
ECAP268
Computer System Architecture

Edited by
Rishi Chopra

Edited By:
 Rishi Chopra

user
Typewritten text
Computer System Architecture

CONTENT

Unit 10:

Binary Systems

Boolean AlgebraUnit 2: 25

Implementation of Combinational Logic DesignUnit 3: 40

Design of Synchronous Sequential CircuitsUnit 4: 62

Register Transfer and Micro-OperationsUnit 5: 105

Instruction Codes and Instruction CyclesUnit 6: 117

Machine LanguageUnit 7: 132

Machine ProgrammingUnit 8: 151

Register OrganizationUnit 9: 166

Addressing Modes 177

Pipeline ProcessingUnit 11: 190

Memory TechnologyUnit 12: 201

I/O SubsystemsUnit 13: 223

Hardware Description LogicUnit 14: 238

Unit 1: 1

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Dr. Divya, Lovely Professional University

Unit 01: Binary Systems

Notes

Unit 01: Binary Systems

CONTENTS

Objectives

Introduction

1.1 Number Systems

1.2 Number System Conversion

1.3 Binary to Hexadecimal Conversion

1.4 Octal to Decimal Conversion

1.5 Octal to Binary Conversion

1.6 Complements:

1.7 Fixed-point and floating-point representation

Summary:

Keywords:

Self-Assessment:

Review Questions

References

Objectives
After studying this unit, you will be able to

 Learn about the number systems
 Convert one number with a base to a number having different base
 Find out the complement of a number
 Do the subtraction operation using the complement of the number
 Understand the position of a binary point in a number

Introduction
The number system is the system of naming and representing the numbers which humans
and computer systems can understand. The number systems are of various types:base-10
number system/decimal number system, base-2 number system/binary number system,
base-8 number system/octal number system, base-16 number system/hexadecimal
number system. The numbers which we use in our daily life belongs to the decimal
number system. But our computer systems cannot understand the numbers of decimal
number system as they use two states or binary logic. In binary logic, the two logic states
are ‘0’ and ‘1’. The other decimal number systems like octal and hexadecimal number
systems are a compact way of representing the numbers of binary number systems. So, we
can define a number differently in these number systems.

Example
The numbers (2A)16 and (52)8have the same value (42)10.

1.1 Number Systems
The number system is the numerical notation in which we use the digits or some other symbols for
representation. It gives a distinctive representation of every number. It provides us with the
privilege to do simple operations of arithmetic like addition, subtraction, and division.

Notes

Unit 01: Binary Systems

CONTENTS

Objectives

Introduction

1.1 Number Systems

1.2 Number System Conversion

1.3 Binary to Hexadecimal Conversion

1.4 Octal to Decimal Conversion

1.5 Octal to Binary Conversion

1.6 Complements:

1.7 Fixed-point and floating-point representation

Summary:

Keywords:

Self-Assessment:

Review Questions

References

Objectives
After studying this unit, you will be able to

 Learn about the number systems
 Convert one number with a base to a number having different base
 Find out the complement of a number
 Do the subtraction operation using the complement of the number
 Understand the position of a binary point in a number

Introduction
The number system is the system of naming and representing the numbers which humans
and computer systems can understand. The number systems are of various types:base-10
number system/decimal number system, base-2 number system/binary number system,
base-8 number system/octal number system, base-16 number system/hexadecimal
number system. The numbers which we use in our daily life belongs to the decimal
number system. But our computer systems cannot understand the numbers of decimal
number system as they use two states or binary logic. In binary logic, the two logic states
are ‘0’ and ‘1’. The other decimal number systems like octal and hexadecimal number
systems are a compact way of representing the numbers of binary number systems. So, we
can define a number differently in these number systems.

Example
The numbers (2A)16 and (52)8have the same value (42)10.

1.1 Number Systems
The number system is the numerical notation in which we use the digits or some other symbols for
representation. It gives a distinctive representation of every number. It provides us with the
privilege to do simple operations of arithmetic like addition, subtraction, and division.

Notes

Unit 01: Binary Systems

CONTENTS

Objectives

Introduction

1.1 Number Systems

1.2 Number System Conversion

1.3 Binary to Hexadecimal Conversion

1.4 Octal to Decimal Conversion

1.5 Octal to Binary Conversion

1.6 Complements:

1.7 Fixed-point and floating-point representation

Summary:

Keywords:

Self-Assessment:

Review Questions

References

Objectives
After studying this unit, you will be able to

 Learn about the number systems
 Convert one number with a base to a number having different base
 Find out the complement of a number
 Do the subtraction operation using the complement of the number
 Understand the position of a binary point in a number

Introduction
The number system is the system of naming and representing the numbers which humans
and computer systems can understand. The number systems are of various types:base-10
number system/decimal number system, base-2 number system/binary number system,
base-8 number system/octal number system, base-16 number system/hexadecimal
number system. The numbers which we use in our daily life belongs to the decimal
number system. But our computer systems cannot understand the numbers of decimal
number system as they use two states or binary logic. In binary logic, the two logic states
are ‘0’ and ‘1’. The other decimal number systems like octal and hexadecimal number
systems are a compact way of representing the numbers of binary number systems. So, we
can define a number differently in these number systems.

Example
The numbers (2A)16 and (52)8have the same value (42)10.

1.1 Number Systems
The number system is the numerical notation in which we use the digits or some other symbols for
representation. It gives a distinctive representation of every number. It provides us with the
privilege to do simple operations of arithmetic like addition, subtraction, and division.

Lovely Professional University 1

Unit 01: Binary SystemsDr. Divya, Lovely Professional University

Computer System Architecture

Notes

Types of Number Systems:

The four most common number systems are:

 Base-10 Number System/Decimal Number System

 Base-2 Number System/Binary Number System

 Base-8 Number System/Octal Number System

 Base-16 Number System/Hexadecimal Number System

So, in every number system, we have to determine the value of a digit in that number. We can find
out the value of any digit by using three things: the digit, its position in the number and the base of
the number system.

Decimal Number System:

When digits form a string, we call it a number. These decimal numbers have a base of D or 10 or
Dec or radix. In a base-10 number,we have the values which move from zero to nine: 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 values.

Example
A number like "4321" has four places, and each place can have the digits 0-9.

Every digit in the number has some power of 10 and it has some weight coupled to it. These two
things depend upon the place of the digit in the number. We start processing the numbers starting
from right, the powers of 10 will start from 0 (at the rightmost bit), and every time it will increment,
like 0, 1, 2… etc. So, the procedure for calculation of a number’s value is:

Number’s value = a weighted sum of the digits.

Number’ value = digit * 10x + digit * 10x

where x = (position number - 1).

Example
123410 = 1x 103 + 2x 102 + 3x101 +4x100 = 1000 + 200 + 30 + 4 = 123410

Binary Number Systems:

The term binary numbering formats corresponds to the system implemented in digital
computers to represent numbers. The base in binary number systems is 2 or ‘b’ or ‘B’ or ‘Bin’.
This uses two symbols: 0 and 1.Each bit in the number is weighted by the power of 2.

Did You Know?
The basic unit in digital computers is a binary digit which is
abbreviated as a bit.

Binary numbers are made up of bits that can be represented electronically as
shown in figure 1.The other units by which the binary information is processed are:
nibble, byte, and word. A unit of four words is known as a nibble, unit of eight bits is
known as a byte or an octet. Unit of sixteen bits is known as a word. All the information in
the digital computer is represented as bit patterns. The important thing in the bit pattern is

Example
9876D = 9x 103 + 8x 102 + 7x101 +6x100 = 9000 + 800 + 70 + 6 = 9876D

Task
Find the number’s value of (6715)D

Computer System Architecture

Notes

Types of Number Systems:

The four most common number systems are:

 Base-10 Number System/Decimal Number System

 Base-2 Number System/Binary Number System

 Base-8 Number System/Octal Number System

 Base-16 Number System/Hexadecimal Number System

So, in every number system, we have to determine the value of a digit in that number. We can find
out the value of any digit by using three things: the digit, its position in the number and the base of
the number system.

Decimal Number System:

When digits form a string, we call it a number. These decimal numbers have a base of D or 10 or
Dec or radix. In a base-10 number,we have the values which move from zero to nine: 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 values.

Example
A number like "4321" has four places, and each place can have the digits 0-9.

Every digit in the number has some power of 10 and it has some weight coupled to it. These two
things depend upon the place of the digit in the number. We start processing the numbers starting
from right, the powers of 10 will start from 0 (at the rightmost bit), and every time it will increment,
like 0, 1, 2… etc. So, the procedure for calculation of a number’s value is:

Number’s value = a weighted sum of the digits.

Number’ value = digit * 10x + digit * 10x

where x = (position number - 1).

Example
123410 = 1x 103 + 2x 102 + 3x101 +4x100 = 1000 + 200 + 30 + 4 = 123410

Binary Number Systems:

The term binary numbering formats corresponds to the system implemented in digital
computers to represent numbers. The base in binary number systems is 2 or ‘b’ or ‘B’ or ‘Bin’.
This uses two symbols: 0 and 1.Each bit in the number is weighted by the power of 2.

Did You Know?
The basic unit in digital computers is a binary digit which is
abbreviated as a bit.

Binary numbers are made up of bits that can be represented electronically as
shown in figure 1.The other units by which the binary information is processed are:
nibble, byte, and word. A unit of four words is known as a nibble, unit of eight bits is
known as a byte or an octet. Unit of sixteen bits is known as a word. All the information in
the digital computer is represented as bit patterns. The important thing in the bit pattern is

Example
9876D = 9x 103 + 8x 102 + 7x101 +6x100 = 9000 + 800 + 70 + 6 = 9876D

Task
Find the number’s value of (6715)D

Computer System Architecture

Notes

Types of Number Systems:

The four most common number systems are:

 Base-10 Number System/Decimal Number System

 Base-2 Number System/Binary Number System

 Base-8 Number System/Octal Number System

 Base-16 Number System/Hexadecimal Number System

So, in every number system, we have to determine the value of a digit in that number. We can find
out the value of any digit by using three things: the digit, its position in the number and the base of
the number system.

Decimal Number System:

When digits form a string, we call it a number. These decimal numbers have a base of D or 10 or
Dec or radix. In a base-10 number,we have the values which move from zero to nine: 0, 1, 2, 3, 4, 5,
6, 7, 8, and 9 values.

Example
A number like "4321" has four places, and each place can have the digits 0-9.

Every digit in the number has some power of 10 and it has some weight coupled to it. These two
things depend upon the place of the digit in the number. We start processing the numbers starting
from right, the powers of 10 will start from 0 (at the rightmost bit), and every time it will increment,
like 0, 1, 2… etc. So, the procedure for calculation of a number’s value is:

Number’s value = a weighted sum of the digits.

Number’ value = digit * 10x + digit * 10x

where x = (position number - 1).

Example
123410 = 1x 103 + 2x 102 + 3x101 +4x100 = 1000 + 200 + 30 + 4 = 123410

Binary Number Systems:

The term binary numbering formats corresponds to the system implemented in digital
computers to represent numbers. The base in binary number systems is 2 or ‘b’ or ‘B’ or ‘Bin’.
This uses two symbols: 0 and 1.Each bit in the number is weighted by the power of 2.

Did You Know?
The basic unit in digital computers is a binary digit which is
abbreviated as a bit.

Binary numbers are made up of bits that can be represented electronically as
shown in figure 1.The other units by which the binary information is processed are:
nibble, byte, and word. A unit of four words is known as a nibble, unit of eight bits is
known as a byte or an octet. Unit of sixteen bits is known as a word. All the information in
the digital computer is represented as bit patterns. The important thing in the bit pattern is

Example
9876D = 9x 103 + 8x 102 + 7x101 +6x100 = 9000 + 800 + 70 + 6 = 9876D

Task
Find the number’s value of (6715)D

Lovely Professional University2

Unit 01: Binary Systems

Notes

the number of bits. The number of bits can be calculated by counting the number of 0s and
1s.

Figure 1: Electronic Representation of Bits

Representation of Bit Pattern: Bit Positions and Their Significance

Table 1: Bit Positions and their Significance

Table 1 represents the bit positions in a number and their significance. There are 8 bits in the above
table, Bit 0 is at the rightmost position, and it is the first bit to be processed. It is the bit which has
the least weight so that is why it is known as the least significant bit. As we process the bits starting

Example
01010101: The number of bits in this pattern is 8.

Task
Count the number of bits in 1010101010101010

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

… 0 (no
signal)

… 1 (signal)

Unit 01: Binary Systems

Notes

the number of bits. The number of bits can be calculated by counting the number of 0s and
1s.

Figure 1: Electronic Representation of Bits

Representation of Bit Pattern: Bit Positions and Their Significance

Table 1: Bit Positions and their Significance

Table 1 represents the bit positions in a number and their significance. There are 8 bits in the above
table, Bit 0 is at the rightmost position, and it is the first bit to be processed. It is the bit which has
the least weight so that is why it is known as the least significant bit. As we process the bits starting

Example
01010101: The number of bits in this pattern is 8.

Task
Count the number of bits in 1010101010101010

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

… 0 (no
signal)

… 1 (signal)

Unit 01: Binary Systems

Notes

the number of bits. The number of bits can be calculated by counting the number of 0s and
1s.

Figure 1: Electronic Representation of Bits

Representation of Bit Pattern: Bit Positions and Their Significance

Table 1: Bit Positions and their Significance

Table 1 represents the bit positions in a number and their significance. There are 8 bits in the above
table, Bit 0 is at the rightmost position, and it is the first bit to be processed. It is the bit which has
the least weight so that is why it is known as the least significant bit. As we process the bits starting

Example
01010101: The number of bits in this pattern is 8.

Task
Count the number of bits in 1010101010101010

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

… 0 (no
signal)

… 1 (signal)

Lovely Professional University 3

Computer System Architecture

Notes

from the right and we keep on moving to the left. So, the last bit in the number has the most
significance. That is why it is known as the most significant bit.

Octal Number System:

Computer mechanics often need to write out binary quantities, but in practice writing out a binary
number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are
written in a base-8 which is known as the octal representation. The base of octal numbers is 8 or ‘o’

or ‘Oct’. In this 8 symbols are used: 0, 1, 2, 3, 4, 5, 6, 7. Each number is weighted by the power of 8.

Hexadecimal Number System:

The hexadecimal number system base is 16 or ‘H’ or ‘Hex’.16 symbols are used: 10 digits and 6
letters { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10=A, 11=B, 12=C, 13=D, 14=E, 15= F}.Each symbol is weighted
bythe power of 16.

1.2 Number System Conversion
For understanding, the numbers are converted from one system to another system. So, the types of
conversions are shown in figures 2-5.

Figure 2: Conversions: Decimal number system to other number systems

Figure 3: Conversion: Binary number system to other number systems

Example
123, 567, 7654

Example
AB12, 876F, FFFF

Computer System Architecture

Notes

from the right and we keep on moving to the left. So, the last bit in the number has the most
significance. That is why it is known as the most significant bit.

Octal Number System:

Computer mechanics often need to write out binary quantities, but in practice writing out a binary
number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are
written in a base-8 which is known as the octal representation. The base of octal numbers is 8 or ‘o’

or ‘Oct’. In this 8 symbols are used: 0, 1, 2, 3, 4, 5, 6, 7. Each number is weighted by the power of 8.

Hexadecimal Number System:

The hexadecimal number system base is 16 or ‘H’ or ‘Hex’.16 symbols are used: 10 digits and 6
letters { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10=A, 11=B, 12=C, 13=D, 14=E, 15= F}.Each symbol is weighted
bythe power of 16.

1.2 Number System Conversion
For understanding, the numbers are converted from one system to another system. So, the types of
conversions are shown in figures 2-5.

Figure 2: Conversions: Decimal number system to other number systems

Figure 3: Conversion: Binary number system to other number systems

Example
123, 567, 7654

Example
AB12, 876F, FFFF

Computer System Architecture

Notes

from the right and we keep on moving to the left. So, the last bit in the number has the most
significance. That is why it is known as the most significant bit.

Octal Number System:

Computer mechanics often need to write out binary quantities, but in practice writing out a binary
number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are
written in a base-8 which is known as the octal representation. The base of octal numbers is 8 or ‘o’

or ‘Oct’. In this 8 symbols are used: 0, 1, 2, 3, 4, 5, 6, 7. Each number is weighted by the power of 8.

Hexadecimal Number System:

The hexadecimal number system base is 16 or ‘H’ or ‘Hex’.16 symbols are used: 10 digits and 6
letters { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10=A, 11=B, 12=C, 13=D, 14=E, 15= F}.Each symbol is weighted
bythe power of 16.

1.2 Number System Conversion
For understanding, the numbers are converted from one system to another system. So, the types of
conversions are shown in figures 2-5.

Figure 2: Conversions: Decimal number system to other number systems

Figure 3: Conversion: Binary number system to other number systems

Example
123, 567, 7654

Example
AB12, 876F, FFFF

Lovely Professional University4

Unit 01: Binary Systems

Notes

Figure 4: Conversion:Octal number system to other number systems

Figure 5: Conversion:Hexadecimal number system to other number systems

Decimal to Binary Conversion:

The procedure for converting a decimal number to a binary number is as:

Step 1: Take the number and divide it by 2,

Step 2: Get the integer quotient for the next repetition,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (41)10 to binary representation

Quotient Remainder

41/2 20 1

20/2 10 0

10/2 5 0

5/2 2 1

2/2 1 0

1/2 0 1

(41)10 = (101001)2

Example
Convert (35)10 to binary representation

Quotient Remainder

Unit 01: Binary Systems

Notes

Figure 4: Conversion:Octal number system to other number systems

Figure 5: Conversion:Hexadecimal number system to other number systems

Decimal to Binary Conversion:

The procedure for converting a decimal number to a binary number is as:

Step 1: Take the number and divide it by 2,

Step 2: Get the integer quotient for the next repetition,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (41)10 to binary representation

Quotient Remainder

41/2 20 1

20/2 10 0

10/2 5 0

5/2 2 1

2/2 1 0

1/2 0 1

(41)10 = (101001)2

Example
Convert (35)10 to binary representation

Quotient Remainder

Unit 01: Binary Systems

Notes

Figure 4: Conversion:Octal number system to other number systems

Figure 5: Conversion:Hexadecimal number system to other number systems

Decimal to Binary Conversion:

The procedure for converting a decimal number to a binary number is as:

Step 1: Take the number and divide it by 2,

Step 2: Get the integer quotient for the next repetition,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (41)10 to binary representation

Quotient Remainder

41/2 20 1

20/2 10 0

10/2 5 0

5/2 2 1

2/2 1 0

1/2 0 1

(41)10 = (101001)2

Example
Convert (35)10 to binary representation

Quotient Remainder

Lovely Professional University 5

Computer System Architecture

Notes

35/2 17 1

17/2 8 1

8/2 4 0

4/2 2 0

2/2 1 0

1/2 0 1

(35)10 = (100011)2

Task
Convert (145)10 to binary representation

Decimal to Octal Conversion

The procedure for converting a decimal number to an octal number is:

Step 1: Take the number and divide it by 8,

Step 2: Findfor the next iteration, the integer quotient,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (153)10 to octal representation

Quotient Remainder

153/8 19 1

19/8 2 3

2/8 0 2

(153)10 = (231)8

Example
Convert (670)10 to octal representation

Quotient Remainder

670/8 83 6

83/8 10 3

10/8 1 2

1/8 0 1

(670)10 = (1236)8

Task
Convert (3521)10 to octal representation

Decimal to Hexadecimal Conversion:

The procedure for decimal to hexadecimal conversion is:

Step 1: Divide the number by 16,

Computer System Architecture

Notes

35/2 17 1

17/2 8 1

8/2 4 0

4/2 2 0

2/2 1 0

1/2 0 1

(35)10 = (100011)2

Task
Convert (145)10 to binary representation

Decimal to Octal Conversion

The procedure for converting a decimal number to an octal number is:

Step 1: Take the number and divide it by 8,

Step 2: Findfor the next iteration, the integer quotient,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (153)10 to octal representation

Quotient Remainder

153/8 19 1

19/8 2 3

2/8 0 2

(153)10 = (231)8

Example
Convert (670)10 to octal representation

Quotient Remainder

670/8 83 6

83/8 10 3

10/8 1 2

1/8 0 1

(670)10 = (1236)8

Task
Convert (3521)10 to octal representation

Decimal to Hexadecimal Conversion:

The procedure for decimal to hexadecimal conversion is:

Step 1: Divide the number by 16,

Computer System Architecture

Notes

35/2 17 1

17/2 8 1

8/2 4 0

4/2 2 0

2/2 1 0

1/2 0 1

(35)10 = (100011)2

Task
Convert (145)10 to binary representation

Decimal to Octal Conversion

The procedure for converting a decimal number to an octal number is:

Step 1: Take the number and divide it by 8,

Step 2: Findfor the next iteration, the integer quotient,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat steps 1-3 until the quotient becomes 0.

