does not exceedthree-quarters of system memory. Pseudo-swap space is set to a
maximum of three-quarters ofsystem memory because the system can begin paging once three-
quarters of system availablememory has been used. The unused quarter of memory allows a buffer
between the system andthe swapper to give the system computational flexibility. When the number
of processes createdapproaches capacity, the system might exhibit thrashing and a decrease in
system response time.If necessary, you can disable pseudo-swap space by setting the tunable
parameter swapmemon in /usr/conf/master.d/core-hpux to zero. At the head of a doubly linked
list of regions thathave pseudo-swap allocated is a null terminated list called pswaplist.

Physical Swap Space

There are two kinds of physical swap space—device swap and file-system swap.

Device Swap Space

Device swap space resides in its own reserved area (an entire disk or logical volume of an
LVMdisk) and is faster than file-system swap because the system can write an entire request
(256KB) to a device at once.

File-system Swap Space

File-system swap space is located on a mounted file system and can vary in size with thesystem’s
swapping activity. However, its throughput is slower than device swap, becausefree file-system
blocks may not always be contiguous; therefore, separate read/write requests must be made for
each file-system block. To optimize system performance, file-system swapspace is allocated and de-
allocated in swchunk-sized chunks. Swchunk is a configurableoperating system parameter; its
default is 2048 KB (2 MB). Once a it is released for filesystem use, unless it has been pre-allocated
with swapon. If swapping to file-system swapspace, each chunk of swap space is a file in the file
system swap directory, and has a nameconstructed from the system name and the swaptab index
(such as becky.6 for swaptab[6]on a system named becky).

14.7 Swap Space Parameters
Several configurable parameters deal with swapping.

Table 14.1: Configurable Swap Space Parameters

Swap Space Global Variables

When the kernel is initialized, conf.c includes globals.h, which contains numerous
characteristicsrelated to swap space, shown in the next table. The most important to swap space
reservationare swapspc_cnt, swapspc_max, swapmem_cnt, swapmem_max, and sys_mem.

14.8 Swap Space Management
Swap space is an area on a high-speed storage device (almost always a disk drive), reserved for use
by the virtual memory system for deactivation and paging processes. At least one swap device
(primary swap) must be present on the system.

Unit 14: Disk Management

Notes

processes created does not exceedthree-quarters of system memory. Pseudo-swap space is set to a
maximum of three-quarters ofsystem memory because the system can begin paging once three-
quarters of system availablememory has been used. The unused quarter of memory allows a buffer
between the system andthe swapper to give the system computational flexibility. When the number
of processes createdapproaches capacity, the system might exhibit thrashing and a decrease in
system response time.If necessary, you can disable pseudo-swap space by setting the tunable
parameter swapmemon in /usr/conf/master.d/core-hpux to zero. At the head of a doubly linked
list of regions thathave pseudo-swap allocated is a null terminated list called pswaplist.

Physical Swap Space

There are two kinds of physical swap space—device swap and file-system swap.

Device Swap Space

Device swap space resides in its own reserved area (an entire disk or logical volume of an
LVMdisk) and is faster than file-system swap because the system can write an entire request
(256KB) to a device at once.

File-system Swap Space

File-system swap space is located on a mounted file system and can vary in size with thesystem’s
swapping activity. However, its throughput is slower than device swap, becausefree file-system
blocks may not always be contiguous; therefore, separate read/write requests must be made for
each file-system block. To optimize system performance, file-system swapspace is allocated and de-
allocated in swchunk-sized chunks. Swchunk is a configurableoperating system parameter; its
default is 2048 KB (2 MB). Once a it is released for filesystem use, unless it has been pre-allocated
with swapon. If swapping to file-system swapspace, each chunk of swap space is a file in the file
system swap directory, and has a nameconstructed from the system name and the swaptab index
(such as becky.6 for swaptab[6]on a system named becky).

14.7 Swap Space Parameters
Several configurable parameters deal with swapping.

Table 14.1: Configurable Swap Space Parameters

Swap Space Global Variables

When the kernel is initialized, conf.c includes globals.h, which contains numerous
characteristicsrelated to swap space, shown in the next table. The most important to swap space
reservationare swapspc_cnt, swapspc_max, swapmem_cnt, swapmem_max, and sys_mem.

14.8 Swap Space Management
Swap space is an area on a high-speed storage device (almost always a disk drive), reserved for use
by the virtual memory system for deactivation and paging processes. At least one swap device
(primary swap) must be present on the system.

Lovely Professional University214

Operating System

Notes

During system startup, the location (disk block number) and size of each swap device is displayed
in 512-KB blocks. The swapper reserves swap space at process creation time, but do not allocate
swap space from the disk until pages need to go out to disk. Reserving swap at process creation
protects the swapper from running out of swap space. You can add or remove swap as needed (that
is, dynamically) while the system is running, without having to regenerate the kernel.

Pseudo-Swap Space

When the system memory is used for swap space then it is called pseudo-swap space. It allows
users to execute processes in memory without allocating physical swap. Pseudo-swap is controlled
by an operating-system parameter.