Example
Convert (153)10 to octal representation

Quotient Remainder

153/8 19 1

19/8 2 3

2/8 0 2

(153)10 = (231)8

Example
Convert (670)10 to octal representation

Quotient Remainder

670/8 83 6

83/8 10 3

10/8 1 2

1/8 0 1

(670)10 = (1236)8

Task
Convert (3521)10 to octal representation

Decimal to Hexadecimal Conversion:

The procedure for decimal to hexadecimal conversion is:

Step 1: Divide the number by 16,

Lovely Professional University6

Unit 01: Binary Systems

Notes

Step 2: Get the integer quotient for the next iteration,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat the steps until the quotient becomes 0.

Example
Convert (4735)10 to hexadecimal representation

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(4735)10 = (127F)16

Example
Convert (2020)10to hexadecimal representation

Quotient Remainder

2020/16 126 4

126/16 7 14 (E)

7/16 0 7

(2020)10 = (7E4)16

Task
Convert (9845)10 to hexadecimal representation.

Binary to Decimal Conversion

The procedure for conversion from binary to decimal is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Example
Convert (11001010)2 to decimal representation

0 + 2 + 0 + 8 + 0 + 0 +64 +128 = 202

0 *
2

0
=0*1=0

1 *
2

1
=1*2=

2

0 *
2

2
=0*4=

0

1 *
2

3
=1*8=8

0 *
2

4
=0*16=0

0 *
2

5
=0*32=

0

1 *
2

6
=1*64=

64

1 *
2

7
=1*128=

128

1100 1010

Unit 01: Binary Systems

Notes

Step 2: Get the integer quotient for the next iteration,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat the steps until the quotient becomes 0.

Example
Convert (4735)10 to hexadecimal representation

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(4735)10 = (127F)16

Example
Convert (2020)10to hexadecimal representation

Quotient Remainder

2020/16 126 4

126/16 7 14 (E)

7/16 0 7

(2020)10 = (7E4)16

Task
Convert (9845)10 to hexadecimal representation.

Binary to Decimal Conversion

The procedure for conversion from binary to decimal is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Example
Convert (11001010)2 to decimal representation

0 + 2 + 0 + 8 + 0 + 0 +64 +128 = 202

0 *
2

0
=0*1=0

1 *
2

1
=1*2=

2

0 *
2

2
=0*4=

0

1 *
2

3
=1*8=8

0 *
2

4
=0*16=0

0 *
2

5
=0*32=

0

1 *
2

6
=1*64=

64

1 *
2

7
=1*128=

128

1100 1010

Unit 01: Binary Systems

Notes

Step 2: Get the integer quotient for the next iteration,

Step 3: Get the remainder for the binary digit,

Step 4: Repeat the steps until the quotient becomes 0.

Example
Convert (4735)10 to hexadecimal representation

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(4735)10 = (127F)16

Example
Convert (2020)10to hexadecimal representation

Quotient Remainder

2020/16 126 4

126/16 7 14 (E)

7/16 0 7

(2020)10 = (7E4)16

Task
Convert (9845)10 to hexadecimal representation.

Binary to Decimal Conversion

The procedure for conversion from binary to decimal is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Example
Convert (11001010)2 to decimal representation

0 + 2 + 0 + 8 + 0 + 0 +64 +128 = 202

0 *
2

0
=0*1=0

1 *
2

1
=1*2=

2

0 *
2

2
=0*4=

0

1 *
2

3
=1*8=8

0 *
2

4
=0*16=0

0 *
2

5
=0*32=

0

1 *
2

6
=1*64=

64

1 *
2

7
=1*128=

128

1100 1010

Lovely Professional University 7

Computer System Architecture

Notes

Step 2: Add all the
product values.

Example
Convert (100101)2 to decimal representation

1 + 0 + 4 + 0 + 0 + 32 = 37

(100101)2 = (37)10

Task
Convert (100101011)2 to decimal representation

Binary to Octal Conversion:

The procedure from octal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

(11001010)2 = (202)10

Computer System Architecture

Notes

Step 2: Add all the
product values.

Example
Convert (100101)2 to decimal representation

1 + 0 + 4 + 0 + 0 + 32 = 37

(100101)2 = (37)10

Task
Convert (100101011)2 to decimal representation

Binary to Octal Conversion:

The procedure from octal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

(11001010)2 = (202)10

Computer System Architecture

Notes

Step 2: Add all the
product values.

Example
Convert (100101)2 to decimal representation

1 + 0 + 4 + 0 + 0 + 32 = 37

(100101)2 = (37)10

Task
Convert (100101011)2 to decimal representation

Binary to Octal Conversion:

The procedure from octal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

(11001010)2 = (202)10

Lovely Professional University8

Unit 01: Binary Systems

Notes

Example
Convert (111110)2 to octal representation

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/8 7 6

7/8 0 7

(111110)2 = (62)10 = (76)8

Example
Convert (1011001)2 to octal representation

1 + 0 + 0 + 8 + 16 + 0 + 64 = 89

(1011001)2 = (89)10

Quotient Remainder

89/8 11 1

11/8 1 3

1/8 0 1

(1011001)2 = (89)10= (131)8

1*20=1*1=1
0*21=0*
2=00*22=0*4
=01*23=1*
8=81*24=1*1
6=160*25=0*32
=01*26=1*64
=64

1 0 1 1 0 0 1

0*2
0
=0*

1=0
1*2

1
=1*

2=2
1*2

2
=1*

4=4
1*2

3
=1*

*8=8
1*2

4
=1*1

6=16
1*2

5
=1*32

=32

1 1 1 1 1 0

Unit 01: Binary Systems

Notes

Example
Convert (111110)2 to octal representation

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/8 7 6

7/8 0 7

(111110)2 = (62)10 = (76)8

Example
Convert (1011001)2 to octal representation

1 + 0 + 0 + 8 + 16 + 0 + 64 = 89

(1011001)2 = (89)10

Quotient Remainder

89/8 11 1

11/8 1 3

1/8 0 1

(1011001)2 = (89)10= (131)8

1*20=1*1=1
0*21=0*
2=00*22=0*4
=01*23=1*
8=81*24=1*1
6=160*25=0*32
=01*26=1*64
=64

1 0 1 1 0 0 1

0*2
0
=0*

1=0
1*2

1
=1*

2=2
1*2

2
=1*

4=4
1*2

3
=1*

*8=8
1*2

4
=1*1

6=16
1*2

5
=1*32

=32

1 1 1 1 1 0

Unit 01: Binary Systems

Notes

Example
Convert (111110)2 to octal representation

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/8 7 6

7/8 0 7

(111110)2 = (62)10 = (76)8

Example
Convert (1011001)2 to octal representation

1 + 0 + 0 + 8 + 16 + 0 + 64 = 89

(1011001)2 = (89)10

Quotient Remainder

89/8 11 1

11/8 1 3

1/8 0 1

(1011001)2 = (89)10= (131)8

1*20=1*1=1
0*21=0*
2=00*22=0*4
=01*23=1*
8=81*24=1*1
6=160*25=0*32
=01*26=1*64
=64

1 0 1 1 0 0 1

0*2
0
=0*

1=0
1*2

1
=1*

2=2
1*2

2
=1*

4=4
1*2

3
=1*

*8=8
1*2

4
=1*1

6=16
1*2

5
=1*32

=32

1 1 1 1 1 0

Lovely Professional University 9

Computer System Architecture

Notes

1.3 Binary to Hexadecimal Conversion
The procedure for conversion from binary to hexadecimal is:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 16.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (111110)2 to hexadecimal representation.

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/16 3 14(14=E)

3/16 0 3

(111110)2 = (62)10 = (3E)16

Example
Convert (1101011)2 to hexadecimal representation

0 + 2 + 0 + 8 + 0 + 32 + 64 = 106

1*2
1
=1*2=2

0*2
2
=0*

4=01*2
3
=1*8

=80*2
4
=0*16

=01*2
5
=1*32=

321 *
2

6
=1*64=64

1 1 0 1 0 1 1

0*2
0
=0*

1=0

0*2
0

=0*1
=0

1*2
1
=1

*2=2
1*2

2
=1

*4=4
1*2

3
=1*

8=8
1*2

4
=1*1

6=16
1*2

5
=1*3

2=32

1 1 1 1 1 0

Computer System Architecture

Notes

1.3 Binary to Hexadecimal Conversion
The procedure for conversion from binary to hexadecimal is:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 16.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (111110)2 to hexadecimal representation.

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/16 3 14(14=E)

3/16 0 3

(111110)2 = (62)10 = (3E)16

Example
Convert (1101011)2 to hexadecimal representation

0 + 2 + 0 + 8 + 0 + 32 + 64 = 106

1*2
1
=1*2=2

0*2
2
=0*

4=01*2
3
=1*8

=80*2
4
=0*16

=01*2
5
=1*32=

321 *
2

6
=1*64=64

1 1 0 1 0 1 1

0*2
0
=0*

1=0

0*2
0

=0*1
=0

1*2
1
=1

*2=2
1*2

2
=1

*4=4
1*2

3
=1*

8=8
1*2

4
=1*1

6=16
1*2

5
=1*3

2=32

1 1 1 1 1 0

Computer System Architecture

Notes

1.3 Binary to Hexadecimal Conversion
The procedure for conversion from binary to hexadecimal is:

Step 1: Multiply each bit with the power of 2 (from LSB to MSB) (0 to n).

Step 2: Add all the product values.

Step 3: Divide the number by 16.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (111110)2 to hexadecimal representation.

0 + 2 + 4 + 8 + 16 + 32 = 62

(111110)2 = (62)10

Quotient Remainder

62/16 3 14(14=E)

3/16 0 3

(111110)2 = (62)10 = (3E)16

Example
Convert (1101011)2 to hexadecimal representation

0 + 2 + 0 + 8 + 0 + 32 + 64 = 106

1*2
1
=1*2=2

0*2
2
=0*

4=01*2
3
=1*8

=80*2
4
=0*16

=01*2
5
=1*32=

321 *
2

6
=1*64=64

1 1 0 1 0 1 1

0*2
0
=0*

1=0

0*2
0

=0*1
=0

1*2
1
=1

*2=2
1*2

2
=1

*4=4
1*2

3
=1*

8=8
1*2

4
=1*1

6=16
1*2

5
=1*3

2=32

1 1 1 1 1 0

Lovely Professional University10

Unit 01: Binary Systems

Notes

(1101011)2 = (106)10

Quotient Remainder

106/16 6 10 (10=A)

6/10 0 6

(1101011)2 = (106)10 = (6A) 16

1.4 Octal to Decimal Conversion
The procedure for converting octal to decimal number is:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (345)8 to decimal representation

5 + 32 + 192 = 229

(345)8 = (229)10

Example
Convert (123)8 to decimal representation.

3+ 16 + 64 = 38

(123)8= (38)10

2 *
8

1
=2*8=

16

1 *
8

2
=1*64=

64

3 *
8

0
=3*1

=3

1 2 3

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Unit 01: Binary Systems

Notes

(1101011)2 = (106)10

Quotient Remainder

106/16 6 10 (10=A)

6/10 0 6

(1101011)2 = (106)10 = (6A) 16

1.4 Octal to Decimal Conversion
The procedure for converting octal to decimal number is:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (345)8 to decimal representation

5 + 32 + 192 = 229

(345)8 = (229)10

Example
Convert (123)8 to decimal representation.

3+ 16 + 64 = 38

(123)8= (38)10

2 *
8

1
=2*8=

16

1 *
8

2
=1*64=

64

3 *
8

0
=3*1

=3

1 2 3

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Unit 01: Binary Systems

Notes

(1101011)2 = (106)10

Quotient Remainder

106/16 6 10 (10=A)

6/10 0 6

(1101011)2 = (106)10 = (6A) 16

1.4 Octal to Decimal Conversion
The procedure for converting octal to decimal number is:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (345)8 to decimal representation

5 + 32 + 192 = 229

(345)8 = (229)10

Example
Convert (123)8 to decimal representation.

3+ 16 + 64 = 38

(123)8= (38)10

2 *
8

1
=2*8=

16

1 *
8

2
=1*64=

64

3 *
8

0
=3*1

=3

1 2 3

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Lovely Professional University 11

Computer System Architecture

Notes

1.5 Octal to Binary Conversion
The procedure for conversion from octal to binary is as follows:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values and get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (540)8 to binary representation

Example
Convert (345)8 to binary representation

5 + 32 + 192 = 229

(345)8 = (229)10

Quotient Remainder

229/2 114 1

114/2 57 0

57/2 28 1

28/2 14 0

14/2 7 0

7/2 3 1

3/2 1 1

1/2 0 1

(345)8 = (229)10 = (11100101)2

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Computer System Architecture

Notes

1.5 Octal to Binary Conversion
The procedure for conversion from octal to binary is as follows:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values and get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (540)8 to binary representation

Example
Convert (345)8 to binary representation

5 + 32 + 192 = 229

(345)8 = (229)10

Quotient Remainder

229/2 114 1

114/2 57 0

57/2 28 1

28/2 14 0

14/2 7 0

7/2 3 1

3/2 1 1

1/2 0 1

(345)8 = (229)10 = (11100101)2

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Computer System Architecture

Notes

1.5 Octal to Binary Conversion
The procedure for conversion from octal to binary is as follows:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values and get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (540)8 to binary representation

Example
Convert (345)8 to binary representation

5 + 32 + 192 = 229

(345)8 = (229)10

Quotient Remainder

229/2 114 1

114/2 57 0

57/2 28 1

28/2 14 0

14/2 7 0

7/2 3 1

3/2 1 1

1/2 0 1

(345)8 = (229)10 = (11100101)2

5 *
8

0
=5*1=54 *

8
1
=4*8=323 *

8
2
=3*64=192

3 4 5

Lovely Professional University12

Unit 01: Binary Systems

Notes

0 + 32 + 320 = 352

(540)8 = (352)10

Quotient Remainder

352/2 176 0

176/2 88 0

88/2 44 0

44/2 22 0

22/2 11 0

11/2 5 1

5/2 2 1

2/2 1 0

1/2 0 1

(540)8 = (352)10 = (101100000)2

Octal to Hexadecimal Conversion

The procedure for converting octal to hexadecimal is as follows:

Step 1: Multiply each bit with the power of 8 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 16.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

0 *
8

0
=0*1=04 *

8
1
=4*8=325 *

8
2
=5*64=320

5 4 0

Lovely Professional University 13

Computer System Architecture

Notes

Example

Convert (11177)8 to hexadecimal

representation

7 + 56 + 64 + 512 + 4096 = 4735

(11177)8 = (4735)10

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(11177)8 = (4735)10 = (127F) 16

Example

Convert (4321)8 to hexadecimal representation

1 + 16 + 192 + 2048 = 2257

(4321)8 = (2257)10

Quotient Remainder

2257/16 141 1

141/16 8 13 (13=D)

8/16 0 8

(4321)8 = (2257)10 = (8D1)16

2*8
1
=2*8=16

3*8
2
=3*64=19

24*8
3
=4*512=204

8

4 3 2 1

1*8
0
=1*1=1

7 * 81 =
7*8=561 * 82 =
1*64=641 * 83 =
1*512=5121 * 84 =
1*4096=4096

1 1 1 7 7

7 * 80 =
7*1=7

Computer System Architecture

Notes

Example

Convert (11177)8 to hexadecimal

representation

7 + 56 + 64 + 512 + 4096 = 4735

(11177)8 = (4735)10

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(11177)8 = (4735)10 = (127F) 16

Example

Convert (4321)8 to hexadecimal representation

1 + 16 + 192 + 2048 = 2257

(4321)8 = (2257)10

Quotient Remainder

2257/16 141 1

141/16 8 13 (13=D)

8/16 0 8

(4321)8 = (2257)10 = (8D1)16

2*8
1
=2*8=16

3*8
2
=3*64=19

24*8
3
=4*512=204

8

4 3 2 1

1*8
0
=1*1=1

7 * 81 =
7*8=561 * 82 =
1*64=641 * 83 =
1*512=5121 * 84 =
1*4096=4096

1 1 1 7 7

7 * 80 =
7*1=7

Computer System Architecture

Notes

Example

Convert (11177)8 to hexadecimal

representation

7 + 56 + 64 + 512 + 4096 = 4735

(11177)8 = (4735)10

Quotient Remainder

4735/16 295 15 (F)

295/16 18 7

18/16 1 2

1/16 0 1

(11177)8 = (4735)10 = (127F) 16

Example

Convert (4321)8 to hexadecimal representation

1 + 16 + 192 + 2048 = 2257

(4321)8 = (2257)10

Quotient Remainder

2257/16 141 1

141/16 8 13 (13=D)

8/16 0 8

(4321)8 = (2257)10 = (8D1)16

2*8
1
=2*8=16

3*8
2
=3*64=19

24*8
3
=4*512=204

8

4 3 2 1

1*8
0
=1*1=1

7 * 81 =
7*8=561 * 82 =
1*64=641 * 83 =
1*512=5121 * 84 =
1*4096=4096

1 1 1 7 7

7 * 80 =
7*1=7

Lovely Professional University14

Unit 01: Binary Systems

Notes

Hexadecimal to Decimal Conversion

The procedure for converting hexadecimal to decimal conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (7DE)16 to decimal representation

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Example
Convert (1D9)16 to decimal representation

9 + 208 + 256 = 473

(1D9)16 = (473)10

Hexadecimal to Binary Conversion

The procedure for converting from hexadecimal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

9*160=
9*1=913*16

1
=1

3*16=20
8
1*162=1*2
56=256

1 D 9

14*16
0

=14*1=
14
13*16

1
=1

3*16=20
8
7*16

2
=7*2

56=1792

7 D E

Unit 01: Binary Systems

Notes

Hexadecimal to Decimal Conversion

The procedure for converting hexadecimal to decimal conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (7DE)16 to decimal representation

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Example
Convert (1D9)16 to decimal representation

9 + 208 + 256 = 473

(1D9)16 = (473)10

Hexadecimal to Binary Conversion

The procedure for converting from hexadecimal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

9*160=
9*1=913*16

1
=1

3*16=20
8
1*162=1*2
56=256

1 D 9

14*16
0

=14*1=
14
13*16

1
=1

3*16=20
8
7*16

2
=7*2

56=1792

7 D E

Unit 01: Binary Systems

Notes

Hexadecimal to Decimal Conversion

The procedure for converting hexadecimal to decimal conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Example
Convert (7DE)16 to decimal representation

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Example
Convert (1D9)16 to decimal representation

9 + 208 + 256 = 473

(1D9)16 = (473)10

Hexadecimal to Binary Conversion

The procedure for converting from hexadecimal to binary conversion is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 2.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

9*160=
9*1=913*16

1
=1

3*16=20
8
1*162=1*2
56=256

1 D 9

14*16
0

=14*1=
14
13*16

1
=1

3*16=20
8
7*16

2
=7*2

56=1792

7 D E

Lovely Professional University 15

Computer System Architecture

Notes

Example
Convert (7DE)16 to binary representation.

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Quotient Remainder

2014/2 1007 0

1007/2 503 1

503/2 251 1

251/2 125 1

125/2 62 1

62/2 31 0

31/2 15 1

15/2 7 1

7/2 3 1

3/2 1 1

1/2 0 1

(7DE)16 = (2014)10 = (11111011110)2

Hexadecimal to Octal

The procedure for converting from hexadecimal to octal is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (1BC)16 to octal representation

14*16
0

=14*1=
14

13*16
1
=1

3*16=20
8

7*16
2
=7*2

56=1792

7 D E

Computer System Architecture

Notes

Example
Convert (7DE)16 to binary representation.

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Quotient Remainder

2014/2 1007 0

1007/2 503 1

503/2 251 1

251/2 125 1

125/2 62 1

62/2 31 0

31/2 15 1

15/2 7 1

7/2 3 1

3/2 1 1

1/2 0 1

(7DE)16 = (2014)10 = (11111011110)2

Hexadecimal to Octal

The procedure for converting from hexadecimal to octal is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (1BC)16 to octal representation

14*16
0

=14*1=
14

13*16
1
=1

3*16=20
8

7*16
2
=7*2

56=1792

7 D E

Computer System Architecture

Notes

Example
Convert (7DE)16 to binary representation.

14 + 208 + 1792 = 2014

(7DE)16 = (2014)10

Quotient Remainder

2014/2 1007 0

1007/2 503 1

503/2 251 1

251/2 125 1

125/2 62 1

62/2 31 0

31/2 15 1

15/2 7 1

7/2 3 1

3/2 1 1

1/2 0 1

(7DE)16 = (2014)10 = (11111011110)2

Hexadecimal to Octal

The procedure for converting from hexadecimal to octal is as follows:

Step 1: Multiply each bit with the power of 16 (from LSB to MSB) (0 to n).

Step 2: Add all the product values to get the number.

Step 3: Divide the number by 8.

Step 4: Get the integer quotient for the next iteration.

Step 5: Get the remainder for the binary digit.

Step 6: Repeat the steps until the quotient becomes 0.

Example
Convert (1BC)16 to octal representation

14*16
0

=14*1=
14

13*16
1
=1

3*16=20
8

7*16
2
=7*2

56=1792

7 D E

Lovely Professional University16

Unit 01: Binary Systems

Notes

12 + 176 + 256 = 444

(1BC)16 = (444)10

Quotient Remainder

444/8 55 4

55/8 6 7

6/8 0 6

(1BC)16 = (444)10 = (674)8

Example
Convert (8D1)16 to octal representation

1 + 208 + 2048 = 2272

(8D1)16 = (2272)10

Quotient Remainder

2257/8 282 1

282/8 35 2

35/8 4 3

4/8 0 4

(8D1)16 = (2272)10 = (4321)8

1*16
0
=1

*1=113*16
1
=1

3*16=2088*16
2
=8*25

6=2048

8 D 1

12*16
0

=12*1=
12
11*16

1
=1

1*16=1761*16
2
=1*2

56=256

1 B C

Unit 01: Binary Systems

Notes

12 + 176 + 256 = 444

(1BC)16 = (444)10

Quotient Remainder

444/8 55 4

55/8 6 7

6/8 0 6

(1BC)16 = (444)10 = (674)8

Example
Convert (8D1)16 to octal representation

1 + 208 + 2048 = 2272

(8D1)16 = (2272)10

Quotient Remainder

2257/8 282 1

282/8 35 2

35/8 4 3

4/8 0 4

(8D1)16 = (2272)10 = (4321)8

1*16
0
=1

*1=113*16
1
=1

3*16=2088*16
2
=8*25

6=2048

8 D 1

12*16
0

=12*1=
12
11*16

1
=1

1*16=1761*16
2
=1*2

56=256

1 B C

Unit 01: Binary Systems

Notes

12 + 176 + 256 = 444

(1BC)16 = (444)10

Quotient Remainder

444/8 55 4

55/8 6 7

6/8 0 6

(1BC)16 = (444)10 = (674)8

Example
Convert (8D1)16 to octal representation

1 + 208 + 2048 = 2272

(8D1)16 = (2272)10

Quotient Remainder

2257/8 282 1

282/8 35 2

35/8 4 3

4/8 0 4

(8D1)16 = (2272)10 = (4321)8

1*16
0
=1

*1=113*16
1
=1

3*16=2088*16
2
=8*25

6=2048

8 D 1

12*16
0

=12*1=
12
11*16

1
=1

1*16=1761*16
2
=1*2

56=256

1 B C

Lovely Professional University 17

Computer System Architecture

Notes

Decimal Binary Octal Hexadecimal

0 00 0 0

1 01 1 1

2 10 2 2

3 11 3 3

4 100 4 4

5 101 5 5

6 110 6 6

7 111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

1.6 Complements
Complement is obtained by interchanging 1’s and 0’s in the values of F. The logic behind the
complement is: When you are taking the complement, just involve the elements which are not
present in the set. Like in Boolean algebra, the values can be 0 or 1. So, U = {0, 1}. If A= {0}, then the
complement will be A’ = {1} and if A= {1}, then the complement will be A’ = {0}.

U ={a, e, i, o, u}.

A={a, e, i}.

Complement of A, i.e., A’ = U-A = {o, u}.

Types of Complements

There are two types of complements for each r-base system:

• Diminished radix complement ((r-1)’s complement)

• Radix complement (r’s complement)

When we substitute the value of base here, these are referred to as:

Lovely Professional University18

Unit 01: Binary Systems

Notes

• 2’s complement and 1’s complement (For binary numbers).

• 10’s complement and 9’s complement (For decimal numbers).

Diminished Radix Complement

Given a number Nin base r havingn digits, the complement of N = (rn-1)-N

For decimal numbers r=10 and (r-1)=9,So, 9’s complement of number is N = (10n-1)-N

10n represents a number that consists of a single 1 followed by n 0s. 10n -1 is a number represented
by n 9s.

Example

If n=4,

104 =10,000

10,000-1=9,999.

For binary numbers r=2 and (r-1)=1, So, 2’s complement of a number N= (2n – 1)-N.

2n represents a binary number that consists of a 1 followed by n 0s. 2n -1 is a number represented
by n 1s

Example

If n=4

24 =(10000)2

24-1=(1111)2.

Example
Find the 9’s complement of 546700

999999-546700=453299.

Example
Find the 9’s complement of 012938

999999-012938=987061.

Example
Find the 1’s complement of 1011000

1111111-1011000=0100111.

Example
Find the 1’s complement of 0101101

1111111-0101101=1010010.

Radix Complement

The r’s complement of n - digit number N in base r is defined as

Rn-N for N≠0

0 for N=0

The r’s complement can also be obtained by adding 1 to the (r-1)’s complement since

Rn – N = [(rn- 1) - N] + 1

Unit 01: Binary Systems

Notes

• 2’s complement and 1’s complement (For binary numbers).

• 10’s complement and 9’s complement (For decimal numbers).

Diminished Radix Complement

Given a number Nin base r havingn digits, the complement of N = (rn-1)-N

For decimal numbers r=10 and (r-1)=9,So, 9’s complement of number is N = (10n-1)-N

10n represents a number that consists of a single 1 followed by n 0s. 10n -1 is a number represented
by n 9s.

Example

If n=4,

104 =10,000

10,000-1=9,999.

For binary numbers r=2 and (r-1)=1, So, 2’s complement of a number N= (2n – 1)-N.

2n represents a binary number that consists of a 1 followed by n 0s. 2n -1 is a number represented
by n 1s

Example

If n=4

24 =(10000)2

24-1=(1111)2.

Example
Find the 9’s complement of 546700

999999-546700=453299.

Example
Find the 9’s complement of 012938

999999-012938=987061.

Example
Find the 1’s complement of 1011000

1111111-1011000=0100111.

Example
Find the 1’s complement of 0101101

1111111-0101101=1010010.

Radix Complement

The r’s complement of n - digit number N in base r is defined as

Rn-N for N≠0

0 for N=0

The r’s complement can also be obtained by adding 1 to the (r-1)’s complement since

Rn – N = [(rn- 1) - N] + 1

Unit 01: Binary Systems

Notes

• 2’s complement and 1’s complement (For binary numbers).

• 10’s complement and 9’s complement (For decimal numbers).

Diminished Radix Complement

Given a number Nin base r havingn digits, the complement of N = (rn-1)-N

For decimal numbers r=10 and (r-1)=9,So, 9’s complement of number is N = (10n-1)-N

10n represents a number that consists of a single 1 followed by n 0s. 10n -1 is a number represented
by n 9s.

Example

If n=4,

104 =10,000

10,000-1=9,999.

For binary numbers r=2 and (r-1)=1, So, 2’s complement of a number N= (2n – 1)-N.

2n represents a binary number that consists of a 1 followed by n 0s. 2n -1 is a number represented
by n 1s

Example

If n=4

24 =(10000)2

24-1=(1111)2.

Example
Find the 9’s complement of 546700

999999-546700=453299.

Example
Find the 9’s complement of 012938

999999-012938=987061.

Example
Find the 1’s complement of 1011000

1111111-1011000=0100111.

Example
Find the 1’s complement of 0101101

1111111-0101101=1010010.

Radix Complement

The r’s complement of n - digit number N in base r is defined as

Rn-N for N≠0

0 for N=0

The r’s complement can also be obtained by adding 1 to the (r-1)’s complement since

Rn – N = [(rn- 1) - N] + 1

Lovely Professional University 19

Computer System Architecture

Notes

Example

Find 10’s complement of decimal 2389

It is obtained by adding 1 to its 9’s complement

7610+1=7611.

Example

Find 2’s complement of binary 101100

It is obtained by adding 1 to its 1’s complement

010011+1=010100.

Example
Find the 10’s complement of 012398

9’s complement - 999999-012398=987601

10’s complement – 987601+1=987602.

Example
Find the 10’s complement of 246700

9’s complement – 999999-246700=753299

10’s complement – 753299+1=753300.

Example
Find the 2’s complement of 1101100

1’s complement – 1111111-1101100=0010011

2’s complement – 0010011+1=0010100.

Example
Find the 2’s complement of 0110111

1’s complement – 1111111-0110111=1001000

2’s complement – 1001000+1=1001001.

Subtraction of Complements:

The simple operation subtraction can be easily done using the complements.

Example
Using 10’s complement, subtract 72532-3250

M= 72532

10’s complement of N= 96750

Sum=169282

So, discard end carry here, answer=69282

Example
Using 10’s complement, subtract 3250-72532

M=03250

10’s complement of N=27468

Sum=30718

There is no end carry. So, answer=-(10’s complement of 30718)=-69282

Computer System Architecture

Notes

Example

Find 10’s complement of decimal 2389

It is obtained by adding 1 to its 9’s complement

7610+1=7611.

Example

Find 2’s complement of binary 101100

It is obtained by adding 1 to its 1’s complement

010011+1=010100.

Example
Find the 10’s complement of 012398

9’s complement - 999999-012398=987601

10’s complement – 987601+1=987602.

Example
Find the 10’s complement of 246700

9’s complement – 999999-246700=753299

10’s complement – 753299+1=753300.

Example
Find the 2’s complement of 1101100

1’s complement – 1111111-1101100=0010011

2’s complement – 0010011+1=0010100.

Example
Find the 2’s complement of 0110111

1’s complement – 1111111-0110111=1001000

2’s complement – 1001000+1=1001001.

Subtraction of Complements:

The simple operation subtraction can be easily done using the complements.

Example
Using 10’s complement, subtract 72532-3250

M= 72532

10’s complement of N= 96750

Sum=169282

So, discard end carry here, answer=69282

Example
Using 10’s complement, subtract 3250-72532

M=03250

10’s complement of N=27468

Sum=30718

There is no end carry. So, answer=-(10’s complement of 30718)=-69282

Computer System Architecture

Notes

Example

Find 10’s complement of decimal 2389

It is obtained by adding 1 to its 9’s complement

7610+1=7611.

Example

Find 2’s complement of binary 101100

It is obtained by adding 1 to its 1’s complement

010011+1=010100.

Example
Find the 10’s complement of 012398

9’s complement - 999999-012398=987601

10’s complement – 987601+1=987602.

Example
Find the 10’s complement of 246700

9’s complement – 999999-246700=753299

10’s complement – 753299+1=753300.

Example
Find the 2’s complement of 1101100

1’s complement – 1111111-1101100=0010011

2’s complement – 0010011+1=0010100.

Example
Find the 2’s complement of 0110111

1’s complement – 1111111-0110111=1001000

2’s complement – 1001000+1=1001001.

Subtraction of Complements:

The simple operation subtraction can be easily done using the complements.

Example
Using 10’s complement, subtract 72532-3250

M= 72532

10’s complement of N= 96750

Sum=169282

So, discard end carry here, answer=69282

Example
Using 10’s complement, subtract 3250-72532

M=03250

10’s complement of N=27468

Sum=30718

There is no end carry. So, answer=-(10’s complement of 30718)=-69282

Lovely Professional University20

Unit 01: Binary Systems

Notes

Example
Using 2’s complement, subtract 1010100-1000011

M=1010100

2’s complement of N=0111101

Sum=10010001

So, discard the end carry, answer=0010001

Example
Using 2’s complement, subtract 1000011-1010100

M=1000011

2’s complement of N=0101100

Sum=1101111

There is no end carry, aanswer=-(2’s complement of 1101111)=-0010001

1.7 Fixed-Point and Floating-Point Representation
Positive integers, including 0, can be represented as unsigned numbers. However, to represent
negative integers, we need a notation for negative values. In computer systems, the hardware
is limited, so everything must be represented using 1’s and 0’s, including the sign of a number.
So, it will be better if we represent the sign in the leftmost position bit of the number. The
convention is to make the sign bit 0 for positive and 1 for negative.

In addition to the sign, a number may have a decimal (or binary) point. The position of binary
point be needed to represent the fractions, integers, or mixed-integer fraction numbers.There
are two ways to specify the position of a binary point in a register:

A) By giving it a fixed position

B) By employing a floating-point representation

Fixed-Point Representation:

This method assumes that the binary point is always fixed in one position. The two positions
most widely used are:

A) The binary point in the extreme left of the register to make the stored number a fraction

B) The binary point in the extreme right of the register to make the stored number an
integer.

In either case, the binary point is not present, but its presence is assumed from the fact that
number stored in the register is treated as a fraction or an integer.When the integer binary
number is positive, the sign is represented by 0 and the magnitude by a positive binary
number.When the number is negative, the sign is represented by 1 but the rest of the number
may be represented in one of three possible ways:

A) Signed magnitude representation

B) Signed 1’s complement representation

C) Signed 2’s complement representation

Example
Consider the signed number 14 stored in a 14-bit register

+14 is represented by a sign bit of 0 in the leftmost position followed by the
binary equivalent of 14: 00001110. There is only one way to represent the
positive signed numbers.

-14 can be represented by three ways with eight bits:

A) Signed magnitude representation : 1 0001110

Unit 01: Binary Systems

Notes

Example
Using 2’s complement, subtract 1010100-1000011

M=1010100

2’s complement of N=0111101

Sum=10010001

So, discard the end carry, answer=0010001

Example
Using 2’s complement, subtract 1000011-1010100

M=1000011

2’s complement of N=0101100

Sum=1101111

There is no end carry, aanswer=-(2’s complement of 1101111)=-0010001

1.7 Fixed-Point and Floating-Point Representation
Positive integers, including 0, can be represented as unsigned numbers. However, to represent
negative integers, we need a notation for negative values. In computer systems, the hardware
is limited, so everything must be represented using 1’s and 0’s, including the sign of a number.
So, it will be better if we represent the sign in the leftmost position bit of the number. The
convention is to make the sign bit 0 for positive and 1 for negative.

In addition to the sign, a number may have a decimal (or binary) point. The position of binary
point be needed to represent the fractions, integers, or mixed-integer fraction numbers.There
are two ways to specify the position of a binary point in a register:

A) By giving it a fixed position

B) By employing a floating-point representation

Fixed-Point Representation:

This method assumes that the binary point is always fixed in one position. The two positions
most widely used are:

A) The binary point in the extreme left of the register to make the stored number a fraction

B) The binary point in the extreme right of the register to make the stored number an
integer.

In either case, the binary point is not present, but its presence is assumed from the fact that
number stored in the register is treated as a fraction or an integer.When the integer binary
number is positive, the sign is represented by 0 and the magnitude by a positive binary
number.When the number is negative, the sign is represented by 1 but the rest of the number
may be represented in one of three possible ways:

A) Signed magnitude representation

B) Signed 1’s complement representation

C) Signed 2’s complement representation

Example
Consider the signed number 14 stored in a 14-bit register

+14 is represented by a sign bit of 0 in the leftmost position followed by the
binary equivalent of 14: 00001110. There is only one way to represent the
positive signed numbers.

-14 can be represented by three ways with eight bits:

A) Signed magnitude representation : 1 0001110

Unit 01: Binary Systems

Notes

Example
Using 2’s complement, subtract 1010100-1000011

M=1010100

2’s complement of N=0111101

Sum=10010001

So, discard the end carry, answer=0010001

Example
Using 2’s complement, subtract 1000011-1010100

M=1000011

2’s complement of N=0101100

Sum=1101111

There is no end carry, aanswer=-(2’s complement of 1101111)=-0010001

1.7 Fixed-Point and Floating-Point Representation
Positive integers, including 0, can be represented as unsigned numbers. However, to represent
negative integers, we need a notation for negative values. In computer systems, the hardware
is limited, so everything must be represented using 1’s and 0’s, including the sign of a number.
So, it will be better if we represent the sign in the leftmost position bit of the number. The
convention is to make the sign bit 0 for positive and 1 for negative.

In addition to the sign, a number may have a decimal (or binary) point. The position of binary
point be needed to represent the fractions, integers, or mixed-integer fraction numbers.There
are two ways to specify the position of a binary point in a register:

A) By giving it a fixed position

B) By employing a floating-point representation

Fixed-Point Representation:

This method assumes that the binary point is always fixed in one position. The two positions
most widely used are:

A) The binary point in the extreme left of the register to make the stored number a fraction

B) The binary point in the extreme right of the register to make the stored number an
integer.

In either case, the binary point is not present, but its presence is assumed from the fact that
number stored in the register is treated as a fraction or an integer.When the integer binary
number is positive, the sign is represented by 0 and the magnitude by a positive binary
number.When the number is negative, the sign is represented by 1 but the rest of the number
may be represented in one of three possible ways:

A) Signed magnitude representation

B) Signed 1’s complement representation

C) Signed 2’s complement representation

Example
Consider the signed number 14 stored in a 14-bit register

+14 is represented by a sign bit of 0 in the leftmost position followed by the
binary equivalent of 14: 00001110. There is only one way to represent the
positive signed numbers.

-14 can be represented by three ways with eight bits:

A) Signed magnitude representation : 1 0001110

Lovely Professional University 21

Computer System Architecture

Notes

B) Signed 1’s complement representation: 1 1110001

C) Signed 2’s complement representation: 1 1110010

Floating-Point Representation

In this method, it uses a second register to store a number that designates the position of the
decimal point in the first register. The floating point representation of a number has two parts:

A) The first part represents a signed, fixed point number called the mantissa.

B) The second part contains the position of the decimal (or binary) point is called the
exponent.

Example
The fixed point mantissa may be a fraction or an integer. For example: the
decimal number +6132.789 is represented in floating point with a fraction
and an exponent as:

fraction +0.6132789

exponent +04

The value of the exponent indicates the actual position of the decimal point.
This can also be represented as +0.6132789 * 104

Summary

 The number system is used to represent any number in the world.
 The decimal number system can be easily understood by human.
 But the digital computer systems can understand only binary number systems.
 Binary numbers are used to represent 0s and 1s information in the computers.
 The other systems, i.e., octal and hexadecimal number systems are compact representation

of binary number systems.
 Fixed-point numbers are used to represent factorial numbers.
 Floating-point numbers are used to represent a decimal point which is multiplied by a

base value and it is scaled up with some exponent value.
 There are three ways to represent the magnitude of the signed binary numbers namely,

the sign and magnitude representing, the signed and 1’s complement representation, and
the signed and 2’s complement representation.

Keywords
Number System: It is a system of naming the numbers.
Base: The base of a number is the number of digits or the combination of digits that a system of
counting uses to represent the numbers.
Conversion: The conversion of a number from one number system to another number system.
1’s Complement: It is a method for the representation of negative numbers in the computers.
2’s Complement: It is a method for the representation of negative binary numbers in computers.

SelfAssessment
1. What is the weight associated with digit 4 in 4531?
A. 102

Computer System Architecture

Notes

B) Signed 1’s complement representation: 1 1110001

C) Signed 2’s complement representation: 1 1110010

Floating-Point Representation

In this method, it uses a second register to store a number that designates the position of the
decimal point in the first register. The floating point representation of a number has two parts:

A) The first part represents a signed, fixed point number called the mantissa.

B) The second part contains the position of the decimal (or binary) point is called the
exponent.

Example
The fixed point mantissa may be a fraction or an integer. For example: the
decimal number +6132.789 is represented in floating point with a fraction
and an exponent as:

fraction +0.6132789

exponent +04

The value of the exponent indicates the actual position of the decimal point.
This can also be represented as +0.6132789 * 104

Summary

 The number system is used to represent any number in the world.
 The decimal number system can be easily understood by human.
 But the digital computer systems can understand only binary number systems.
 Binary numbers are used to represent 0s and 1s information in the computers.
 The other systems, i.e., octal and hexadecimal number systems are compact representation

of binary number systems.
 Fixed-point numbers are used to represent factorial numbers.
 Floating-point numbers are used to represent a decimal point which is multiplied by a

base value and it is scaled up with some exponent value.
 There are three ways to represent the magnitude of the signed binary numbers namely,

the sign and magnitude representing, the signed and 1’s complement representation, and
the signed and 2’s complement representation.