Typically, when the system executes a process, swap space is reserved for the entire process, in case
it must be paged out. According to this model, to run one gigabyte of processes, the system would
have to have one gigabyte of configured swap space. Although this protects the system from
running out of swap space, disk space reserved for swap is under-utilized if minimal or no
swapping occurs. When using pseudo swap for swap, the pages are locked; as the amount of
pseudo-swap increases, the amount of lockable memory decreases. Pseudo-swap space is set to a
maximum of three-quarters of system memory because the system can begin paging once three-
quarters of system available memory has been used. The unused quarter of memory allows a buffer
between the system and the swapper to give the system computational flexibility. When the
number of processes created approaches capacity, the system might exhibit thrashing and a
decrease in system response time.

Physical Swap Space

There are two kinds of physical swap space: device swap and file-system swap.

Device Swap Space
Device swap space resides in its own reserved area (an entire disk or logical volume of an
LVMdisk) and is faster than file-system swap because the system can write an entire request (256
KB)to a device at once.

File-system Swap Space
File-system swap space is located on a mounted file system and can vary in size with the
system’sswapping activity. However, its throughput is slower than device swap, because free file-
systemblocks may not always be contiguous; therefore, separate read/write requests must be made
foreach file-system block.

Three Rules of Swap Space Allocation
1. Start at the lowest priority swap device or file system. The lower the number, the

higherpriority; that is, space is taken from a system with a zero priority before it is taken from
asystem with a one priority.

2. If multiple devices have the same priority, swap space is allocated from the devices in around-
robin fashion. Thus, to interleave swap requests between a number of devices, thedevices
should be assigned the same priority. Similarly, if multiple file systems have thesame priority,
requests for swap are interleaved between the file systems. In the figure,swap requests are
initially interleaved between the two swap devices at priority 0.

3. If a device and a file system have the same swap priority, all the swap space from thedevice is
allocated before any file-system swap space. Thus, the device at priority 1 will befilled before
swap is allocated from the file system at priority 1.

Lovely Professional University 215

Unit 14: Disk Management

Notes

14.9 RAID Structure
RAID stands for Redundant Array of Independent (or Inexpensive) Disks. It involves
theconfiguration (setting up) of two or more drives in combination for fault tolerance
andperformance. RAID disk drives are used frequently on servers and are increasingly being
foundin home and office personal computers.

Disks have high failure rates and hence there is the risk of loss of data and lots of downtime
forrestoring and disk replacement. To improve disk usage many techniques have been
implemented.One such technology is RAID (Redundant Array of Inexpensive Disks). Its
organization is basedon disk striping (or interleaving), which uses a group of disks as one storage
unit. Disk striping is a way of increasing the disk transfer rate up to a factor of N, by splitting files
across N differentdisks. Instead of saving all the data from a given file on one disk, it is split across
many. Since theN heads can now search independently, the speed of transfer is, in principle,
increased manifold.Logical disk data/blocks can be written on two or more separate physical disks
which canfurther transfer their sub-blocks in parallel. The total transfer rate system is directly
proportionalto the number of disks. The larger the number of physical disks striped together, the
larger thetotal transfer rate of the system. Hence, the overall performance and disk accessing speed
isalso enhanced. The enhanced version of this scheme is mirroring or shadowing. In this RAID
organization a duplicate copy of each disk is kept. It is costly but a much faster and more
reliableapproach. The disadvantage with disk striping is that, if one of the N disks becomes
damaged,then the data on all N disks is lost. Thus, striping needs to be combined with a reliable
form ofbackup in order to be successful.

Another RAID scheme uses some disk space for holding parity blocks. Suppose, three or moredisks
are used, then one of the disks will act as a parity block, which contains corresponding bitpositions
in all blocks. In case some error occurs or the disk develops a problem all its data bitscan be
reconstructed. This technique is known as disk striping with parity or block interleavedparity,
which increases speed. But writing or updating any data on a disk requires
correspondingrecalculations and changes in parity block. To overcome this the parity blocks can be
distributedover all disks.

RAID is a method of creating one or more pools of data storage space from several hard drives.It
can offer fault tolerance and higher throughput levels than a single hard drive or group
ofindependent hard drives. You can build a RAID configuration with IDE (parallel ATA),
SATA(Serial ATA) or SCSI hard disks or, in fact, even drives like the old 3.5” floppy disk drive!

The exact meaning of RAID has been much debated and much argued. The use of “Redundant”is,
in itself, a contentious point. That several manufacturers have deviated from accepted
RAIDterminology, created new levels of disk arrangements, called them RAID, and christened
themwith a number has not helped. There are even some single disk RAID configurations!
Doubleparity, RAID 1.5, Matrix RAID etc., are examples of proprietary RAID configurations.

Data can be distributed across a RAID “array” using either hardware, software or a combination
ofthe two. Hardware RAID is usually achieved either on-board on some server class
motherboardsor via an add-on card, using an ISA/PCI slot.

Basic RAID levels are the building blocks of RAID. Compound RAID levels are built by using:

JBOD: JBOD is NOT RAID. JBOD stands for ‘Just a Bunch of Disks’. This accurately describesthe
underlying physical structure that all RAID structures rely upon. When a hardware RAIDcontroller
is used, it normally defaults to JBOD configuration for attached disks. Some diskcontroller
manufacturers incorrectly use the term JBOD to refer to a Concatenated array.

Concatenated Array: A Concatenated array is NOT RAID, although it is an array. It is a group
ofdisks connected together, end-to-end, for the purpose of creating a larger logical disk. Althoughit
is not RAID, it is included here as it is the result of early attempts to combine multiple disksinto a
single logical device. There is no redundancy with a Concatenated array. Any
performanceimprovement over a single disk is achieved because the file-system uses multiple
disks. This typeof array is usually slower than a RAID-0 array of the same number of disks.

The good point of a Concatenated array is that different sized disks can be used in their
entirety.The RAID arrays below require that the disks that make up the RAID array be the same
size, orthat the size of the smallest disk be used for all the disks.The individual disks in a
concatenated array are organized as follows:

Lovely Professional University216

Operating System

Notes

Figure: Concatenated Segments
RAID Levels
Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer rates,
but it does not improve reliability. Numerous schemes to provide redundancy at lower cost by
using the idea of disk striping combined with “parity” bits (which we describe next) have been
proposed. These schemes have different cost-performance tradeoffs and are classified into levels
called RAID levels. We describe the various levels here; Figure, shows them pictorially (in the
figure, P indicates error-correcting bits and C indicates a second copy of the data). In all cases
depicted in the figure, four disks’ worth of data is stored, and the extra disks are used to store
redundant information for failure recovery.

Figure: RAID Levels
RAID-0: In RAID Level 0 (also called striping), each segment is written to a different disk, untilall
drives in the array have been written to.The I/O performance of a RAID-0 array is significantly
better than a single disk. This is true onsmall I/O requests, as several can be processed
simultaneously, and for large requests, as multipledisk drives can become involved in the
operation. Spindle-sync will improve the performance forlarge I/O requests.

This level of RAID is the only one with no redundancy. If one disk in the array fails, data is lost.The
individual segments in a 4-wide RAID-0 array is organized as follows:

Operating System

Notes

Figure: Concatenated Segments
RAID Levels
Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer rates,
but it does not improve reliability. Numerous schemes to provide redundancy at lower cost by
using the idea of disk striping combined with “parity” bits (which we describe next) have been
proposed. These schemes have different cost-performance tradeoffs and are classified into levels
called RAID levels. We describe the various levels here; Figure, shows them pictorially (in the
figure, P indicates error-correcting bits and C indicates a second copy of the data). In all cases
depicted in the figure, four disks’ worth of data is stored, and the extra disks are used to store
redundant information for failure recovery.

Figure: RAID Levels
RAID-0: In RAID Level 0 (also called striping), each segment is written to a different disk, untilall
drives in the array have been written to.The I/O performance of a RAID-0 array is significantly
better than a single disk. This is true onsmall I/O requests, as several can be processed
simultaneously, and for large requests, as multipledisk drives can become involved in the
operation. Spindle-sync will improve the performance forlarge I/O requests.

This level of RAID is the only one with no redundancy. If one disk in the array fails, data is lost.The
individual segments in a 4-wide RAID-0 array is organized as follows:

Operating System

Notes

Figure: Concatenated Segments
RAID Levels
Mirroring provides high reliability, but it is expensive. Striping provides high data-transfer rates,
but it does not improve reliability. Numerous schemes to provide redundancy at lower cost by
using the idea of disk striping combined with “parity” bits (which we describe next) have been
proposed. These schemes have different cost-performance tradeoffs and are classified into levels
called RAID levels. We describe the various levels here; Figure, shows them pictorially (in the
figure, P indicates error-correcting bits and C indicates a second copy of the data). In all cases
depicted in the figure, four disks’ worth of data is stored, and the extra disks are used to store
redundant information for failure recovery.

Figure: RAID Levels
RAID-0: In RAID Level 0 (also called striping), each segment is written to a different disk, untilall
drives in the array have been written to.The I/O performance of a RAID-0 array is significantly
better than a single disk. This is true onsmall I/O requests, as several can be processed
simultaneously, and for large requests, as multipledisk drives can become involved in the
operation. Spindle-sync will improve the performance forlarge I/O requests.

This level of RAID is the only one with no redundancy. If one disk in the array fails, data is lost.The
individual segments in a 4-wide RAID-0 array is organized as follows:

Lovely Professional University 217

Unit 14: Disk Management

Notes

Figure: RAID-0 Segments

RAID-1: In RAID Level 1 (also called mirroring), each disk is an exact duplicate of all otherdisks in
the array. When a write is performed, it is sent to all disks in the array. When a read isperformed, it
is only sent to one disk. This is the least space efficient of the RAID levels.A RAID-1 array normally
contains two disk drives. This will give adequate protection againstdrive failure. It is possible to
use more drives in a RAID-1 array, but the overall reliability willnot be significantly affected.RAID-
1 arrays with multiple mirrors are often used to improve performance in situations wherethe data
on the disks is being read from multiple programs or threads at the same time. By beingable to read
from the multiple mirrors at the same time, the data throughput is increased, thusimproving
performance. The most common use of RAID-1 with multiple mirrors is to improveperformance of
databases.