Keywords
Number System: It is a system of naming the numbers.
Base: The base of a number is the number of digits or the combination of digits that a system of
counting uses to represent the numbers.
Conversion: The conversion of a number from one number system to another number system.
1’s Complement: It is a method for the representation of negative numbers in the computers.
2’s Complement: It is a method for the representation of negative binary numbers in computers.

SelfAssessment
1. What is the weight associated with digit 4 in 4531?
A. 102

Computer System Architecture

Notes

B) Signed 1’s complement representation: 1 1110001

C) Signed 2’s complement representation: 1 1110010

Floating-Point Representation

In this method, it uses a second register to store a number that designates the position of the
decimal point in the first register. The floating point representation of a number has two parts:

A) The first part represents a signed, fixed point number called the mantissa.

B) The second part contains the position of the decimal (or binary) point is called the
exponent.

Example
The fixed point mantissa may be a fraction or an integer. For example: the
decimal number +6132.789 is represented in floating point with a fraction
and an exponent as:

fraction +0.6132789

exponent +04

The value of the exponent indicates the actual position of the decimal point.
This can also be represented as +0.6132789 * 104

Summary

 The number system is used to represent any number in the world.
 The decimal number system can be easily understood by human.
 But the digital computer systems can understand only binary number systems.
 Binary numbers are used to represent 0s and 1s information in the computers.
 The other systems, i.e., octal and hexadecimal number systems are compact representation

of binary number systems.
 Fixed-point numbers are used to represent factorial numbers.
 Floating-point numbers are used to represent a decimal point which is multiplied by a

base value and it is scaled up with some exponent value.
 There are three ways to represent the magnitude of the signed binary numbers namely,

the sign and magnitude representing, the signed and 1’s complement representation, and
the signed and 2’s complement representation.

Keywords
Number System: It is a system of naming the numbers.
Base: The base of a number is the number of digits or the combination of digits that a system of
counting uses to represent the numbers.
Conversion: The conversion of a number from one number system to another number system.
1’s Complement: It is a method for the representation of negative numbers in the computers.
2’s Complement: It is a method for the representation of negative binary numbers in computers.

SelfAssessment
1. What is the weight associated with digit 4 in 4531?
A. 102

Lovely Professional University22

Unit 01: Binary Systems

Notes

B. 103

C. 104

D. 105

2. A unit of 8 bits is known as
A. A byte
B. A word
C. A nibble
D. A sentence

3. The hexadecimal number A is equivalent to ________ octal number.
A. 9
B. 10
C. 11
D. 12

4. What is the compact way of call this whole unit of bits - 10101111?
A. A byte
B. A word
C. A nibble
D. None of these

5. What is MSB in 10101110?
A. 1
B. 0

6. Convert the number (74)10 into binary representation.
A. 0101001
B. 1001010
C. 1101010
D. 1100110

7. Convert the number (537)10 to octal representation
A. 1141
B. 1411

8. Convert the number (11001)2to decimal representation
A. 48
B. 49

9. Convert the number (436)8to binary representation
A. 100100010
B. 110110010
C. 10001001
D. 101000100

10. Convert the number (C76E)16 to octal representation
A. 51040
B. 51054

11. In which type of complement, we convert 0 to 1 or 1 to 0?
A. 1’s complement
B. 2’s complement
C. 3’s complement
D. None of these

12. What is the 9’s complement of 189023?
A. 810976
B. 023189
C. 180023
D. 189024

Lovely Professional University 23

Computer System Architecture

Notes

13. How can we represent -15 using signed 1’s complement representation?
A. 111101001
B. 100010111
C. 111101000
D. None of these

14. In fixed-point representation of numbers, the binary point is always fixed in which
position.

A. Extreme left
B. Extreme right
C. Either Extreme Left or Extreme Right
D. None of the above

15. When the sign is represented by 0, then the integer binary number is
A. Positive
B. Negative
C. 0
D. Any of the above

Answers for SelfAssessment

1. B 2. A 3. D 4. A 5. A

6. B 7. A 8. B 9. A 10. B

11. A 12. A 13. C 14. C 15. A

Review Questions
Q 1: Write the procedure for finding out the value of each digit in a number

Q 2: What are the different steps involved in converting a binary number to other number systems?

Q 3: What to find out the 9’s complement and 10’s complement of a decimal number?

Q 4: What are the two ways to specify the position of a binary point in a register? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

M. Chandni, Lecture Notes on Digital Circuits and Systems, Chadalawada Ramanamma
Engineering College, Department of Electrical and Electronics and Engineering, 2018-2019.

Web Links

1. https://www.tutorialspoint.com/computer_fundamentals/computer_number_system.
htm

2. https://www.splashlearn.com/math-vocabulary/number-sense/number-system

3. https://www.vedantu.com/maths/number-system

4. https://www.geeksforgeeks.org/number-system-in-maths/

Computer System Architecture

Notes

13. How can we represent -15 using signed 1’s complement representation?
A. 111101001
B. 100010111
C. 111101000
D. None of these

14. In fixed-point representation of numbers, the binary point is always fixed in which
position.

A. Extreme left
B. Extreme right
C. Either Extreme Left or Extreme Right
D. None of the above

15. When the sign is represented by 0, then the integer binary number is
A. Positive
B. Negative
C. 0
D. Any of the above

Answers for SelfAssessment

1. B 2. A 3. D 4. A 5. A

6. B 7. A 8. B 9. A 10. B

11. A 12. A 13. C 14. C 15. A

Review Questions
Q 1: Write the procedure for finding out the value of each digit in a number

Q 2: What are the different steps involved in converting a binary number to other number systems?

Q 3: What to find out the 9’s complement and 10’s complement of a decimal number?

Q 4: What are the two ways to specify the position of a binary point in a register? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

M. Chandni, Lecture Notes on Digital Circuits and Systems, Chadalawada Ramanamma
Engineering College, Department of Electrical and Electronics and Engineering, 2018-2019.

Web Links

1. https://www.tutorialspoint.com/computer_fundamentals/computer_number_system.
htm

2. https://www.splashlearn.com/math-vocabulary/number-sense/number-system

3. https://www.vedantu.com/maths/number-system

4. https://www.geeksforgeeks.org/number-system-in-maths/

Computer System Architecture

Notes

13. How can we represent -15 using signed 1’s complement representation?
A. 111101001
B. 100010111
C. 111101000
D. None of these

14. In fixed-point representation of numbers, the binary point is always fixed in which
position.

A. Extreme left
B. Extreme right
C. Either Extreme Left or Extreme Right
D. None of the above

15. When the sign is represented by 0, then the integer binary number is
A. Positive
B. Negative
C. 0
D. Any of the above

Answers for SelfAssessment

1. B 2. A 3. D 4. A 5. A

6. B 7. A 8. B 9. A 10. B

11. A 12. A 13. C 14. C 15. A

Review Questions
Q 1: Write the procedure for finding out the value of each digit in a number

Q 2: What are the different steps involved in converting a binary number to other number systems?

Q 3: What to find out the 9’s complement and 10’s complement of a decimal number?

Q 4: What are the two ways to specify the position of a binary point in a register? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

M. Chandni, Lecture Notes on Digital Circuits and Systems, Chadalawada Ramanamma
Engineering College, Department of Electrical and Electronics and Engineering, 2018-2019.

Web Links

1. https://www.tutorialspoint.com/computer_fundamentals/computer_number_system.
htm

2. https://www.splashlearn.com/math-vocabulary/number-sense/number-system

3. https://www.vedantu.com/maths/number-system

4. https://www.geeksforgeeks.org/number-system-in-maths/

Lovely Professional University24

Unit 02: Boolean Algebra

Notes

Unit 02: Boolean Algebra

CONTENTS

Objectives

Introduction

2.1 Postulates of Algebraic Structures

2.2 Basic Theorems and Properties

2.3 De-Morgan’s Theorem

2.4 Operator Precedence

2.5 Algebraic Manipulation

2.6 Sum of Products

2.7 Product of Sums

2.8 K-Map SOP Minimization

2.9 K-Map POS Minimization

2.10 Determination of Prime Implicants

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 Learn about the basic and axiomatic definitions of Boolean algebra
 Use basic theorems and properties in Boolean algebra
 Simplify the Boolean functions
 Understand the standard forms of an expression

Introduction
Boolean algebra is the branch of algebra in which the values of the variables are the truth values,
i.e., true and false, usually denoted by 1 and 0 respectively. It is like any other mathematical system,
which may be defined with a set of elements, a set of operators and a number of postulates.

A set of elements is any collection of objects having a common property. If S is a set, x and y are
certain objects, then x ∈ S denotes that x is a member of set S and y ∉ S denotes that y is not an
element of S.Consider the relation a*b=c, we say that * is a binary operator if it specifies a rule for
finding c from a pair (a,b) and also if a,b,c∈ S. However, * is not a binary operator of a,b ∈ S but c ∉
S.

2.1 Postulates of Algebraic Structures
The postulates of a mathematical system form the basic assumptions from which it is possible
to deduce the rules, theorems and properties of the system.The most common postulates used
to formulate various algebraic structures are:

Lovely Professional University 25

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

1) Closure

2) Associative law

3) Commutative law

4) Identity element

5) Inverse

6) Distributive law

7) Double inversion law

8) Annulment law

9) Idempotent law

10) Complement law

11) Absorptive law

Closure

A set is closed with respect to a binary operator if, for every pair of elements of S, the binary
operator specifies a rule for obtaining a unique element of S.For example: The set of natural
numbers N= {1,2,3,4........} is closed with respect to the binary operator + by the rules of arithmetic
addition, since for any a,b∈N we obtain a unique c∈N by the operation of a+b=c. But the set of
natural numbers is not closed with respect to binary operator minus (-) by the rules of arithmetic
subtraction because 2-3=-1 and 2,3∈N while (-1) ∉ N.

Associative Law

This law allows the removal of brackets from an expression and regrouping of the variables.

 A + (B + C) = (A + B) + C = A + B + C (OR Associate Law)
 A(B.C) = (A.B) C = A .B. C (AND Associate Law)

Commutative Law

The order of application of two separate terms is not important

 A . B = B . A The order in which two variables are AND’ed makes no difference
 A + B = B + A The order in which two variables are OR’ed makes no difference

Identity element

A term OR´ed with a “0” or AND´ed with a “1” will always equal that term

 A + 0 = A A variable OR’ed with 0 is always equal to the variable
 A . 1 = A A variable AND’ed with 1 is always equal to the variable

Distributive Law

This law permits the multiplying or factoring out of an expression.

 A(B + C) = A.B + A.C (OR Distributive Law)
 A + (B.C) = (A + B).(A + C) (AND Distributive Law)

Double Inversion Law

A term that is inverted twice is equal to the original term

• (A’)’ = A A double complement of a variable is always equal to the variable

Lovely Professional University26

Unit 02: Boolean Algebra

Notes

Annulment law

A term AND´ed with a “0” equals 0 or OR´ed with a “1” will equal 1

• A . 0 = 0 A variable AND’ed with 0 is always equal to 0

• A + 1 = 1 A variable OR’ed with 1 is always equal to 1

Idempotent law

An input that is AND´ed or OR´ed with itself is equal to that input

• A + A = A A variable OR’ed with itself is always equal to the variable

• A . A = A A variable AND’ed with itself is always equal to the variable

Complement law

A term AND´ed with its complement equals “0” and a term OR´ed with its complement equals “1”

• A . A = 0 A variable AND’ed with its complement is always equal to 0

• A + A = 1 A variable OR’ed with its complement is always equal to 1

Absorptive law

This law enables a reduction in a complicated expression to a simpler one by absorbing like terms.

• A + (A.B) = A (OR Absorption Law)

• A(A + B) = A (AND Absorption Law)

Axiomatic Definition of Boolean algebra

For the treatment of logic, the Boolean Algebraic system was developed in 1854. The switching
algebra which is a two-valued Boolean algebra was developed in 1983. So, this is an algebraic
structure which uses a set of elements B having two binary operators + and . has provided a
number of postulates

1) Closure w.r.t. +
2) Closure w.r.t. .
3) x+0 = 0+x = 0
4) x+y = y+x
5) x.(y+z) =x.y+x.z
6) x+(y.z)=(x+y)(x+z)
7) x+x’=1
8) x.x’=0

2.2 Basic Theorems and Properties
Duality principle

If a statement is true, then also its dual statement is true. We can obtain the dual statement by
changing + for., . for +, 1 for 0 and 0 for 1. Examples:

• 0.1=0: is a true statement asserting that “false and true evaluates to false”.

• 1+0=1: is a true statement asserting that “true or false evaluates true”.

Basic Theorems

Lovely Professional University 27

Computer System Architecture

Notes

1. A+0=A

2. A+1=1

3. A.0=0

4. A.1=A

5. A+A=A

6. A+A’=1

7. A.A=A

8. A.A’=0

9. (A’)’=A

10. A+AB=A

11. A+A’B=A+B

12. (A+B)(A+C)=A+BC

2.3 De-Morgan’s Theorem
De-Morgan’s theorems are basically two sets of rules or laws developed from the Boolean expressions
for AND, OR and NOT using two input variables, A and B. These two rules or theorems allow the
input variables to be negated and converted from one form of a Boolean function into an opposite
form.

Inputs Outputs (Theorem 1)

B A A.B (A.B)’ A’ B’ A’+B’

0 0 0 1 1 1 1

0 1 0 1 0 1 1

1 0 0 1 1 0 1

1 1 1 0 0 0 0

Inputs Outputs (Theorem 2)

B A A+
B

(A
+B)
’

A’ B’ A’.
B’

0 0 0 1 1 1 1

0 1 1 0 0 1 0

1 0 1 0 1 0 0

1 1 1 0 0 0 0

Lovely Professional University28

Unit 02: Boolean Algebra

Notes

De-Morgan’s First Theorem:

De-Morgan’s First Theorem: When two (or more) input variables are AND’ed and negated, they are
equivalent to the OR of the complements of the individual variables. Thus the equivalent of the
NAND function and is a negative-OR function proving that A.B = A+B. Complementing the result
of AND'ing variables together is equivalent to OR'ing the complements of the individual variables.

De-Morgan’s Second Theorem:

DeMorgan’s Second Theorem: It proves that when two (or more) input variables are OR’ed and
negated, they are equivalent to the AND of the complements of the individual variables. Thus the
equivalent of the NOR function and is a negative-AND function proving that (A+B)’ = A’.B’ and
again we can show this using the following truth table.

2.4 Operator Precedence
The order of operatorsfor evaluation of Boolean expressions is:

1. Parentheses

2. NOT

3. AND

4. OR

It is described as the expression we have in parentheses will be evaluated first. Here the
NOT is described in the terms of complement, so will be evaluated next. Then AND and
finally the OR.

Boolean Function

A binary variable can take the value either 0 or 1. A Boolean function is an expression formed
with binary variables, two binary operators AND, OR and one unary operator NOT,
parentheses and an equal sign.For the given value of variables, the function can be either 0 or 1.

Example:F1=xyz’. The function F1 will be 1 if x, y and z’ are 1, otherwise F1=0.

Thus in this example, the Boolean function is represented as an algebraic example; we can also
represent these in truth table.If there are n variables, then there will be 2n combinations of 1’s
and 0’s.

F1=xyz’, F2=x+y’z, F3=x’y’z+x’yz+xy’, F4=xy’+x’z

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

Unit 02: Boolean Algebra

Notes

De-Morgan’s First Theorem:

De-Morgan’s First Theorem: When two (or more) input variables are AND’ed and negated, they are
equivalent to the OR of the complements of the individual variables. Thus the equivalent of the
NAND function and is a negative-OR function proving that A.B = A+B. Complementing the result
of AND'ing variables together is equivalent to OR'ing the complements of the individual variables.

De-Morgan’s Second Theorem:

DeMorgan’s Second Theorem: It proves that when two (or more) input variables are OR’ed and
negated, they are equivalent to the AND of the complements of the individual variables. Thus the
equivalent of the NOR function and is a negative-AND function proving that (A+B)’ = A’.B’ and
again we can show this using the following truth table.

2.4 Operator Precedence
The order of operatorsfor evaluation of Boolean expressions is:

1. Parentheses

2. NOT

3. AND

4. OR

It is described as the expression we have in parentheses will be evaluated first. Here the
NOT is described in the terms of complement, so will be evaluated next. Then AND and
finally the OR.

Boolean Function

A binary variable can take the value either 0 or 1. A Boolean function is an expression formed
with binary variables, two binary operators AND, OR and one unary operator NOT,
parentheses and an equal sign.For the given value of variables, the function can be either 0 or 1.

Example:F1=xyz’. The function F1 will be 1 if x, y and z’ are 1, otherwise F1=0.

Thus in this example, the Boolean function is represented as an algebraic example; we can also
represent these in truth table.If there are n variables, then there will be 2n combinations of 1’s
and 0’s.

F1=xyz’, F2=x+y’z, F3=x’y’z+x’yz+xy’, F4=xy’+x’z

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

Unit 02: Boolean Algebra

Notes

De-Morgan’s First Theorem:

De-Morgan’s First Theorem: When two (or more) input variables are AND’ed and negated, they are
equivalent to the OR of the complements of the individual variables. Thus the equivalent of the
NAND function and is a negative-OR function proving that A.B = A+B. Complementing the result
of AND'ing variables together is equivalent to OR'ing the complements of the individual variables.

De-Morgan’s Second Theorem:

DeMorgan’s Second Theorem: It proves that when two (or more) input variables are OR’ed and
negated, they are equivalent to the AND of the complements of the individual variables. Thus the
equivalent of the NOR function and is a negative-AND function proving that (A+B)’ = A’.B’ and
again we can show this using the following truth table.

2.4 Operator Precedence
The order of operatorsfor evaluation of Boolean expressions is:

1. Parentheses

2. NOT

3. AND

4. OR

It is described as the expression we have in parentheses will be evaluated first. Here the
NOT is described in the terms of complement, so will be evaluated next. Then AND and
finally the OR.

Boolean Function

A binary variable can take the value either 0 or 1. A Boolean function is an expression formed
with binary variables, two binary operators AND, OR and one unary operator NOT,
parentheses and an equal sign.For the given value of variables, the function can be either 0 or 1.

Example:F1=xyz’. The function F1 will be 1 if x, y and z’ are 1, otherwise F1=0.

Thus in this example, the Boolean function is represented as an algebraic example; we can also
represent these in truth table.If there are n variables, then there will be 2n combinations of 1’s
and 0’s.

F1=xyz’, F2=x+y’z, F3=x’y’z+x’yz+xy’, F4=xy’+x’z

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

Lovely Professional University 29

Computer System Architecture

Notes

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

Did you Know?

It is possible to find two algebraic expressions that specify the same functions.

Two functions of n binary variables are said to be equal if they have the same value for all
possible 2n combinations of the n variables.

2.5 Algebraic Manipulation
A literal is the use of the variable or its complement form in the expression.The minimization of
number of literals and the number of terms results in a circuit with less equipment.The number of
literals can be minimized by the algebraic manipulations.

Example: x+x’y

=(x+x’)(x+y)

=(1)(x+y)

=x+y

Example: x(x’+y)

=xx’+xy

=0+xy

=xy

Example: Q: x’y’z+x’yz+xy’

=x’z(y’+y)+xy’

=x’z(1)+xy’

=x’z+xy’

Example: xy+x’z+yz

=xy+x’z+yz(x+x’)

=xy+x’z+xyz+x’yz

=xy+xyz+x’z+x’yz

=xy(1+z)+x’z(1+y)

=xy+x’z

Computer System Architecture

Notes

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

Did you Know?

It is possible to find two algebraic expressions that specify the same functions.

Two functions of n binary variables are said to be equal if they have the same value for all
possible 2n combinations of the n variables.

2.5 Algebraic Manipulation
A literal is the use of the variable or its complement form in the expression.The minimization of
number of literals and the number of terms results in a circuit with less equipment.The number of
literals can be minimized by the algebraic manipulations.