Spindle-sync will improve the performance of writes. but have virtually no effect on reads. Theread
performance for RAID-1 will be no worse than the read performance for a single drive. If theRAID
controller is intelligent enough to send read requests to alternate disk drives, RAID-1
cansignificantly improve read performance.

RAID-2: RAID Level 2 is an intellectual curiosity, and has never been widely used. It is morespace
efficient then RAID-1, but less space efficient than other RAID levels.Instead of using a simple
parity to validate the data (as in RAID-3, RAID-4 and RAID-5), it usesa much more complex
algorithm, called a Hamming Code. A Hamming code is larger than aparity, so it takes up more
disk space, but, with proper code design, is capable of recoveringfrom multiple drives being lost.
RAID-2 is the only simple RAID level that can retain data whenmultiple drives fail.

The primary problem with this RAID level is that the amount of CPU power required to
generatethe Hamming Code is much higher than is required to generate parity.A RAID-2 array has
all the penalties of a RAID-4 array, with an even larger write performancepenalty. The reason for
the larger write performance penalty is that it is not usually possible toupdate the Hamming Code.
In general, all data blocks in the stripe modified by the write, mustbe read in, and used to generate
new Hamming Code data.

Also, on large writes, the CPU time to generate the Hamming Code is much higher that togenerate
Parity, thus possibly slowing down even large writes.The individual segments in a 4+2 RAID-2
array are organized as follows:

Figure: RAID-2 Segments
RAID-3: RAID Level 3 is defined as bytewise (or bitwise) striping with parity. Every I/O to thearray
will access all drives in the array, regardless of the type of access (read/write) or the sizeof the I/O
request.

During a write, RAID-3 stores a portion of each block on each data disk. It also computes theparity
for the data, and writes it to the parity drive.In some implementations, when the data is read back

Unit 14: Disk Management

Notes

Figure: RAID-0 Segments

RAID-1: In RAID Level 1 (also called mirroring), each disk is an exact duplicate of all otherdisks in
the array. When a write is performed, it is sent to all disks in the array. When a read isperformed, it
is only sent to one disk. This is the least space efficient of the RAID levels.A RAID-1 array normally
contains two disk drives. This will give adequate protection againstdrive failure. It is possible to
use more drives in a RAID-1 array, but the overall reliability willnot be significantly affected.RAID-
1 arrays with multiple mirrors are often used to improve performance in situations wherethe data
on the disks is being read from multiple programs or threads at the same time. By beingable to read
from the multiple mirrors at the same time, the data throughput is increased, thusimproving
performance. The most common use of RAID-1 with multiple mirrors is to improveperformance of
databases.

Spindle-sync will improve the performance of writes. but have virtually no effect on reads. Theread
performance for RAID-1 will be no worse than the read performance for a single drive. If theRAID
controller is intelligent enough to send read requests to alternate disk drives, RAID-1
cansignificantly improve read performance.

RAID-2: RAID Level 2 is an intellectual curiosity, and has never been widely used. It is morespace
efficient then RAID-1, but less space efficient than other RAID levels.Instead of using a simple
parity to validate the data (as in RAID-3, RAID-4 and RAID-5), it usesa much more complex
algorithm, called a Hamming Code. A Hamming code is larger than aparity, so it takes up more
disk space, but, with proper code design, is capable of recoveringfrom multiple drives being lost.
RAID-2 is the only simple RAID level that can retain data whenmultiple drives fail.

The primary problem with this RAID level is that the amount of CPU power required to
generatethe Hamming Code is much higher than is required to generate parity.A RAID-2 array has
all the penalties of a RAID-4 array, with an even larger write performancepenalty. The reason for
the larger write performance penalty is that it is not usually possible toupdate the Hamming Code.
In general, all data blocks in the stripe modified by the write, mustbe read in, and used to generate
new Hamming Code data.

Also, on large writes, the CPU time to generate the Hamming Code is much higher that togenerate
Parity, thus possibly slowing down even large writes.The individual segments in a 4+2 RAID-2
array are organized as follows:

Figure: RAID-2 Segments
RAID-3: RAID Level 3 is defined as bytewise (or bitwise) striping with parity. Every I/O to thearray
will access all drives in the array, regardless of the type of access (read/write) or the sizeof the I/O
request.

During a write, RAID-3 stores a portion of each block on each data disk. It also computes theparity
for the data, and writes it to the parity drive.In some implementations, when the data is read back

Unit 14: Disk Management

Notes

Figure: RAID-0 Segments

RAID-1: In RAID Level 1 (also called mirroring), each disk is an exact duplicate of all otherdisks in
the array. When a write is performed, it is sent to all disks in the array. When a read isperformed, it
is only sent to one disk. This is the least space efficient of the RAID levels.A RAID-1 array normally
contains two disk drives. This will give adequate protection againstdrive failure. It is possible to
use more drives in a RAID-1 array, but the overall reliability willnot be significantly affected.RAID-
1 arrays with multiple mirrors are often used to improve performance in situations wherethe data
on the disks is being read from multiple programs or threads at the same time. By beingable to read
from the multiple mirrors at the same time, the data throughput is increased, thusimproving
performance. The most common use of RAID-1 with multiple mirrors is to improveperformance of
databases.

Spindle-sync will improve the performance of writes. but have virtually no effect on reads. Theread
performance for RAID-1 will be no worse than the read performance for a single drive. If theRAID
controller is intelligent enough to send read requests to alternate disk drives, RAID-1
cansignificantly improve read performance.

RAID-2: RAID Level 2 is an intellectual curiosity, and has never been widely used. It is morespace
efficient then RAID-1, but less space efficient than other RAID levels.Instead of using a simple
parity to validate the data (as in RAID-3, RAID-4 and RAID-5), it usesa much more complex
algorithm, called a Hamming Code. A Hamming code is larger than aparity, so it takes up more
disk space, but, with proper code design, is capable of recoveringfrom multiple drives being lost.
RAID-2 is the only simple RAID level that can retain data whenmultiple drives fail.

The primary problem with this RAID level is that the amount of CPU power required to
generatethe Hamming Code is much higher than is required to generate parity.A RAID-2 array has
all the penalties of a RAID-4 array, with an even larger write performancepenalty. The reason for
the larger write performance penalty is that it is not usually possible toupdate the Hamming Code.
In general, all data blocks in the stripe modified by the write, mustbe read in, and used to generate
new Hamming Code data.

Also, on large writes, the CPU time to generate the Hamming Code is much higher that togenerate
Parity, thus possibly slowing down even large writes.The individual segments in a 4+2 RAID-2
array are organized as follows:

Figure: RAID-2 Segments
RAID-3: RAID Level 3 is defined as bytewise (or bitwise) striping with parity. Every I/O to thearray
will access all drives in the array, regardless of the type of access (read/write) or the sizeof the I/O
request.

During a write, RAID-3 stores a portion of each block on each data disk. It also computes theparity
for the data, and writes it to the parity drive.In some implementations, when the data is read back

Lovely Professional University218

Operating System

Notes

in, the parity is also read, and compared toa newly computed parity, to ensure that there were no
errors.

RAID-3 provides a similar level of reliability to RAID-4 and RAID-5, but offers much greaterI/O
bandwidth on small requests. In addition, there is no performance impact when
writing.Unfortunately, it is not possible to have multiple operations being performed on the array
at thesame time, due to the fact that all drives are involved in every operation.As all drives are
involved in every operation, the use of spindle-sync will significantly improvethe performance of
the array.Because a logical block is broken up into several physical blocks, the block size on the disk
drivewould have to be smaller than the block size of the array. Usually, this causes the disk driveto
need to be formatted with a block size smaller than 512 bytes, which decreases the storagecapacity
of the disk drive slightly, due to the larger number of block headers on the drive.RAID-3 also has
configuration limitations. The number of data drives in a RAID-3 configurationmust be a power of
two. The most common configurations have four or eight data drives.Some disk controllers claim to
implement RAID-3, but have a segment size. The concept ofsegment size is not compatible with
RAID-3. If an implementation claims to be RAID-3, and hasa segment size, then it is probably
RAID-4.

RAID-4: RAID Level 4 is defined as block wise striping with parity. The parity is always writtento
the same disk drive. This can create a great deal of contention for the parity drive during
writeoperations.For reads, and large writes, RAID-4 performance will be similar to a RAID-0 array
containing anequal number of data disks.For small writes, the performance will decrease
considerably. To understand the cause for this, aone-block write will be used as an example.

1. A write request for one block is issued by a program.
2. The RAID software determines which disks contain the data, and parity, and which

blockthey are in.
3. The disk controller reads the data block from disk.
4. The disk controller reads the corresponding parity block from disk.
5. The data block just read is XORed with the parity block just read.
6. The data block to be written is XORed with the parity block.
7. The data block and the updated parity block are both written to disk.

It can be seen from the above example that a one block write will result in two blocks being
readfrom disk and two blocks being written to disk. If the data blocks to be read happen to be in
abuffer in the RAID controller, the amount of data read from disk could drop to one, or even
zeroblocks, thus improving the write performance.

The individual segments in a 4+1 RAID-4 array are organized as follows:

Figure: RAID-4 Segments
RAID-5: RAID Level 5 is defined as block wise striping with parity. It differs from RAID-4, in
thatthe parity data is not always written to the same disk drive.RAID-5 has all the performance
issues and benefits that RAID-4 has, except as follows:

Since there is no dedicated parity drive, there is no single point where contention will be
created.This will speed up multiple small writes.Multiple small reads are slightly faster. This is
because data resides on all drives in the array. It ispossible to get all drives involved in the read
operation.

The above block layout is an example of Linux RAID-5 in left-asymmetric mode.

Operating System

Notes

in, the parity is also read, and compared toa newly computed parity, to ensure that there were no
errors.

RAID-3 provides a similar level of reliability to RAID-4 and RAID-5, but offers much greaterI/O
bandwidth on small requests. In addition, there is no performance impact when
writing.Unfortunately, it is not possible to have multiple operations being performed on the array
at thesame time, due to the fact that all drives are involved in every operation.As all drives are
involved in every operation, the use of spindle-sync will significantly improvethe performance of
the array.Because a logical block is broken up into several physical blocks, the block size on the disk
drivewould have to be smaller than the block size of the array. Usually, this causes the disk driveto
need to be formatted with a block size smaller than 512 bytes, which decreases the storagecapacity
of the disk drive slightly, due to the larger number of block headers on the drive.RAID-3 also has
configuration limitations. The number of data drives in a RAID-3 configurationmust be a power of
two. The most common configurations have four or eight data drives.Some disk controllers claim to
implement RAID-3, but have a segment size. The concept ofsegment size is not compatible with
RAID-3. If an implementation claims to be RAID-3, and hasa segment size, then it is probably
RAID-4.