Example: x+x’y

=(x+x’)(x+y)

=(1)(x+y)

=x+y

Example: x(x’+y)

=xx’+xy

=0+xy

=xy

Example: Q: x’y’z+x’yz+xy’

=x’z(y’+y)+xy’

=x’z(1)+xy’

=x’z+xy’

Example: xy+x’z+yz

=xy+x’z+yz(x+x’)

=xy+x’z+xyz+x’yz

=xy+xyz+x’z+x’yz

=xy(1+z)+x’z(1+y)

=xy+x’z

Computer System Architecture

Notes

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

Did you Know?

It is possible to find two algebraic expressions that specify the same functions.

Two functions of n binary variables are said to be equal if they have the same value for all
possible 2n combinations of the n variables.

2.5 Algebraic Manipulation
A literal is the use of the variable or its complement form in the expression.The minimization of
number of literals and the number of terms results in a circuit with less equipment.The number of
literals can be minimized by the algebraic manipulations.

Example: x+x’y

=(x+x’)(x+y)

=(1)(x+y)

=x+y

Example: x(x’+y)

=xx’+xy

=0+xy

=xy

Example: Q: x’y’z+x’yz+xy’

=x’z(y’+y)+xy’

=x’z(1)+xy’

=x’z+xy’

Example: xy+x’z+yz

=xy+x’z+yz(x+x’)

=xy+x’z+xyz+x’yz

=xy+xyz+x’z+x’yz

=xy(1+z)+x’z(1+y)

=xy+x’z

Lovely Professional University30

Unit 02: Boolean Algebra

Notes

Task: Simplify the Boolean Function: BC +B’C+ BA

Task: Simplify the Boolean Function: A(A+B)+B(A+AA)(A+B)

Task: Simplify the Boolean Function: A+A’B+A’B’C+A’B’C’D+A’B’C’D’E

Canonical and standard forms
All Boolean expressions regardless of their form can be converted to either of these two forms:

• SOP

• POS

2.6 Sum of Products
A product term is a term consisting of the Boolean multiplication of literals. It is also known as
min-term. When two or more min-terms are summed by Boolean addition, the resulting
expression is a sum of products (SOP) form.

• AB+ABC

• ABC+CDE+B’CD’

• A’B+A’BC’+AC

SOP can also contain a single variable term such as A’+A’B’C+BCD’.In SOP form, single bar
cannot extend over more than one variable however more than one variable in a term can have
an over-bar. Example: SOP expression can have A’B’C’ but it cannot have (ABC)’.

2.7 Product of Sums
A sum is defined as a term consisting of Boolean addition of the literals. It is also known as
max-term. When two or more sum terms are multiplied, the resulting expression is a product
of sum (POS) form.

• (A’+B)(A+B’+C)

• (A’+B’+C’)(C+D’+E)(B’+C+D)

• (A+B)(A+B’+C)(A’+C)

It can also contain a single variable such as A(A’+B’+C’)(C+D’+E)(B’+C+D). In POS form,
single bar cannot extend over more than one variable however more than one variable in a
term can have an overbar. For example: a POS expression can have the term A’+B’+C’ but not
(A+B+C)’.

K-Map
It is a systematic method for simplifying the Boolean expressions.It produces simplest POS or
SOP which is known as minimum expression.It is similar to TT because it represents all the
possible values of IP variables and the resulting OP for each value.K-Map is an array of cells in
which each cell represents a binary value of IP variables.It can be used for expressions with
two, three, four and five variables.

Number of Cells

• For 2 variables, no of cells=2^2=4

Unit 02: Boolean Algebra

Notes

Task: Simplify the Boolean Function: BC +B’C+ BA

Task: Simplify the Boolean Function: A(A+B)+B(A+AA)(A+B)

Task: Simplify the Boolean Function: A+A’B+A’B’C+A’B’C’D+A’B’C’D’E

Canonical and standard forms
All Boolean expressions regardless of their form can be converted to either of these two forms:

• SOP

• POS

2.6 Sum of Products
A product term is a term consisting of the Boolean multiplication of literals. It is also known as
min-term. When two or more min-terms are summed by Boolean addition, the resulting
expression is a sum of products (SOP) form.

• AB+ABC

• ABC+CDE+B’CD’

• A’B+A’BC’+AC

SOP can also contain a single variable term such as A’+A’B’C+BCD’.In SOP form, single bar
cannot extend over more than one variable however more than one variable in a term can have
an over-bar. Example: SOP expression can have A’B’C’ but it cannot have (ABC)’.

2.7 Product of Sums
A sum is defined as a term consisting of Boolean addition of the literals. It is also known as
max-term. When two or more sum terms are multiplied, the resulting expression is a product
of sum (POS) form.

• (A’+B)(A+B’+C)

• (A’+B’+C’)(C+D’+E)(B’+C+D)

• (A+B)(A+B’+C)(A’+C)

It can also contain a single variable such as A(A’+B’+C’)(C+D’+E)(B’+C+D). In POS form,
single bar cannot extend over more than one variable however more than one variable in a
term can have an overbar. For example: a POS expression can have the term A’+B’+C’ but not
(A+B+C)’.

K-Map
It is a systematic method for simplifying the Boolean expressions.It produces simplest POS or
SOP which is known as minimum expression.It is similar to TT because it represents all the
possible values of IP variables and the resulting OP for each value.K-Map is an array of cells in
which each cell represents a binary value of IP variables.It can be used for expressions with
two, three, four and five variables.

Number of Cells

• For 2 variables, no of cells=2^2=4

Unit 02: Boolean Algebra

Notes

Task: Simplify the Boolean Function: BC +B’C+ BA

Task: Simplify the Boolean Function: A(A+B)+B(A+AA)(A+B)

Task: Simplify the Boolean Function: A+A’B+A’B’C+A’B’C’D+A’B’C’D’E

Canonical and standard forms
All Boolean expressions regardless of their form can be converted to either of these two forms:

• SOP

• POS

2.6 Sum of Products
A product term is a term consisting of the Boolean multiplication of literals. It is also known as
min-term. When two or more min-terms are summed by Boolean addition, the resulting
expression is a sum of products (SOP) form.

• AB+ABC

• ABC+CDE+B’CD’

• A’B+A’BC’+AC

SOP can also contain a single variable term such as A’+A’B’C+BCD’.In SOP form, single bar
cannot extend over more than one variable however more than one variable in a term can have
an over-bar. Example: SOP expression can have A’B’C’ but it cannot have (ABC)’.

2.7 Product of Sums
A sum is defined as a term consisting of Boolean addition of the literals. It is also known as
max-term. When two or more sum terms are multiplied, the resulting expression is a product
of sum (POS) form.

• (A’+B)(A+B’+C)

• (A’+B’+C’)(C+D’+E)(B’+C+D)

• (A+B)(A+B’+C)(A’+C)

It can also contain a single variable such as A(A’+B’+C’)(C+D’+E)(B’+C+D). In POS form,
single bar cannot extend over more than one variable however more than one variable in a
term can have an overbar. For example: a POS expression can have the term A’+B’+C’ but not
(A+B+C)’.

K-Map
It is a systematic method for simplifying the Boolean expressions.It produces simplest POS or
SOP which is known as minimum expression.It is similar to TT because it represents all the
possible values of IP variables and the resulting OP for each value.K-Map is an array of cells in
which each cell represents a binary value of IP variables.It can be used for expressions with
two, three, four and five variables.

Number of Cells

• For 2 variables, no of cells=2^2=4

Lovely Professional University 31

Computer System Architecture

Notes

• For 3 variables, no of cells=2^3=8

• For 4 variables, no of cells=2^4=16

• For 5 variables, no of cells=2^5=32

•

Cell adjacency

The cells in a k-map are arranged so that there is only a single variable change between
adjacent cells.Adjacency: It is defined by a single variable change. Cells that differ by only one
variable are adjacent cells.

Example: For 3 variable k-map

• 010 is adjacent to 000, 011,110

• 010 is not adjacent to 001, 111

So, physically each cell is adjacent to the cells that are immediately next to it on any of its four
sides.A cell is not adjacent to the cells that diagonally touch any of its corner.

The cells in the top row are adjacent to the corresponding cells in the bottom row and the cells
in the outer left column are adjacent to the corresponding cells in the outer right column. You
can think of the map as wrapping around from top to bottom to form a cylinder or left to right
to form a cylinder.

2-variable k-map

• For two variables, there are four min-terms.

3-variable k-map

• For three variables, there are eight min-terms.

4-variable k-map

• For four variables, there are sixteen min-terms.

Task: How many min-terms will be there for five variables?

2.8 K-Map SOP Minimization
A minimized SOP contains the fewest possible terms with the fewest possible variables per
term. After SOP expression is mapped, there are three steps in obtaining a minimum SOP
expression.

1) Grouping of 1’s.

2) Determine the product term of each group.

3) Summing the resulting product term.

Example: Simplify the boolean function: A’B’C+A’BC’+ABC’+ABC

A/BC 00 01 11 10

0 1 1

1 1 1

Computer System Architecture

Notes

• For 3 variables, no of cells=2^3=8

• For 4 variables, no of cells=2^4=16

• For 5 variables, no of cells=2^5=32

•

Cell adjacency

The cells in a k-map are arranged so that there is only a single variable change between
adjacent cells.Adjacency: It is defined by a single variable change. Cells that differ by only one
variable are adjacent cells.

Example: For 3 variable k-map

• 010 is adjacent to 000, 011,110

• 010 is not adjacent to 001, 111

So, physically each cell is adjacent to the cells that are immediately next to it on any of its four
sides.A cell is not adjacent to the cells that diagonally touch any of its corner.

The cells in the top row are adjacent to the corresponding cells in the bottom row and the cells
in the outer left column are adjacent to the corresponding cells in the outer right column. You
can think of the map as wrapping around from top to bottom to form a cylinder or left to right
to form a cylinder.

2-variable k-map

• For two variables, there are four min-terms.

3-variable k-map

• For three variables, there are eight min-terms.

4-variable k-map

• For four variables, there are sixteen min-terms.

Task: How many min-terms will be there for five variables?

2.8 K-Map SOP Minimization
A minimized SOP contains the fewest possible terms with the fewest possible variables per
term. After SOP expression is mapped, there are three steps in obtaining a minimum SOP
expression.

1) Grouping of 1’s.

2) Determine the product term of each group.

3) Summing the resulting product term.

Example: Simplify the boolean function: A’B’C+A’BC’+ABC’+ABC

A/BC 00 01 11 10

0 1 1

1 1 1

Computer System Architecture

Notes

• For 3 variables, no of cells=2^3=8

• For 4 variables, no of cells=2^4=16

• For 5 variables, no of cells=2^5=32

•

Cell adjacency

The cells in a k-map are arranged so that there is only a single variable change between
adjacent cells.Adjacency: It is defined by a single variable change. Cells that differ by only one
variable are adjacent cells.

Example: For 3 variable k-map

• 010 is adjacent to 000, 011,110

• 010 is not adjacent to 001, 111

So, physically each cell is adjacent to the cells that are immediately next to it on any of its four
sides.A cell is not adjacent to the cells that diagonally touch any of its corner.

The cells in the top row are adjacent to the corresponding cells in the bottom row and the cells
in the outer left column are adjacent to the corresponding cells in the outer right column. You
can think of the map as wrapping around from top to bottom to form a cylinder or left to right
to form a cylinder.

2-variable k-map

• For two variables, there are four min-terms.

3-variable k-map

• For three variables, there are eight min-terms.

4-variable k-map

• For four variables, there are sixteen min-terms.

Task: How many min-terms will be there for five variables?

2.8 K-Map SOP Minimization
A minimized SOP contains the fewest possible terms with the fewest possible variables per
term. After SOP expression is mapped, there are three steps in obtaining a minimum SOP
expression.

1) Grouping of 1’s.

2) Determine the product term of each group.

3) Summing the resulting product term.

Example: Simplify the boolean function: A’B’C+A’BC’+ABC’+ABC

A/BC 00 01 11 10

0 1 1

1 1 1

Lovely Professional University32

Unit 02: Boolean Algebra

Notes

Simplified Boolean function: A’B’C + AB + BC’

Example: Simplify the boolean function:
A’B’CD+A’BC’D’+ABC’D+ABCD+ABC’D’+A’B’C’D+AB’CD’

AB/CD 00 01 11 10

00 1 1

01 1

11 1 1

10 1

Simplified Boolean Function: BC’D’+ABC’+A’B’D+ AB’CD’

Example: Simplify the boolean function: A’+AB’+ABC’

It is a non standard expression, so we need to convert it into standard expression.

A’BC+A’BC’+A’B’C+A’B’C’+AB’C+AB’C’+ABC’

Simplified expression = C + AB’ + A’B

A/BC 00 01 11 10

0 1 1 1

1 1 1 1

Task: Simplify the boolean function: B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD

2.9 K-Map POS Minimization
After POS expression is mapped, there are three steps in obtaining a minimum POS
expression.

1) Grouping of 0’s.

2) Determine the sum term of each group.

3) Multiplying the resulting sum terms.

For a standard POS expression, 0 is placed on k-map for each sum term in the expression.

(A+B+C)(A+B’+C)(A’+B’+C)(A’+B+C)

Task: Simplify the Boolean function: (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C)

Task: Simplify the Boolean function:
(B+C+D)(A+B+C’+D)(A’+B’+C+D’)(A+B’+C+D)(A’+B’+C+D)

Unit 02: Boolean Algebra

Notes

Simplified Boolean function: A’B’C + AB + BC’

Example: Simplify the boolean function:
A’B’CD+A’BC’D’+ABC’D+ABCD+ABC’D’+A’B’C’D+AB’CD’

AB/CD 00 01 11 10

00 1 1

01 1

11 1 1

10 1

Simplified Boolean Function: BC’D’+ABC’+A’B’D+ AB’CD’

Example: Simplify the boolean function: A’+AB’+ABC’

It is a non standard expression, so we need to convert it into standard expression.

A’BC+A’BC’+A’B’C+A’B’C’+AB’C+AB’C’+ABC’

Simplified expression = C + AB’ + A’B

A/BC 00 01 11 10

0 1 1 1

1 1 1 1

Task: Simplify the boolean function: B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD

2.9 K-Map POS Minimization
After POS expression is mapped, there are three steps in obtaining a minimum POS
expression.

1) Grouping of 0’s.

2) Determine the sum term of each group.

3) Multiplying the resulting sum terms.

For a standard POS expression, 0 is placed on k-map for each sum term in the expression.

(A+B+C)(A+B’+C)(A’+B’+C)(A’+B+C)

Task: Simplify the Boolean function: (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C)

Task: Simplify the Boolean function:
(B+C+D)(A+B+C’+D)(A’+B’+C+D’)(A+B’+C+D)(A’+B’+C+D)

Unit 02: Boolean Algebra

Notes

Simplified Boolean function: A’B’C + AB + BC’

Example: Simplify the boolean function:
A’B’CD+A’BC’D’+ABC’D+ABCD+ABC’D’+A’B’C’D+AB’CD’

AB/CD 00 01 11 10

00 1 1

01 1

11 1 1

10 1

Simplified Boolean Function: BC’D’+ABC’+A’B’D+ AB’CD’

Example: Simplify the boolean function: A’+AB’+ABC’

It is a non standard expression, so we need to convert it into standard expression.

A’BC+A’BC’+A’B’C+A’B’C’+AB’C+AB’C’+ABC’

Simplified expression = C + AB’ + A’B

A/BC 00 01 11 10

0 1 1 1

1 1 1 1

Task: Simplify the boolean function: B’C’+AB’+ABC’+AB’CD’+A’B’C’D+AB’CD

2.9 K-Map POS Minimization
After POS expression is mapped, there are three steps in obtaining a minimum POS
expression.

1) Grouping of 0’s.

2) Determine the sum term of each group.

3) Multiplying the resulting sum terms.

For a standard POS expression, 0 is placed on k-map for each sum term in the expression.

(A+B+C)(A+B’+C)(A’+B’+C)(A’+B+C)

Task: Simplify the Boolean function: (A+B+C)(A+B+C’)(A+B’+C)(A+B’+C’)(A’+B’+C)

Task: Simplify the Boolean function:
(B+C+D)(A+B+C’+D)(A’+B’+C+D’)(A+B’+C+D)(A’+B’+C+D)

Lovely Professional University 33

Computer System Architecture

Notes

Task: Simplify the Boolean function:
(A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’)(A’+B+C+D’)(A+B+C’+D)

5-variable K-map-Example

Example: Simplify the boolean function: A’B’C’D’E’+A’B’CD’E’+A’BCD’E’+
A’BC’D’E’+A’B’C’D’E+A’BCD’E + A’BCDE + AB’C’D’E’ + AB’C’D’E + ABCD’E +
AB’CDE+ABCDE

For A = 0 (A’B’C’D’E’, A’B’CD’E’, A’BCD’E’, A’BC’D’E’, A’B’C’D’E, A’BCD’E, A’BCDE

BC/DE 00 01 11 10

00 1 1

01 1

11 1 1

10 1

For A = 1

Example: Simplify the boolean function: F(A,B,C,D,E)={0,2,4,6,9,13,21,23,25,29,31}.

The k-map method of simplification is convenient as long as the variables does not exceed five
or six. As the number of variables increases, the excessive number of squares prevents a
reasonable selection of adjacent squares. The k-map method relies on the ability of human user
to recognize certain patterns. For functions of five or more variables, it is difficult to be sure
that the best solution has been made.

The tabulation method overcomes this difficulty. It is a step by step procedure that is guaranteed to
produce a simplified standard form expression for a function.It can be applied to problems with
many variables.It is also known as Quine- McCluskey method.

The tabulation method

This simplification method consists of two parts:

A) The first is to find by an exhaustive search all the terms that are candidates for inclusion in
the simplified function. These terms are known as prime implicants.

B) The second operation is to choose among the prime implicants those that give an
expression with the least number of literals.

2.10 Determination of Prime Implicants
1) Write down the list of minterms that specify the function.

2) Compare each minterm with every other minterm. If two minterms differ in only one variable,
that variable is removed and a term with one less literal is found.

3) This process is repeated for every minterm until the exhaustive search is completed.

4) The matching process cycle is repeated for those new terms just found.

Computer System Architecture

Notes

Task: Simplify the Boolean function:
(A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’)(A’+B+C+D’)(A+B+C’+D)

5-variable K-map-Example

Example: Simplify the boolean function: A’B’C’D’E’+A’B’CD’E’+A’BCD’E’+
A’BC’D’E’+A’B’C’D’E+A’BCD’E + A’BCDE + AB’C’D’E’ + AB’C’D’E + ABCD’E +
AB’CDE+ABCDE

For A = 0 (A’B’C’D’E’, A’B’CD’E’, A’BCD’E’, A’BC’D’E’, A’B’C’D’E, A’BCD’E, A’BCDE

BC/DE 00 01 11 10

00 1 1

01 1

11 1 1

10 1

For A = 1

Example: Simplify the boolean function: F(A,B,C,D,E)={0,2,4,6,9,13,21,23,25,29,31}.

The k-map method of simplification is convenient as long as the variables does not exceed five
or six. As the number of variables increases, the excessive number of squares prevents a
reasonable selection of adjacent squares. The k-map method relies on the ability of human user
to recognize certain patterns. For functions of five or more variables, it is difficult to be sure
that the best solution has been made.

The tabulation method overcomes this difficulty. It is a step by step procedure that is guaranteed to
produce a simplified standard form expression for a function.It can be applied to problems with
many variables.It is also known as Quine- McCluskey method.

The tabulation method

This simplification method consists of two parts:

A) The first is to find by an exhaustive search all the terms that are candidates for inclusion in
the simplified function. These terms are known as prime implicants.

B) The second operation is to choose among the prime implicants those that give an
expression with the least number of literals.

2.10 Determination of Prime Implicants
1) Write down the list of minterms that specify the function.

2) Compare each minterm with every other minterm. If two minterms differ in only one variable,
that variable is removed and a term with one less literal is found.

3) This process is repeated for every minterm until the exhaustive search is completed.

4) The matching process cycle is repeated for those new terms just found.

Computer System Architecture

Notes

Task: Simplify the Boolean function:
(A’+B’+C+D)(A+B’+C+D)(A+B+C+D’)(A+B+C’+D’)(A’+B+C+D’)(A+B+C’+D)

5-variable K-map-Example

Example: Simplify the boolean function: A’B’C’D’E’+A’B’CD’E’+A’BCD’E’+
A’BC’D’E’+A’B’C’D’E+A’BCD’E + A’BCDE + AB’C’D’E’ + AB’C’D’E + ABCD’E +
AB’CDE+ABCDE

For A = 0 (A’B’C’D’E’, A’B’CD’E’, A’BCD’E’, A’BC’D’E’, A’B’C’D’E, A’BCD’E, A’BCDE

BC/DE 00 01 11 10

00 1 1

01 1

11 1 1

10 1

For A = 1

Example: Simplify the boolean function: F(A,B,C,D,E)={0,2,4,6,9,13,21,23,25,29,31}.

The k-map method of simplification is convenient as long as the variables does not exceed five
or six. As the number of variables increases, the excessive number of squares prevents a
reasonable selection of adjacent squares. The k-map method relies on the ability of human user
to recognize certain patterns. For functions of five or more variables, it is difficult to be sure
that the best solution has been made.

The tabulation method overcomes this difficulty. It is a step by step procedure that is guaranteed to
produce a simplified standard form expression for a function.It can be applied to problems with
many variables.It is also known as Quine- McCluskey method.

The tabulation method

This simplification method consists of two parts:

A) The first is to find by an exhaustive search all the terms that are candidates for inclusion in
the simplified function. These terms are known as prime implicants.

B) The second operation is to choose among the prime implicants those that give an
expression with the least number of literals.

2.10 Determination of Prime Implicants
1) Write down the list of minterms that specify the function.

2) Compare each minterm with every other minterm. If two minterms differ in only one variable,
that variable is removed and a term with one less literal is found.

3) This process is repeated for every minterm until the exhaustive search is completed.

4) The matching process cycle is repeated for those new terms just found.

Lovely Professional University34

Unit 02: Boolean Algebra

Notes

5) Further cycles are continued until a single pass through a cycle yields no further elimination of
literals. The remaining terms and all the terms that does not match during the process comprise the
prime implicants.

Example: Q: Simplify the following Boolean function by using the tabulation method:
F=Σ(0,1,2,8,10,11,14,15)

w x y z

0,
1

0 0 0 -

0,
2

0 0 - 0
✔

0,
8

- 0 0 0
✔

2,
1
0

- 0 1 0
✔

8,
1
0

1 0 - 0
✔

1
0,
1
1

1 0 1 0
✔

1
0,
1
4

1 - 1 -
✔

1
1,
1
5

1 - 1 1
✔

w x y z

0 0 0 0 0 ✔

1 0 0 0 1 ✔

2 0 0 1 0 ✔

8 1 0 0 0 ✔

10 1 0 1 0 ✔

11 1 0 1 1 ✔

14 1 1 1 0 ✔

15 1 1 1 1 ✔

Unit 02: Boolean Algebra

Notes

5) Further cycles are continued until a single pass through a cycle yields no further elimination of
literals. The remaining terms and all the terms that does not match during the process comprise the
prime implicants.

Example: Q: Simplify the following Boolean function by using the tabulation method:
F=Σ(0,1,2,8,10,11,14,15)

w x y z

0,
1

0 0 0 -

0,
2

0 0 - 0
✔

0,
8

- 0 0 0
✔

2,
1
0

- 0 1 0
✔

8,
1
0

1 0 - 0
✔

1
0,
1
1

1 0 1 0
✔

1
0,
1
4

1 - 1 -
✔

1
1,
1
5

1 - 1 1
✔

w x y z

0 0 0 0 0 ✔

1 0 0 0 1 ✔

2 0 0 1 0 ✔

8 1 0 0 0 ✔

10 1 0 1 0 ✔

11 1 0 1 1 ✔

14 1 1 1 0 ✔

15 1 1 1 1 ✔

Unit 02: Boolean Algebra

Notes

5) Further cycles are continued until a single pass through a cycle yields no further elimination of
literals. The remaining terms and all the terms that does not match during the process comprise the
prime implicants.

Example: Q: Simplify the following Boolean function by using the tabulation method:
F=Σ(0,1,2,8,10,11,14,15)

w x y z

0,
1

0 0 0 -

0,
2

0 0 - 0
✔

0,
8

- 0 0 0
✔

2,
1
0

- 0 1 0
✔

8,
1
0

1 0 - 0
✔

1
0,
1
1

1 0 1 0
✔

1
0,
1
4

1 - 1 -
✔

1
1,
1
5

1 - 1 1
✔

w x y z

0 0 0 0 0 ✔

1 0 0 0 1 ✔

2 0 0 1 0 ✔

8 1 0 0 0 ✔

10 1 0 1 0 ✔

11 1 0 1 1 ✔

14 1 1 1 0 ✔

15 1 1 1 1 ✔

Lovely Professional University 35

Computer System Architecture

Notes

1
4,
1
5

1 1 1 -
✔

w x y z

0, 2, 8, 10 - 0 - 0

0, 8, 2, 10 - 0 - 0

10, 11, 14,
15

1 - 1 -

10, 14, 11,
15

1 - 1 -

Summary

 Boolean algebra holds two values, i.e., 0 and 1.
 Binary numbers are used to represent 0s and 1s information in the computers.
 The various laws and postulates associated with this are used to solve various Boolean

functions.
 De-Morgan’s theorems are used to reduce the Boolean functions.
 K-Map is also used to reduce the Boolean functions.
 K-Map SOP and POS minimization methods are used to find out the minimal forms.
 Tabulation method is also used for finding out the minimal forms.
 Truth table is also one way of the way for simplification of Boolean expressions.

Keywords
Boolean algebra: It is the branch of algebra in which the values of the variables are the truth values,
i.e., true and false, usually denoted by 1 and 0 respectively.

Self Assessment
Q 1: Which term belongs to Idempotent law?

A. A.A=A

B. (B+C) =A.B+A.C

C. (A’)’=A

D. A+B=B+A

Q 2: A(A+B)=A shows ____________ law.

A. Idempotent

B. Annulment

C. Distributive

Lovely Professional University36

Unit 02: Boolean Algebra

Notes

D. Absorptive

Q 3: For evaluation of Boolean expressions, what will be order of?

AND

OR

NOT

Parentheses

A. 1,2,3,4

B. 2,1,4,3

C. 4,3,1,2

D. None of the above

Q 4: According to De-Morgan’s theorem (A+B)’ = A’.B’, if A=1, B=0, then what is the output?

A. 1

B. 0

C. Either 1 or 0

D. None of the above

Q 5: In which form, a single variable is allowed?

A. SOP

B. POS

C. Both SOP and POS

D. None of the above

Q 6: In a Boolean function, if there are n variables, then the number of combinations of 1s and 0s
will be

A. 2n

B. 2n+1

C. 2n-1

D. 2n+1-2

Q 7: In 3 variable k-maps, which of the following is not adjacent to 011?

A. 101

B. 001

C. 111

D. 010

Q 8: In 4 variable k-maps, which of the following is not adjacent to 0010?

A. 0000

B. 0011

C. 0111

D. 0110

Lovely Professional University 37

Computer System Architecture

Notes

Q 9: After mapping of POS expression, for minimization we group together

A. 0

B. 1

C. Both 0 and 1

D. Either 0 or 1

Q 10: After mapping of SOP expression, for minimization we group together

A. 0

B. 1

C. Both 0 and 1

D. Either 0 or 1

Q 11: What are the steps of simplification in tabulation method?

A. Search for prime implicants

B. Choosing of prime implicants for expression with least number of literals

C. Both searching of prime implicants and choosing of them for expression

D. None of the above

Q 12: The _______ can be minimized.

A. POS

B. SOP

C. Both POS and SOP

D. None of the above

Q 13: After mapping of POS expression, for minimization we group together

A. 0

B. 1

C. Both 0 and 1

D. Either 0 or 1

Q 14: Simplify the Boolean function, A’+AB’+ABC’

A. A+B+C

B. A’+B’+C’

C. A’+B+C

D. A’+B’+C

Q 15: According to De-Morgan’s theorem (A+B)’ = A’.B’, if A=1, B=0, then what is the output?

A. 1

B. 0

C. Either 1 or 0

D. None of the above

Lovely Professional University38

Unit 02: Boolean Algebra

Notes

Answers for Self Assessment

1. A 2. D 3. C 4. B 5. C

6. A 7. A 8. C 9. A 10. B

11. C 12. C 13. A 14. B 15. B

Review Questions
Q 1: What is a Boolean function? Write its laws and postulates.

Q 2: Simplify the given 5-variable Boolean equation by using k-map.

f (A, B, C, D, E) = ∑ m (0, 5, 6, 8, 9, 10, 11, 16, 20, 42, 25, 26, 27).

Q 3: Minimize the following Boolean function using sum of products (SOP):

f(a,b,c,d) = m(3,7,11,12,13,14,15) .

Q 4: Explain how to find out the prime implicants using tabulation method.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-
resource-center/pdfs/kmaps.pdf

https://www.geeksforgeeks.org/5-variable-k-map-in-digital-logic/

Unit 02: Boolean Algebra

Notes

Answers for Self Assessment

1. A 2. D 3. C 4. B 5. C

6. A 7. A 8. C 9. A 10. B

11. C 12. C 13. A 14. B 15. B

Review Questions
Q 1: What is a Boolean function? Write its laws and postulates.

Q 2: Simplify the given 5-variable Boolean equation by using k-map.

f (A, B, C, D, E) = ∑ m (0, 5, 6, 8, 9, 10, 11, 16, 20, 42, 25, 26, 27).

Q 3: Minimize the following Boolean function using sum of products (SOP):

f(a,b,c,d) = m(3,7,11,12,13,14,15) .

Q 4: Explain how to find out the prime implicants using tabulation method.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-
resource-center/pdfs/kmaps.pdf

https://www.geeksforgeeks.org/5-variable-k-map-in-digital-logic/

Unit 02: Boolean Algebra

Notes

Answers for Self Assessment

1. A 2. D 3. C 4. B 5. C

6. A 7. A 8. C 9. A 10. B

11. C 12. C 13. A 14. B 15. B

Review Questions
Q 1: What is a Boolean function? Write its laws and postulates.

Q 2: Simplify the given 5-variable Boolean equation by using k-map.

f (A, B, C, D, E) = ∑ m (0, 5, 6, 8, 9, 10, 11, 16, 20, 42, 25, 26, 27).

Q 3: Minimize the following Boolean function using sum of products (SOP):

f(a,b,c,d) = m(3,7,11,12,13,14,15) .

Q 4: Explain how to find out the prime implicants using tabulation method.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-
resource-center/pdfs/kmaps.pdf

https://www.geeksforgeeks.org/5-variable-k-map-in-digital-logic/

Lovely Professional University 39

Unit 03: Implementation of Combinational Logic Design

Notes

Unit 03: Implementation of Combinational Logic Design

CONTENTS

Objectives

Introduction

3.1 Types of Logic Gates

3.2 Block Diagram of Combinational Logic

3.3 Adders and Subtractors

3.4 Decimal Adder

3.5 Binary Parallel Adder

3.6 Encoders and Decoders

3.7 2-to-4 line Decoder with Enable input

3.8 2-to-1 line Multiplexer

3.9 4-to-1 Line Multiplexer

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 Understand various logic gates.
 Understand various types of combinational circuits and their implementation.
 Know the functions of various combinational circuits.
 Understand the logic symbols of adders, subtractors, encoders, decoders, multiplexers and

de-multiplexers.

Introduction
Logic gates are the building blocks of any digital computer. Logic gates are electronic circuit having
one or more than one input and only one output. The relationship between the input and the
output is based on certain logic. The inputs any gate can have either 0 or 1. Based upon the concept
of logic gate, we get the output also 0 or 1.

3.1 Types of Logic Gates
There are various types of logic gates and every logic gate has its own functionalities and working.
These types are:

 NOT gate
 OR gate
 AND gate
 NOR gate

Lovely Professional University40

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

 NAND gate
 XOR gate
 XNOR gate

NOT gate

The logic symbol for NOT gate is

The expression for NOT gate is Output = (A)’. Here A is designated as the input provided

A OUTPUT

0 1

1 0

OR gate

The logic symbol for OR gate is

The expression for OR gate is OUTPUT = (A+B). Here A and B are inputs provided.

A B OUTPUT

0 0 0

0 1 1

1 0 1

1 1 1

AND gate

Lovely Professional University 41

Unit 03: Implementation of Combinational Logic Design

Notes

The logic symbol for AND gate is

The expression for AND gate is OUTPUT = (A * B). Here A and B are inputs provided.

A B OUTPUT

0 0 0

0 1 0

1 0 0

1 1 1

NOR gate

The logic symbol for NOR gate is

The expression for NOR gate is OUTPUT = (A + B)’.

A B (A+B) OUTPUT

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

NAND gate

Lovely Professional University42

Computer System Architecture

Notes

The logic symbol for NAND gate is

The expression for NAND gate is OUTPUT = (A * B)’. Here A and B are the inputs provided.

A B (A.B) OUTPUT

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

XOR gate

The logic symbol for XOR gate is

The expression for XOR gate is OUTPUT = A * B’ + A’ * B. Here A and B are the inputs provided.

A B A.B’ A’.B OUTPUT

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

XNOR gate

The logic symbol for XNOR gate is

Lovely Professional University 43

Unit 03: Implementation of Combinational Logic Design

Notes

The expression for XNOR gate is OUTPUT = A * B + A’ * B’. Here A and B are the inputs provided
to the gate.

A B A.B A’.B’ OUTPUT

0 0 0 1 1

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

Combinational logic:

The logic circuits for digital system can be either sequential or combinational. A sequential circuit
employs storage elements in addition to logic gates. Their output area is a function of the inputs
and the state of storage elements. The state of storage elements, in turn, is a function of previous
inputs.

A combinational circuit consists of logic gates whose output is determined from the present
combination of inputs. A combinational circuit consists of input variables, logic gates and output
variables. The logic gates accept signals from the inputs and generate signals to the outputs. This
process transforms binary information from the given input data to a required output data.

3.2 Block Diagram of Combinational Logic

The n input binary variables come from an external source and the m output variables go to an
external destination.Each input and output variable exists physically as a binary signal that
represents logic 1 and logic 0.For n input variables, there are 2^n possible binary input
combinations. For each input combination there is one possible output value.

Types of combinational circuits

Adders

Subtractors

Encoders

Decoders

Lovely Professional University44

Computer System Architecture

Notes

Multiplexers

De-multiplexers

3.3 Adders and Subtractors
Digital computers perform a variety of information processing tasks. Among all these, the most
basic arithmetic operation is the addition of two binary digits.

The simple addition consists of four possible elementary operations:

A B C

0 0 0

0 1 1

1 0 1

1 1 10

The first three operations produce a sum of one digit, but when augend and addend bits are equal
to 1, the binary sum consists of 2 digits. The higher significant bit of this result is a CARRY. When
the augend and addend number contain more significant digits, the carry obtained from the
addition of two bits is added to the next higher order pair of significant bits.

A combinational circuit that performs the addition of two bits is called a half adder. A
combinational circuit that performs the addition of three bits (two significant bits and one previous
carry) is a full adder. (Two half adders can be employed to make the full adder). The half adder
design is carried out first from which we will develop the full adder. Connecting n full adders in
cascade produce the binary adder for two n-bit numbers.

Half adder

The half adder needs two binary inputs and two binary outputs. The input variables designate the
augend and addend bits (x and y). The output variables produce the sum and carry (S and C).

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

C is 1 only when both of the inputs are 1. The S output represents the least significant bit of the
sum. The Boolean expression for this:

S = X’ * Y + X * Y’ and C = X * Y.

The combinational circuit for half adder is

Lovely Professional University 45

Unit 03: Implementation of Combinational Logic Design

Notes

Full Adder

A full adder is the combinational circuit that forms the arithmetic sum of three bits. It consists of
three inputs and two outputs. Inputs (Two of the input variables denoted by x and y), represent the
two significant bits to be added and third input, z represents the carry from the previous lower
significant positions) and the outputs (S and C; the binary variable S gives the value of the least
significant bit of the sum and the binary variable C given the output carry).

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The Boolean expressions for full adder are

S=x’y’z+x’yz’+xy’z’+xyz

C=xy+xz+yz

Unit 03: Implementation of Combinational Logic Design

Notes

Full Adder

A full adder is the combinational circuit that forms the arithmetic sum of three bits. It consists of
three inputs and two outputs. Inputs (Two of the input variables denoted by x and y), represent the
two significant bits to be added and third input, z represents the carry from the previous lower
significant positions) and the outputs (S and C; the binary variable S gives the value of the least
significant bit of the sum and the binary variable C given the output carry).

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The Boolean expressions for full adder are

S=x’y’z+x’yz’+xy’z’+xyz

C=xy+xz+yz

Unit 03: Implementation of Combinational Logic Design

Notes

Full Adder

A full adder is the combinational circuit that forms the arithmetic sum of three bits. It consists of
three inputs and two outputs. Inputs (Two of the input variables denoted by x and y), represent the
two significant bits to be added and third input, z represents the carry from the previous lower
significant positions) and the outputs (S and C; the binary variable S gives the value of the least
significant bit of the sum and the binary variable C given the output carry).

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The Boolean expressions for full adder are

S=x’y’z+x’yz’+xy’z’+xyz

C=xy+xz+yz

Lovely Professional University46

Computer System Architecture

Notes

The combinational circuit for full adder is

The full adder is made up of serial connection of two half adders as shown in the picture.

Subtractors

The subtraction A-B can be done by taking the 2’s complement of B and adding it to A.The 2’s
complement can be obtained by taking the 1’s complement and adding 1 to the LSB pair of bits. The
1’s complement can be implemented with inverters and a one can be added to the sum through the
input carry. So the circuit for A-B consists of an adder with inverters placed with each data input
B.The initial input carry must be equal to 1 when performing subtraction.So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

The initial input carry must be equal to 1 when performing subtraction. So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

Overflow

For unsigned numbers, this gives A-B if A>=B or 2’s complement of (B-A) if A<B.For signed
numbers, the result is A-B, provided that there is no overflow. When two numbers of n digits each
are added and the sum occupies n+1 digits, then the overflow occurs.Overflow is a problem in
digital computers because the number of bits that hold the number is finite and the result that
contains n+1 bits cannot be accommodated.The overflow is detected after the addition of two
binary numbers depends upon whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end carry out of the most
significant position. In the case of signed numbers, the left most bit always represents the sign.

Computer System Architecture

Notes

The combinational circuit for full adder is

The full adder is made up of serial connection of two half adders as shown in the picture.

Subtractors

The subtraction A-B can be done by taking the 2’s complement of B and adding it to A.The 2’s
complement can be obtained by taking the 1’s complement and adding 1 to the LSB pair of bits. The
1’s complement can be implemented with inverters and a one can be added to the sum through the
input carry. So the circuit for A-B consists of an adder with inverters placed with each data input
B.The initial input carry must be equal to 1 when performing subtraction.So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

The initial input carry must be equal to 1 when performing subtraction. So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

Overflow

For unsigned numbers, this gives A-B if A>=B or 2’s complement of (B-A) if A<B.For signed
numbers, the result is A-B, provided that there is no overflow. When two numbers of n digits each
are added and the sum occupies n+1 digits, then the overflow occurs.Overflow is a problem in
digital computers because the number of bits that hold the number is finite and the result that
contains n+1 bits cannot be accommodated.The overflow is detected after the addition of two
binary numbers depends upon whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end carry out of the most
significant position. In the case of signed numbers, the left most bit always represents the sign.

Computer System Architecture

Notes

The combinational circuit for full adder is

The full adder is made up of serial connection of two half adders as shown in the picture.

Subtractors

The subtraction A-B can be done by taking the 2’s complement of B and adding it to A.The 2’s
complement can be obtained by taking the 1’s complement and adding 1 to the LSB pair of bits. The
1’s complement can be implemented with inverters and a one can be added to the sum through the
input carry. So the circuit for A-B consists of an adder with inverters placed with each data input
B.The initial input carry must be equal to 1 when performing subtraction.So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

The initial input carry must be equal to 1 when performing subtraction. So, the operation becomes
A, plus the 1’s complement of B, plus 1 which is equal to A plus the 2’s complement of B.

Overflow

For unsigned numbers, this gives A-B if A>=B or 2’s complement of (B-A) if A<B.For signed
numbers, the result is A-B, provided that there is no overflow. When two numbers of n digits each
are added and the sum occupies n+1 digits, then the overflow occurs.Overflow is a problem in
digital computers because the number of bits that hold the number is finite and the result that
contains n+1 bits cannot be accommodated.The overflow is detected after the addition of two
binary numbers depends upon whether the numbers are considered to be signed or unsigned.
When two unsigned numbers are added, an overflow is detected from the end carry out of the most
significant position. In the case of signed numbers, the left most bit always represents the sign.