RAID-4: RAID Level 4 is defined as block wise striping with parity. The parity is always writtento
the same disk drive. This can create a great deal of contention for the parity drive during
writeoperations.For reads, and large writes, RAID-4 performance will be similar to a RAID-0 array
containing anequal number of data disks.For small writes, the performance will decrease
considerably. To understand the cause for this, aone-block write will be used as an example.

1. A write request for one block is issued by a program.
2. The RAID software determines which disks contain the data, and parity, and which

blockthey are in.
3. The disk controller reads the data block from disk.
4. The disk controller reads the corresponding parity block from disk.
5. The data block just read is XORed with the parity block just read.
6. The data block to be written is XORed with the parity block.
7. The data block and the updated parity block are both written to disk.

It can be seen from the above example that a one block write will result in two blocks being
readfrom disk and two blocks being written to disk. If the data blocks to be read happen to be in
abuffer in the RAID controller, the amount of data read from disk could drop to one, or even
zeroblocks, thus improving the write performance.

The individual segments in a 4+1 RAID-4 array are organized as follows:

Figure: RAID-4 Segments
RAID-5: RAID Level 5 is defined as block wise striping with parity. It differs from RAID-4, in
thatthe parity data is not always written to the same disk drive.RAID-5 has all the performance
issues and benefits that RAID-4 has, except as follows:

Since there is no dedicated parity drive, there is no single point where contention will be
created.This will speed up multiple small writes.Multiple small reads are slightly faster. This is
because data resides on all drives in the array. It ispossible to get all drives involved in the read
operation.

The above block layout is an example of Linux RAID-5 in left-asymmetric mode.

Operating System

Notes

in, the parity is also read, and compared toa newly computed parity, to ensure that there were no
errors.

RAID-3 provides a similar level of reliability to RAID-4 and RAID-5, but offers much greaterI/O
bandwidth on small requests. In addition, there is no performance impact when
writing.Unfortunately, it is not possible to have multiple operations being performed on the array
at thesame time, due to the fact that all drives are involved in every operation.As all drives are
involved in every operation, the use of spindle-sync will significantly improvethe performance of
the array.Because a logical block is broken up into several physical blocks, the block size on the disk
drivewould have to be smaller than the block size of the array. Usually, this causes the disk driveto
need to be formatted with a block size smaller than 512 bytes, which decreases the storagecapacity
of the disk drive slightly, due to the larger number of block headers on the drive.RAID-3 also has
configuration limitations. The number of data drives in a RAID-3 configurationmust be a power of
two. The most common configurations have four or eight data drives.Some disk controllers claim to
implement RAID-3, but have a segment size. The concept ofsegment size is not compatible with
RAID-3. If an implementation claims to be RAID-3, and hasa segment size, then it is probably
RAID-4.

RAID-4: RAID Level 4 is defined as block wise striping with parity. The parity is always writtento
the same disk drive. This can create a great deal of contention for the parity drive during
writeoperations.For reads, and large writes, RAID-4 performance will be similar to a RAID-0 array
containing anequal number of data disks.For small writes, the performance will decrease
considerably. To understand the cause for this, aone-block write will be used as an example.

1. A write request for one block is issued by a program.
2. The RAID software determines which disks contain the data, and parity, and which

blockthey are in.
3. The disk controller reads the data block from disk.
4. The disk controller reads the corresponding parity block from disk.
5. The data block just read is XORed with the parity block just read.
6. The data block to be written is XORed with the parity block.
7. The data block and the updated parity block are both written to disk.

It can be seen from the above example that a one block write will result in two blocks being
readfrom disk and two blocks being written to disk. If the data blocks to be read happen to be in
abuffer in the RAID controller, the amount of data read from disk could drop to one, or even
zeroblocks, thus improving the write performance.

The individual segments in a 4+1 RAID-4 array are organized as follows:

Figure: RAID-4 Segments
RAID-5: RAID Level 5 is defined as block wise striping with parity. It differs from RAID-4, in
thatthe parity data is not always written to the same disk drive.RAID-5 has all the performance
issues and benefits that RAID-4 has, except as follows:

Since there is no dedicated parity drive, there is no single point where contention will be
created.This will speed up multiple small writes.Multiple small reads are slightly faster. This is
because data resides on all drives in the array. It ispossible to get all drives involved in the read
operation.

The above block layout is an example of Linux RAID-5 in left-asymmetric mode.

Lovely Professional University 219

Unit 14: Disk Management

Notes

Summary

 Input is the signal or data received by the system and output is the signal or data sent fromit.
 I/O devices are used by a person (or other system) to communicate with a computer.
 Keyboard is the one of the main input devices used on a computer, a PC’s keyboard

looksvery similar to the keyboards of electric typewriters, with some additional keys.
 Mouse is an input device that allows an individual to control a mouse pointer in a

graphicaluser interface (GUI).
 Scanner is a hardware input device that allows a user to take an image and/or text

andconvert it into a digital file, allowing the computer to read and/or display the
scannedobject.