Lovely Professional University 47

Unit 03: Implementation of Combinational Logic Design

Notes

An overflow cannot occur after the addition if one number is positive and the other number is
negative. It can occur if the two numbers added are either positive or both negative.

3.4 Decimal Adder
Computers or calculators that perform arithmetic operations directly in the decimal number system
represent the decimal numbers in binary coded form. An adder for such a computer must employ
an arithmetic circuit that accepts coded decimal numbers and present results in the same code.For
binary addition it is sufficient to consider a pair of significant bits together with a previous carry.A
decimal adder requires a minimum of 9 inputs and 5 outputs. Since 4 bits are required to code each
decimal digit and the circuits must have an input and output carry.Consider the arithmetic addition
of two decimal digits in BCD, together with an input carry from previous stage. Since each input
digits does not exceed 9, the output sum cannot be greater than (9+9+1=19).Suppose we apply two
BCD digits to a 4-bit binary adder. The adder will form the sum in binary and produces the results
that range from 0 to 19.

Binary Sum BCD Sum Decimal

K Z8 Z4 Z2 Z1 C S8 S4 S2 S1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 2

0 0 0 1 1 0 0 0 1 1 3

0 0 1 0 0 0 0 1 0 0 4

0 0 1 0 1 0 0 1 0 1 5

0 0 1 1 0 0 0 1 1 0 6

0 0 1 1 1 0 0 1 1 1 7

0 1 0 0 0 0 1 0 0 0 8

Lovely Professional University48

Computer System Architecture

Notes

0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10

0 1 0 1 1 1 0 0 0 1 11

0 1 1 0 0 1 0 0 1 0 12

0 1 1 0 1 1 0 0 1 1 13

0 1 1 1 0 1 0 1 0 0 14

0 1 1 1 1 1 0 1 0 1 15

1 0 0 0 0 1 0 1 1 0 16

1 0 0 0 1 1 0 1 1 1 17

1 0 0 1 0 1 1 0 0 0 18

1 0 0 1 1 1 1 0 0 1 19

K is the carry and the subscripts under the letter Z represents the weights 8,4,2 and 1 that can be
assigned to four bits in BCD code.The columns under the binary sum list the binary value that
appears in the output of 4-bit binary adder.The problem is to find a rule by which the binary sum is
to be converted to the correct BCD digit representation of the number in BCD sum.It is apparent
that when the binary sum is equal to or less than 1001, the corresponding BCD number is identical
and therefore no conversion is required. When the binary sum is greater than 1001, we obtain a non
valid BCD representation. The addition of binary 6 (0110) to the binary sum converts it to the
correct BCD representation and also produces an output carry as required.It is obvious that the
correction is needed when the binary sum has an output carry K=1. The other 6 combinations from
1010 through 1111 that need a correction have a 1 in position Z8. To distinguish from binary 1000
and 1001, which also have a 1 in8, we move further to either Z4 or Z2 which must have a 1.

C=K+Z8*Z4+Z8*Z2

The combinational circuit for BCD adder is

Lovely Professional University 49

Unit 03: Implementation of Combinational Logic Design

Notes

3.5 Binary Parallel Adder
A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary numbers.
It can be constructed with connecting full adders; with the output carry from each full adder is
connected to the input carry of next full adder in the chain.

Here the augend bits of A and addend bits of B are designated by the subscript numbers from right
to left with subscript 0 denoting LSB. The carries are connected in a chain through the full adder.
The input carry to the adder is C0 and it ripples through the full adders to the output carry C4.The
S outputs generate the required sum bits. A n-bit adder requires n full adders with each output
carry connected to the input carry of the next higher order full adder.

Carry propagation

The addition of two binary numbers in parallel implies that all the bits of augend and addend are
available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals.The
total propagation time is equal to the propagation delay of a gate multiplied by the number of gate

Unit 03: Implementation of Combinational Logic Design

Notes

3.5 Binary Parallel Adder
A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary numbers.
It can be constructed with connecting full adders; with the output carry from each full adder is
connected to the input carry of next full adder in the chain.

Here the augend bits of A and addend bits of B are designated by the subscript numbers from right
to left with subscript 0 denoting LSB. The carries are connected in a chain through the full adder.
The input carry to the adder is C0 and it ripples through the full adders to the output carry C4.The
S outputs generate the required sum bits. A n-bit adder requires n full adders with each output
carry connected to the input carry of the next higher order full adder.

Carry propagation

The addition of two binary numbers in parallel implies that all the bits of augend and addend are
available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals.The
total propagation time is equal to the propagation delay of a gate multiplied by the number of gate

Unit 03: Implementation of Combinational Logic Design

Notes

3.5 Binary Parallel Adder
A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary numbers.
It can be constructed with connecting full adders; with the output carry from each full adder is
connected to the input carry of next full adder in the chain.

Here the augend bits of A and addend bits of B are designated by the subscript numbers from right
to left with subscript 0 denoting LSB. The carries are connected in a chain through the full adder.
The input carry to the adder is C0 and it ripples through the full adders to the output carry C4.The
S outputs generate the required sum bits. A n-bit adder requires n full adders with each output
carry connected to the input carry of the next higher order full adder.

Carry propagation

The addition of two binary numbers in parallel implies that all the bits of augend and addend are
available for computation at the same time. As in any combinational circuit, the signal must
propagate through the gates before the correct output sum is available in the output terminals.The
total propagation time is equal to the propagation delay of a gate multiplied by the number of gate

Lovely Professional University50

Computer System Architecture

Notes

levels in the circuit. The longest propagation delay time in an adder is the time it takes the carry to
propagate through the full adders.

3.6 Encoders and Decoders
An encoder has 2^n input lines and n output lines.Example: octal to binary encoder. It has eight
inputs (one for each of the octal digits) and three outputs that generate the corresponding binary
number. The output lines generate the binary code corresponding to the input value.It is assumed
that only one input has a value of 1 at any given time.

Octal to Binary Encoder

The encoder can be implemented with OR gates whose inputs are determined directly from the
truth table.

Output z is equal to 1 when the input octal digit is 1,3,5 or 7. Z= D1+ D3+ D5 +D7

Output y is equal to 1 when the input octal digit is 2,3,6 or 7. Y= D2+D3+D6+D7

Output x is equal to 1 when the input octal digit is 4,5,6 or 7. X= D4+D5+D6+D7

The encoder has a limitation that only one input can be active at any given time.

Lovely Professional University 51

Unit 03: Implementation of Combinational Logic Design

Notes

If two inputs are active simultaneously, the output produces an undefined combination. For
example, if D3 and D6 are 1 simultaneously, the output of the encoder will be 111 because all three
outputs are equal to 1. This does not represent either binary 3 or binary 6. To resolve this
ambiguity, encoder circuits must establish an input priority to ensure that only one input is
encoded.If we establish a higher priority for inputs with higher subscript numbers and if both D3
and D6 are 1 at the same time, the output will be 110 because D6 has higher priority than D3.

Decoders are opposite of encoders.Discrete quantities of information are represented in digital
systems by binary codes. A binary code of n bits is capable of representing 2^n distinct elements of
coded information. A decoder is a combinational circuit that converts binary information from n
input lines to a maximum of 2^n unique output lines. If the n-bit coded information has unused
combinations, the decoder may have fewer than 2^n outputs.

3-to-8 line decoder

This decoder is known as n-to-m line decoder, where m<=2^n. The purpose is to generate the 2^n
or fewer min-terms of n input variables. Here 3 inputs are decoded into 8 outputs, each
representing one of the min-terms of the three input variables.Here the three inverters provide the
complement of the inputs and each one of the eight AND gates generate one of the min-terms. The
application of this is to decode any 3-bit code to provide eight outputs, one for each element of the
code.

Lovely Professional University52

Computer System Architecture

Notes

For each possible input combination, there are 7 outputs that are equal to 0 and only one that is
equal to 1. The output whose value is 1 represents the min-term equivalent of the binary number
presently available in the input lines.

Decoder with NAND gate

Since a NAND gate produces the AND operation with an inverted output, it becomes more
economical to generate the decoder min-terms in their complemented form. Decoder includes one
or more enable inputs to control the circuit operation.

3.7 2-to-4 lineDecoder with Enable input

The decoder is enabled when E=0, regardless of the value of 2 other inputs.Only one output can be
equal to 0 at any given time, all other outputs are equal to 1. The output whose value is equal to 0
represents the min-term selected by inputs A and B. The circuit is disabled when E=1, regardless of
the values of other two inputs. When the circuit is disabled, none of the outputs are equal to 0 and
none of the min-terms are selected. A decoder with enable input can function as a demultiplexer. It
is a circuit that receives information from a single line and directs it to one of the 2^n possible
output lines. The selection of a specific output is controlled by the bit combination of n selection
lines.

Multiplexers and De-multiplexers

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled by a
set of selection lines. Normally, there are 2^n input lines and n selection lines whose bit
combinations determine which input is selected.The multiplexer is also known as the data selector

Lovely Professional University 53

Unit 03: Implementation of Combinational Logic Design

Notes

Types of multiplexers

• 2–to-1 line multiplexer.

• 4-to-1 line multiplexer.

Unit 03: Implementation of Combinational Logic Design

Notes

Types of multiplexers

• 2–to-1 line multiplexer.

• 4-to-1 line multiplexer.

Unit 03: Implementation of Combinational Logic Design

Notes

Types of multiplexers

• 2–to-1 line multiplexer.

• 4-to-1 line multiplexer.

Lovely Professional University54

Computer System Architecture

Notes

3.8 2-to-1 lineMultiplexer

A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination. The circuit has
two input lines, one output line and one selection line. When S=0, the upper AND gate is enabled
and I1 has a path to the output.When S=1, the lower AND gate is enabled and I0 has a path to the
output.The multiplexer acts like an electronic switch, which selects one out of two sources.

S Z

0 I0

1 I1

Output=i0 when S=0, Y=i0.S’,

Output=i1 when S=1, Y=i1.S.

Y=i0.S’+i1.S.

Computer System Architecture

Notes

3.8 2-to-1 lineMultiplexer

A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination. The circuit has
two input lines, one output line and one selection line. When S=0, the upper AND gate is enabled
and I1 has a path to the output.When S=1, the lower AND gate is enabled and I0 has a path to the
output.The multiplexer acts like an electronic switch, which selects one out of two sources.

S Z

0 I0

1 I1

Output=i0 when S=0, Y=i0.S’,

Output=i1 when S=1, Y=i1.S.

Y=i0.S’+i1.S.

Computer System Architecture

Notes

3.8 2-to-1 lineMultiplexer

A 2-to-1 line multiplexer connects one of two 1-bit sources to a common destination. The circuit has
two input lines, one output line and one selection line. When S=0, the upper AND gate is enabled
and I1 has a path to the output.When S=1, the lower AND gate is enabled and I0 has a path to the
output.The multiplexer acts like an electronic switch, which selects one out of two sources.

S Z

0 I0

1 I1

Output=i0 when S=0, Y=i0.S’,

Output=i1 when S=1, Y=i1.S.

Y=i0.S’+i1.S.

Lovely Professional University 55

Unit 03: Implementation of Combinational Logic Design

Notes

3.9 4-to-1 Line Multiplexer

Each of the four inputs, I0 through I3, is applied to one input of AND gate.Selection lines S0 and S1
are decoded to select a particular AND gate. The outputs of AND gates are applied to single OR
gate that provides the 1-line output.Example: S1S0=10: The AND gate associated with input I2 has
two of its inputs equal to 1 and third input connected to I2. The other three AND gates have at least
one input equal to 0, which makes their output equal to 0. The OR gate output is equal to the value
of I2, providing a path from the selected input to the output.It is working as a data selector since it
selects one of many inputs and steers the binary information to the output line.

S0 S1 Y

0 0 I0

0 1 I1

1 0 I2

1 1 i3

O/P is i0 only if S0=0 and S1=0, Y=i0*s0’*s1’.

O/P is i1 only if S0=0 and S1=1, Y=i1*s0’*s1.

O/P is i2 only if S0=1 and S1=0, Y=i2*s0*s1’.

O/P is i3 only if S0=1 and S1=1, Y=i3*s0*s1.

Y=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s1.

De-multiplexer

Unit 03: Implementation of Combinational Logic Design

Notes

3.9 4-to-1 Line Multiplexer

Each of the four inputs, I0 through I3, is applied to one input of AND gate.Selection lines S0 and S1
are decoded to select a particular AND gate. The outputs of AND gates are applied to single OR
gate that provides the 1-line output.Example: S1S0=10: The AND gate associated with input I2 has
two of its inputs equal to 1 and third input connected to I2. The other three AND gates have at least
one input equal to 0, which makes their output equal to 0. The OR gate output is equal to the value
of I2, providing a path from the selected input to the output.It is working as a data selector since it
selects one of many inputs and steers the binary information to the output line.

S0 S1 Y

0 0 I0

0 1 I1

1 0 I2

1 1 i3

O/P is i0 only if S0=0 and S1=0, Y=i0*s0’*s1’.

O/P is i1 only if S0=0 and S1=1, Y=i1*s0’*s1.

O/P is i2 only if S0=1 and S1=0, Y=i2*s0*s1’.

O/P is i3 only if S0=1 and S1=1, Y=i3*s0*s1.

Y=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s1.

De-multiplexer

Unit 03: Implementation of Combinational Logic Design

Notes

3.9 4-to-1 Line Multiplexer

Each of the four inputs, I0 through I3, is applied to one input of AND gate.Selection lines S0 and S1
are decoded to select a particular AND gate. The outputs of AND gates are applied to single OR
gate that provides the 1-line output.Example: S1S0=10: The AND gate associated with input I2 has
two of its inputs equal to 1 and third input connected to I2. The other three AND gates have at least
one input equal to 0, which makes their output equal to 0. The OR gate output is equal to the value
of I2, providing a path from the selected input to the output.It is working as a data selector since it
selects one of many inputs and steers the binary information to the output line.

S0 S1 Y

0 0 I0

0 1 I1

1 0 I2

1 1 i3

O/P is i0 only if S0=0 and S1=0, Y=i0*s0’*s1’.

O/P is i1 only if S0=0 and S1=1, Y=i1*s0’*s1.

O/P is i2 only if S0=1 and S1=0, Y=i2*s0*s1’.

O/P is i3 only if S0=1 and S1=1, Y=i3*s0*s1.

Y=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s1.

De-multiplexer

Lovely Professional University56

Computer System Architecture

Notes

It reverses the multiplexing function.The word de-multiplex means one into many. It takes digital
information from one line and distributes it to a given number of output lines. It is the process of
taking information from one input and transmitting the same over one of the several outputs.

A 1-to-4 de-multiplexer has a single input, four outputs and two select lines.

Lovely Professional University 57

Unit 03: Implementation of Combinational Logic Design

Notes

From the truth table it is clear that the data input is connected to output Y0 when S1=0 and S0=0
and the data input is connected to output Y1 when S1=0 ad S1.Similarly, the data input is connected
to outputs Y2 and Y3 when S1=1 and S0=0 and when S1=1 and S0=1 respectively.

Y0=S1’S0’D,

Y1=S1’S0D,

Y2=S1S0’D,

Y3=S1S0D.

Now using these expressions, a 1-to-4 line De-multiplexer can be implemented using four 3 input
AND gates and two NOT gates.Here, the input data is connected to all the AND gates.

Applications of De-Multiplexer

• Communication System

• ALU

• Serial to parallel converter

Summary

 Logic gates are the building blocks of all the combinational circuits.
 Every combinational circuit requires the implementation.
 Adders are required for the implementation of addition mathematical operation. Various

adders are available.
 Encoders are required to encode the inputs. The most famous encoder is octal to binary

encoder. This one encodes the eight bits input to three bits output.
 Decoders do the reverse function of encoders.
 The multiplexers takes many input lines

Keywords
OR gate: This gate performs the operation of addition.

AND gate: This gate performs the operation of multiplication.

Lovely Professional University58

Computer System Architecture

Notes

NOT gate: This gate inverts the input.

NAND gate: This gate performs the inverse of multiplication of inputs.

NOR gate: This gate performs the inverse of addition of inputs.

SelfAssessment

1.If A=0, B=1 and C=0, what will be the output in (A OR B) AND C?

A. 0

B. 1

C. 2

D. None of the above

2.If X=1,Y=1 and Z=1, what will be the output in (X AND Y) XOR Z?

A. 0

B. 1

C. 2

D. None of the above

3.What will be the output, if two inputs, R=0 and S=0 are applied to XNOR logic.

A. 0

B. 1

C. 2

D. None of the above

4.A combinational circuit that performs the addition of three bits is known as.

A. Full Adder

B. Half Adder

5.Which combinational circuit is represented by these Boolean expressions S=x’y+xy’, C=xy?

A. Full Subtractors

B. Half Adder

C. Full Adder

D. None of the above

6.When an overflow occurs, the sign is represented by ________ most bit in signed numbers.

A. Left

B. Right

C. Middle

D. None of the above

7.In case of full adder, if X=1, Y=1 and Z=1, then what will be the values of C and S?

A. 0, 0

Lovely Professional University 59

Unit 03: Implementation of Combinational Logic Design

Notes

B. 1, 1

C. 0, 1

D. 1, 0

8.A decimal adder requires a minimum of _____ inputs and ______ outputs.

A. 9,9

B. 5,9

C. 9,5

D. 5,5

9.If we apply two BCD digits to a 4-bit binary adder. The adder will form the sum in binary and
produces the result that ranges from___ to _____.

A. 0,9

B. 1,9

C. 1,13

D. 0,19

10. The addition of _________ to the binary sum converts it to the correct BCD representation
and also produces an output carry as required.

A. 0100

B. 0101

C. 0110

D. 0111

11. In Octal to Binary encoder, we have 8 inputs and 3 outputs. At a particular time, how many
inputs can be one?

A. 1

B. 2

C. 4

D. 8

12. Which of the following combinational circuit has n inputs and 2^n outputs?

A. Adder

B. Subtractors

C. Encoder

D. Decoder

13. Which of the following combinational circuit distributes the information taken from one line
to a given number of output lines?

A. Encoder

B. Decoder

C. Multiplexer

Lovely Professional University60

Computer System Architecture

Notes

D. De-multiplexer

14. In a de-multiplexer, if we have only 1 input lines and 4 output lines, then how many
selection lines will be there?

A. 0

B. 1

C. 2

D. 4

15. Which of the following combinational circuit has 2^n inputs and n outputs?

A. Adder

B. Subtractor

C. Encoder

D. Decoder

Answers for Self Assessment

1. A 2. A 3. B 4. A 5. B

6. A 7. B 8. C 9. D 10. C

11. A 12. D 13. D 14. C 15. C

Review Questions

1. What are logic gates? Explain its functionalities, truth table and logic symbol.
2. What are adders? Explain half, full and decimal adders.
3. Explain encoders and decoders with their logic symbol and their functionalities.
4. Explain multiplexers, its use and variants.
5. Explain de-multiplexers, its use and variant.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Computer System Architecture

Notes

D. De-multiplexer

14. In a de-multiplexer, if we have only 1 input lines and 4 output lines, then how many
selection lines will be there?

A. 0

B. 1

C. 2

D. 4

15. Which of the following combinational circuit has 2^n inputs and n outputs?

A. Adder

B. Subtractor

C. Encoder

D. Decoder

Answers for Self Assessment

1. A 2. A 3. B 4. A 5. B

6. A 7. B 8. C 9. D 10. C

11. A 12. D 13. D 14. C 15. C

Review Questions

1. What are logic gates? Explain its functionalities, truth table and logic symbol.
2. What are adders? Explain half, full and decimal adders.
3. Explain encoders and decoders with their logic symbol and their functionalities.
4. Explain multiplexers, its use and variants.
5. Explain de-multiplexers, its use and variant.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Computer System Architecture

Notes

D. De-multiplexer

14. In a de-multiplexer, if we have only 1 input lines and 4 output lines, then how many
selection lines will be there?

A. 0

B. 1

C. 2

D. 4

15. Which of the following combinational circuit has 2^n inputs and n outputs?

A. Adder

B. Subtractor

C. Encoder

D. Decoder

Answers for Self Assessment

1. A 2. A 3. B 4. A 5. B

6. A 7. B 8. C 9. D 10. C

11. A 12. D 13. D 14. C 15. C

Review Questions

1. What are logic gates? Explain its functionalities, truth table and logic symbol.
2. What are adders? Explain half, full and decimal adders.
3. Explain encoders and decoders with their logic symbol and their functionalities.
4. Explain multiplexers, its use and variants.
5. Explain de-multiplexers, its use and variant.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Lovely Professional University 61

Unit 04: Design of Synchronous Sequential Circuits

Notes

Unit 04: Design of Synchronous Sequential Circuits

CONTENTS

Objectives

Introduction

4.1 Types of Sequential circuits

4.2 Basic Flip-Flop Circuit

4.3 Introduction of Control Input

4.4 Characteristic Table

4.5 State Table

4.6 Characteristic Table and Excitation Table

4.7 Design Procedure

4.8 Counters

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives
After studying this unit, you will be able to:

• understand the sequential circuit

• understand the latches and different types of flip flops

• analyse the clocked sequential circuits

• understand state reduction and state assignment

• understand the design process of sequential circuit

Introduction
When the system requires the storage elements, then the system can be described in the terms of
sequential circuits.The sequential circuit is made up of combinational circuit to which storage
elements are connected to form a feedback path.The storage elements are devices capable of storing
binary information. Sequential circuits are used to construct the finite state machines, which are
basic building blocks in all digital circuitry. The binary information stored in these elements at any
given time defines the state of the sequential circuit at that time. The sequential circuit receives
binary information from external inputs. These inputs together with the present state of the storage
elements determine the binary value of the outputs.They also determine the condition for changing
the state in the storage elements.Thus, the outputs in the sequential circuit are a function not only of
the inputs but also of the present state of the storage elements. The next state of the storage
elements is also a function of external inputs and present state. Thus, a sequential circuit is specified
by a time sequence of inputs, outputs and external states.