 A microphone is a hardware peripheral that allows computer users to input audio intotheir
computers.

 Web Cam is a camera connected to a computer or server that allows anyone connected tothe
internet to view still pictures or motion video of a user.

 Digital camera is a type of camera that stores the pictures or video it takes in
electronicformat instead of to film.

 A computer joystick allows an individual to easily navigate an object in a game such
asnavigating a plane in a flight simulator.

 Monitor is a video display screen and the hard shell that holds it. It is also called a
videodisplay terminal (VDT).

 Printer is an external hardware device responsible for taking computer data and generatinga
hard copy of that data.

 Sound card is a sound card is an expansion card or integrated circuit that provides
acomputer with the ability to produce sound that can be heard by the user. It is also
knownas a sound board or an audio card.

 Speaker is a hardware device connected to a computer’s sound card that outputs
soundsgenerated by the card.

Keywords

 Bit-level Stripping: Data striping consists of splitting the bits of each byte across multiple
disks; such striping is called bit-level striping.

 Constant Linear Velocity (CLV): Constant linear velocity (CLV) is a qualifier for the rated
speed of an optical disc drive and may also be applied to the writing speed of recordable
discs.

 Data Stripping: The distribution of a unit of data over two or more hard disks, enabling the
data to be read more quickly, known as data striping.

 Error Correcting Code (ECC): Error correction code is a coding system that incorporates extra
parity bits in order to detect errors.

 Logical Blocks: The logical block is the smallest unit of transfer. The size of a logical block is
usually 512 bytes.

 Logical Formatting: Logical formatting is the process of placing a file system upon a hard
disk drive partition of a hard disk so that an operating system can use available hard disk
platter space to store and retrieve files.

Lovely Professional University220

Operating System

Notes

 Low-level Formatted: The sector identification on a disk that the drive uses to locate sector
forreading and writing is called low level formatted.

Self Assessment

1. An online backing storage system capable of storing larger quantities of data is
A. CPU
B. Memory
C. Mass storage
D. Secondary storage

2. Which is an item of storage medium in the form of circular plate?
A. Disk
B. CPU
C. Printer
D. ALU

3. Which of the following disk scheduling techniques has a drawback of starvation? Notes
A. SCAN
B. SST
C. FCFS
D. LIFO

4. The total time to prepare a disk drive mechanism for a block of data to be read from is its
A. latency
B. latency plus transmission time
C. latency plus seek time
D. latency plus seek time plus transmission time

5. Which among the following are the best tools for fixing errors on disks?
A. Fdisk
B. Scandisk
C. Chkdsk
D. Fixdsk

6. Which command can be used to create the disk’s tracks and sectors?
A. Fdisk
B. Format
C. Chkdsk
D. Attrib

7. Which command is used to create root directory and FAT on disk?
A. Chkdsk

Lovely Professional University 221

Unit 14: Disk Management

Notes

B. Command.com
C. Format
D. Fat

8. is a technique of temporarily removing inactive programs from the memory of
computer system.

A. Swapping
B. Spooling
C. Semaphore
D. Scheduler

9. ___________is the time taken in locating the disk arm to a specified track where the
read/write request will be satisfied.

A. Latency time
B. Seek time
C. Disk response time
D. Disk access time

10. Which of the following algorithm performs better for systems that place a heavy load on the
disk.

A. FCFS
B. SSTF
C. LOOK
D. SCAN

11. Low-level formatting fill the with a special data structure for each sector.

12. System memory used for swap-space is called space.

13. If multiple devices have the same priority, swap-space is allocated from the devices in afashion.14. The set of tracks that are at one arm position make up a ___________15. The time taken for the desired sector to rotate to the disk head is called _____
Answers forSelf Assessment

1. C 2. A 3. B 4. C 5. B

6. B 7. C 8. A 9. B 10. D

11. Disk 12. pseudo-
swap

13. round-
robin

14. Cylinders 15. rotational
latency

Review Questions

1. In what situations would using memory as a RAM disk be more useful than using it as a
disk cache?

Lovely Professional University222

Operating System

Notes

2. None of the disk-scheduling disciplines, except FCFS, are truly fair (starvation may occur).
a. Explain why this assertion is true.
b. Describe a way to modify algorithms such as SCAN to ensure fairness.
c. Explain why fairness is an important goal in a time-sharing system.
d. Give three or more examples of circumstances in which it is important that the

operating system be unfair in serving I/O requests.
3. What is the function of a system disk controller?
4. Write short notes on:

a) Pseudo swap space
b) Device swap space
c) File system swap space

5. Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The drive is
currentlyserving a request at cylinder 143, and the previous request was at cylinder 125.
The queueof pending requests, in FIFO order, is86, 1470, 913, 1774, 948, 1509, 1022, 1750,
130.Starting from the current head position, what is the total distance (in cylinders) that
thedisk arm moves to satisfy all the pending requests for each of the following disk-
schedulingalgorithms?

a) FCFSb) SSTFc) SCANd) LOOKe) C-SCANf) C-LOOK
6. Is disk scheduling, other than FCFS scheduling, useful in a single-user environment?

Explain your answer.
7. Compare the performance of C-SCAN and SCAN scheduling, assuming a

uniformdistribution of requests. Consider the average response time (the time between the
arrivalof a request and the completion of that request’s service), the variation in response
time,and the effective bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

8. Why is rotational latency usually not considered in disk scheduling? How would you
modify SSTF, SCAN, and C-SCAN to include latency optimization?

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.

Operating System

Notes

2. None of the disk-scheduling disciplines, except FCFS, are truly fair (starvation may occur).
a. Explain why this assertion is true.
b. Describe a way to modify algorithms such as SCAN to ensure fairness.
c. Explain why fairness is an important goal in a time-sharing system.
d. Give three or more examples of circumstances in which it is important that the

operating system be unfair in serving I/O requests.
3. What is the function of a system disk controller?
4. Write short notes on:

a) Pseudo swap space
b) Device swap space
c) File system swap space

5. Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The drive is
currentlyserving a request at cylinder 143, and the previous request was at cylinder 125.
The queueof pending requests, in FIFO order, is86, 1470, 913, 1774, 948, 1509, 1022, 1750,
130.Starting from the current head position, what is the total distance (in cylinders) that
thedisk arm moves to satisfy all the pending requests for each of the following disk-
schedulingalgorithms?

a) FCFSb) SSTFc) SCANd) LOOKe) C-SCANf) C-LOOK
6. Is disk scheduling, other than FCFS scheduling, useful in a single-user environment?

Explain your answer.
7. Compare the performance of C-SCAN and SCAN scheduling, assuming a

uniformdistribution of requests. Consider the average response time (the time between the
arrivalof a request and the completion of that request’s service), the variation in response
time,and the effective bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

8. Why is rotational latency usually not considered in disk scheduling? How would you
modify SSTF, SCAN, and C-SCAN to include latency optimization?

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.

Operating System

Notes

2. None of the disk-scheduling disciplines, except FCFS, are truly fair (starvation may occur).
a. Explain why this assertion is true.
b. Describe a way to modify algorithms such as SCAN to ensure fairness.
c. Explain why fairness is an important goal in a time-sharing system.
d. Give three or more examples of circumstances in which it is important that the

operating system be unfair in serving I/O requests.
3. What is the function of a system disk controller?
4. Write short notes on:

a) Pseudo swap space
b) Device swap space
c) File system swap space

5. Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4999. The drive is
currentlyserving a request at cylinder 143, and the previous request was at cylinder 125.
The queueof pending requests, in FIFO order, is86, 1470, 913, 1774, 948, 1509, 1022, 1750,
130.Starting from the current head position, what is the total distance (in cylinders) that
thedisk arm moves to satisfy all the pending requests for each of the following disk-
schedulingalgorithms?

a) FCFSb) SSTFc) SCANd) LOOKe) C-SCANf) C-LOOK
6. Is disk scheduling, other than FCFS scheduling, useful in a single-user environment?

Explain your answer.
7. Compare the performance of C-SCAN and SCAN scheduling, assuming a

uniformdistribution of requests. Consider the average response time (the time between the
arrivalof a request and the completion of that request’s service), the variation in response
time,and the effective bandwidth. How does performance depend on the relative sizes of
seek time and rotational latency?

8. Why is rotational latency usually not considered in disk scheduling? How would you
modify SSTF, SCAN, and C-SCAN to include latency optimization?

Further ReadingsAndrew M. Lister, Fundamentals of Operating Systems, Wiley.Andrew S. Tanenbaum and Albert S. Woodhull, Systems Design and Implementation,Prentice Hall.Andrew S. Tanenbaum, Modern Operating System, Prentice Hall.Colin Ritchie, Operating Systems, BPB Publications.Deitel H.M., “Operating Systems, 2nd Edition, Addison Wesley.I.A. Dhotre, Operating System, Technical Publications.Milankovic, Operating System, Tata MacGraw Hill, New Delhi.Silberschatz, Gagne & Galvin, “Operating System Concepts”, John Wiley & Sons, SeventhEdition.
Lovely Professional University 223

Unit 14: Disk Management

Notes

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 14: Disk Management

Notes

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 14: Disk Management

Notes

Stalling, W., “Operating Systems”, 2nd Edition, Prentice Hall.
Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Lovely Professional University224

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP560 - U01 - D - Finalized.pdf
	ECAP560 - U02 - D - Finalized.pdf
	ECAP560 - U03 - D - Finalized.pdf
	ECAP560 - U04 - D - Finalized.pdf
	ECAP560 - U05 - D - Finalized.pdf
	ECAP560 - U06 - D - Finalized.pdf
	ECAP560 - U07 - D - Finalized.pdf
	ECAP560 - U08 - D - Finalized.pdf
	ECAP560 - U09 - D - Finalized.pdf
	ECAP560 - U10 - D - Finalized.pdf
	ECAP560 - U11 - D - Finalized.pdf
	ECAP560 - U12 - D - Finalized.pdf
	ECAP560 - U13 - D - Finalized.pdf
	ECAP560 - U14 - D - Finalized.pdf