Lovely Professional University62

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

Flip-flop

A flip-flop is a binary storage device which can store one bit of information.A sequential circuit
may use many flip flops to store as many bits as necessary. Examples of sequential circuits are:

Example: Flip flops, clocks, registers and counters

4.1 Types of Sequential circuits
There are two types of sequential circuits. These are:

 Asynchronous sequential circuits
 Synchronous sequential circuits

Asynchronous sequential circuits
This is a system whose outputs depend upon the order in which its input variables change and can
be affected at any instant of time. Gate-type asynchronous systems are basically combinational
circuits with feedback paths. Because of the feedback among logic gates, the system may, at times,
become unstable. Consequently, they are not often used.

Synchronous sequential circuits
This type of system uses storage elements called flip-flops that are employed to change their binary
value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop
storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in
such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges
of the clock depending on the type of memory elements used in the circuit. Synchronization is
achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout
the system in such a way that the flip-flops are affected only with the arrival of the synchronization
pulse.

The basic storage element is called a latch. It latches 0 or 1.A flip flop can maintain a binary state
indefinitely until directed by an input signal to switch states.

4.2 Basic Flip-Flop Circuit
A flip-flop circuit can be constructed from two NOR gates or two NAND gates. First the operation
of NOR and NAND gates is explained individually.

Computer System Architecture

Notes

Flip-flop

A flip-flop is a binary storage device which can store one bit of information.A sequential circuit
may use many flip flops to store as many bits as necessary. Examples of sequential circuits are:

Example: Flip flops, clocks, registers and counters

4.1 Types of Sequential circuits
There are two types of sequential circuits. These are:

 Asynchronous sequential circuits
 Synchronous sequential circuits

Asynchronous sequential circuits
This is a system whose outputs depend upon the order in which its input variables change and can
be affected at any instant of time. Gate-type asynchronous systems are basically combinational
circuits with feedback paths. Because of the feedback among logic gates, the system may, at times,
become unstable. Consequently, they are not often used.

Synchronous sequential circuits
This type of system uses storage elements called flip-flops that are employed to change their binary
value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop
storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in
such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges
of the clock depending on the type of memory elements used in the circuit. Synchronization is
achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout
the system in such a way that the flip-flops are affected only with the arrival of the synchronization
pulse.

The basic storage element is called a latch. It latches 0 or 1.A flip flop can maintain a binary state
indefinitely until directed by an input signal to switch states.

4.2 Basic Flip-Flop Circuit
A flip-flop circuit can be constructed from two NOR gates or two NAND gates. First the operation
of NOR and NAND gates is explained individually.

Computer System Architecture

Notes

Flip-flop

A flip-flop is a binary storage device which can store one bit of information.A sequential circuit
may use many flip flops to store as many bits as necessary. Examples of sequential circuits are:

Example: Flip flops, clocks, registers and counters

4.1 Types of Sequential circuits
There are two types of sequential circuits. These are:

 Asynchronous sequential circuits
 Synchronous sequential circuits

Asynchronous sequential circuits
This is a system whose outputs depend upon the order in which its input variables change and can
be affected at any instant of time. Gate-type asynchronous systems are basically combinational
circuits with feedback paths. Because of the feedback among logic gates, the system may, at times,
become unstable. Consequently, they are not often used.

Synchronous sequential circuits
This type of system uses storage elements called flip-flops that are employed to change their binary
value only at discrete instants of time. Synchronous sequential circuits use logic gates and flip-flop
storage devices. Sequential circuits have a clock signal as one of their inputs. All state transitions in
such circuits occur only when the clock value is either 0 or 1 or happen at the rising or falling edges
of the clock depending on the type of memory elements used in the circuit. Synchronization is
achieved by a timing device called a clock pulse generator. Clock pulses are distributed throughout
the system in such a way that the flip-flops are affected only with the arrival of the synchronization
pulse.

The basic storage element is called a latch. It latches 0 or 1.A flip flop can maintain a binary state
indefinitely until directed by an input signal to switch states.

4.2 Basic Flip-Flop Circuit
A flip-flop circuit can be constructed from two NOR gates or two NAND gates. First the operation
of NOR and NAND gates is explained individually.

Lovely Professional University 63

Unit 04: Design of Synchronous Sequential Circuits

Notes

Basic Operation of NOR gate

Basic flip-flop circuit using NOR gates

The cross coupled connection from the output of one gate to the input of other gate constitutes a
feedback path. The inputs are S and R and the outputs are Q and Q’.

Case 1: S=1 and R=0

Unit 04: Design of Synchronous Sequential Circuits

Notes

Basic Operation of NOR gate

Basic flip-flop circuit using NOR gates

The cross coupled connection from the output of one gate to the input of other gate constitutes a
feedback path. The inputs are S and R and the outputs are Q and Q’.

Case 1: S=1 and R=0

Unit 04: Design of Synchronous Sequential Circuits

Notes

Basic Operation of NOR gate

Basic flip-flop circuit using NOR gates

The cross coupled connection from the output of one gate to the input of other gate constitutes a
feedback path. The inputs are S and R and the outputs are Q and Q’.

Case 1: S=1 and R=0

Lovely Professional University64

Computer System Architecture

Notes

Case 2: S=0 and R=0

When the set input returns to 0. So, S=0, R=0, then Q=1, Q’=0

Case 3: S=0 and R=1

When a 1 is there in the reset input.So, S=0, R=1, then Q=0, Q’=1

Case 4: S=0 and R=0

When reset input returns to 0. So, S=0, R=0, then Q=0, Q’=1

Lovely Professional University 65

Unit 04: Design of Synchronous Sequential Circuits

Notes

Case 5: S=1 and R=1

When S=1, R=1, then Q=1, Q’=1

So, this flip-flop has two useful states:

 When Q=1 & Q’=0, it is in the set state or 1-state.
 When Q=0 & Q’=1, it is in clear state or 0-state.

S R Q Q’

1 0 1 0

0 0 1 0 (After S=1, R=0)

0 1 0 1

0 0 0 1 (After S=0, R=1)

1 1 0 0 Undefined

Basic Operation of NAND gate

Unit 04: Design of Synchronous Sequential Circuits

Notes

Case 5: S=1 and R=1

When S=1, R=1, then Q=1, Q’=1

So, this flip-flop has two useful states:

 When Q=1 & Q’=0, it is in the set state or 1-state.
 When Q=0 & Q’=1, it is in clear state or 0-state.

S R Q Q’

1 0 1 0

0 0 1 0 (After S=1, R=0)

0 1 0 1

0 0 0 1 (After S=0, R=1)

1 1 0 0 Undefined

Basic Operation of NAND gate

Unit 04: Design of Synchronous Sequential Circuits

Notes

Case 5: S=1 and R=1

When S=1, R=1, then Q=1, Q’=1

So, this flip-flop has two useful states:

 When Q=1 & Q’=0, it is in the set state or 1-state.
 When Q=0 & Q’=1, it is in clear state or 0-state.

S R Q Q’

1 0 1 0

0 0 1 0 (After S=1, R=0)

0 1 0 1

0 0 0 1 (After S=0, R=1)

1 1 0 0 Undefined

Basic Operation of NAND gate

Lovely Professional University66

Computer System Architecture

Notes

Basic flip-flop circuit using NAND gates

Case 1: S=1, R=0

When S=1, R=0, then Q=0, Q’=1

Case 2: S=1, R=1

When S=1, R=1, then Q=0, Q’=1

Computer System Architecture

Notes

Basic flip-flop circuit using NAND gates

Case 1: S=1, R=0

When S=1, R=0, then Q=0, Q’=1

Case 2: S=1, R=1

When S=1, R=1, then Q=0, Q’=1

Computer System Architecture

Notes

Basic flip-flop circuit using NAND gates

Case 1: S=1, R=0

When S=1, R=0, then Q=0, Q’=1

Case 2: S=1, R=1

When S=1, R=1, then Q=0, Q’=1

Lovely Professional University 67

Unit 04: Design of Synchronous Sequential Circuits

Notes

Case 3: S=0, R=1

When S=0, R=1, then Q=0, Q’=1

Case 4: S=1, R=1

When S=0, R=1, then Q=0, Q’=1

Lovely Professional University68

Computer System Architecture

Notes

Case 5: S=0, R=0

When S=0, R=0, then Q=1, Q’=1

S R Q Q’

1 0 0 1

1 1 0 1 (After S=1, R=0)

0 1 1 0

1 1 1 0 (After S=0, R=1)

0 0 1 1

4.3 Introduction of Control Input
The operation of basic flip-flop can be modified by providing an additional control input, i.e., clock
pulse which determines when the state of the clock needs to be changed. The best example of this
includes RS flip-flop.

RS Flip-Flop

Lovely Professional University 69

Unit 04: Design of Synchronous Sequential Circuits

Notes

When CP=0, it does not matter what are the values of S and R, the outputs of gates 3 and 4 will stay
at logic 1.When CP=1, the information from S and R is allowed to reach the output. So, here only
those cases are shown when the CP=1.

Case 1: CP=1, S=1, R=0 (Set State)

When CP=1, S=1, R=0, then Q=1, Q’=0

So, the set state is reached with S=1, R=0 and CP=1.

Case 2: CP=1, S=0, R=1 (Reset State)

When CP=1, S=0, R=1, then Q=0, Q’=1

To change to reset state, the inputs must be S=0, R=1 and CP=1.In either case, the CP returns to 0
and the circuit remains in its previous state.

Case 3: CP=1, S=0, R=0

When CP=1 and both the S and R inputs equal to 0, the state of circuit does not change.

Case 4: CP=1, S=1, R=1 (Intermediate condition)

When CP=1, S=1, R=1, then Q=1, Q’=1

Lovely Professional University70

Computer System Architecture

Notes

When CP input goes back to 0 (while S and Rare maintained at 1), it is not possible to determine the
next state, as it depends on whether the output of gate 3 or gate 4 goes to 1 first. This intermediate
condition makes the circuit difficult to manage and it is seldom used in practice. But it is an
important circuit because all the other flip flops are constructed from this.

CP S R Q Q’

0 0 0 No change

0 0 1 No change

0 1 0 No change

0 1 1 No change

1 0 0 No change

1 0 1 0 1 Reset state

1 1 0 1 0 Set state

1 1 1 1 1 Intermediate Condition

This control input disables the circuit by applying 0 to C, so that the state of the output does not
change regardless of the values of S and R. When C=1, and both the S and r inputs are equal to 0,
then the state of the circuit does not change.An intermediate condition occurs when all three inputs
are equal to 1. This will pass 0s in both inputs of the basic SR latch. When the control input goes
back to 0, one cannot conclusively determine the next state. This intermediate condition makes the
circuit difficult to manage.

D Flip Flop
The D flip flop has two inputs: D (Data) and C (Enable/Control).The D input directly goes to S
input and its complement goes to R input.

Lovely Professional University 71

Unit 04: Design of Synchronous Sequential Circuits

Notes

CP=0: If the pulse input is at 0, the outputs of gates 3 and 4 are at the 1 level and the circuit cannot
change state regardless of the value of D.

CP=1: The D input is sampled when CP=1.If D=1, the Q output goes to 1, placing the circuit in the
set state.If D=0, the output Q goes to 0 and the circuit switches to the clear state.

Clock D Q

0 0 No change

0 1 No change

1 0 0 (Clear State)

1 1 1 (Set State)

JK Flip Flop
It is a refinement of RS flip-flop in that the intermediate state of the RS type is defined in JK
type.Inputs J and K behave like S and R to set and clear the flip flop respectively.The input marked
J is for set and input marked K is for reset.When both inputs J and K are equal to 1, the flip flop
switches to its complement state, that is, if Q=1, it switches to Q=0 and vice-versa.So, here two cross
coupled NOR gates and two AND gates are used.Output Q is ANDed with K and CP inputs so that
the flip-flop is cleared during a clock pulse only if Q was previously 1.Similarly, output Q’ is
ANDed with J and CP inputs so that the flip flop is set with a clock pulse only when Q’ was
previously 1.When both J and K are 1, the input pulse is transmitted through one AND gate only:
the one whose input is connected to the flip flop output that is presently equal to 1.Thus, if Q=1, the
output of the upper AND gate becomes 1 upon application of the clock pulse and the flip-flop is
cleared.If Q’=1, the output of lower AND gate becomes 1 and the flip-flop is set.In either case, the
output state of the flip-flop is complemented.

Lovely Professional University72

Computer System Architecture

Notes

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence
of inputs, outputs and internal states.A logic diagram is recognized as a clocked sequential circuit if
it includes flip flops.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence
of inputs, outputs and internal states.

Logic Diagram

A logic diagram is recognized as a clocked sequential circuit if it includes flip flops. Next state
equations for the circuit: A(t+1) = A(t)x(t) + B(t)x(t), B(t+1) = A’(t)x(t). The previous equations can
be expressed in more compact form as follows:A(t+I) = Ax + Bx, B(t+1) = A’x.

Lovely Professional University 73

Unit 04: Design of Synchronous Sequential Circuits

Notes

The present-state value of the output can be expressed algebraically as follows:y(t)=[A(t) + B(t)]x'(t).
Removing the symbol (t) for the present state, we obtain the output Boolean function:y=(A+ B)x'

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table. The
table consists of four sections labeled present state, input, next state, and output.

Present State Input Next State Output

A B X A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

In general, a sequential circuit with m flip-flops and n inputs needs 2m+n rows in the state table. The
binary numbers from 0 through 2m+n -1 are listed under the present-state and input columns. The
next-state section has m columns, one for each flip-flop. The binary values for the next state are
derived directly from the state equations. The output section has as many columns as there are
output variables. We have eight binary combinations from 000 to 111. The next state of flip-flop A
must satisfy the state equation:A (t + I) = Ax + Bx. Similarly, the next state of flip-flop B is derived
from the state equationB(t + 1) = A'x. The output column is derived from the output equation y =
Ax' + Bx.

Second Form of State Table

Next State Output

Present State X=0 X=1 X=0 x=1

AB AB AB y Y

00 00 01 0 0

01 00 11 1 0

Lovely Professional University74

Computer System Architecture

Notes

10 00 10 1 0

11 00 10 1 0

In this configuration, the state table has only three sections: present state, next state, and output.
The input conditions are enumerated under the next-state and output sections. For each present
state, there are two possible next states and outputs, depending on the value of the input.

State Diagram

The information available in a state table can be represented graphically in a state diagram. In this
type of diagram, a state is represented by a circle, and the transition between states is indicated by
directed lines connecting the circles.

State table vs. State diagram

There is no difference between a state table and a state diagram except in the manner of
representation. The state table is easier to derive from a given logic diagram and the state diagram
follows directly from the state table. The state diagram gives a pictorial view of state transitions and
is the form suitable for human interpretation of the circuit operation.

Flip-Flop Input Functions

The part of the circuit that generates the inputs to flip-flops are described algebraically by a set of
Boolean functions called flip-flop input functions, or sometimes input equations.As an example,
consider the following flip-flop input functions: JA = BC'x + B'Cx' &KA=B+y.

JA and KA designate two Boolean variables. The first letter in each denotes the J and K input,
respectively, of a JK flip-flop. The second letter, A, is the symbol name of the flip-flop. The right
side of each equation is a Boolean function for the corresponding flip-flop input variable.

Implementation of Flip-Flop Input Functions

Lovely Professional University 75

Unit 04: Design of Synchronous Sequential Circuits

Notes

The JK flip-flop has an output symbol A and two inputs labeled J and K. This combinational circuit
is the implementation of the algebraic expression given by the input functions. The outputs of the
combinational circuit are denoted by JA and KA in the input functions and go to the J and K inputs,
respectively, of flip-flop A.The sequential circuit has one input x, one output y, and two D flip-flops
A and B.

Flip-Flop Input Functions

The logic diagram can be expressed algebraically with two flip-flop input functions and one
output-circuit function:

DA= Ax+Bx

DB= A'x

y =(A+ B)x'

This set of Boolean functions provides all the necessary information for drawing the logic diagram
of the sequential circuit. The symbol DA specifies a D flip-flop labeled A. DB specifies a second D
flip-flop labeled B. The flip-flop input functions constitute a convenient algebraic form for
specifying a logic diagram of a sequential circuit. They imply the type of flip-flop from the first
letter of the input variable, and they fully specify the combinational circuit that drives the flip-flop.

4.4 Characteristic Table
The analysis of a sequential circuit with flip-flops other than the D type is complicated because the
relationship between the inputs of the flip-flop and the next state is not straightforward. They
define the next state as a function of the inputs and present state. Q(t) refers to the present state
prior to the application of a pulse. Q (t + I) is the next state one clock period later.

JK Flip-Flop Characteristic Table

J K Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

Lovely Professional University76

Computer System Architecture

Notes

1 0 1 Set

1 1 Q’(t) Complement

RS Flip Flop Characteristic Table

S R Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 ? Unpredictable

D Flip Flop Characteristic Table

D Q(t+1)

0 0 Reset

1 1 Set

T Flip Flop Characteristic Table

T Q(t+1)

0 Q(t) No change

1 Q’(t) Complement

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or
diagram.

Lovely Professional University 77

Unit 04: Design of Synchronous Sequential Circuits

Notes

State Reduction

Any design process must consider the problem of minimizing the cost of the final circuit.The
reduction of the number of flip-flops in a sequential circuit is referred to as state reduction problem.

There are infinite number of input sequences that may be applied to the circuit, each results in a
unique output sequence.Example: Consider the input sequence 01010110100 starting from the
initial state a. Each input of 0 or 1 produces an output of 0 or 1 and causes the circuit to go to the
next state.

4.5 State Table
Let us assume that we have found a sequential circuit whose state diagram has less than 7 states
and we wish to compare it with the circuit whose state diagram is just shown.If identical inputs
sequences are applied to the two circuits and identical outputs occur for all input sequences, then
the two circuits are said to be equivalent, and one may be replaced by the other.The problem of
state reduction is to find ways of reducing the number of states in a sequential circuit without
altering the input-output relationships.

Next state Output

Present state X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

Lovely Professional University78

Computer System Architecture

Notes

c a d 0 0

d e f 0 1

e a f 0 1

f g f 0 1

g a f 0 1

Algorithm for state reduction
Two states are said to be equivalent if, for each member of the set of inputs, they give the same
output and send the circuit either to the same state or to an equivalent state.When two states are
equivalent, one of them can be removed without altering the input-output relationships.

Reducing the state table

Next state Output

Present state X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e f 0 1

e a f 0 1

f g e f 0 1

g a f 0 1

Next state Output

Present state X=0 X=1 X=0 X=1

Lovely Professional University 79

Unit 04: Design of Synchronous Sequential Circuits

Notes

a a b 0 0

b c d 0 0

c a d 0 0

d e f d 0 1

e a f d 0 1

f e f d 0 1

Next state Output

Present state X=0 X=1 X=0 X=1

a a b 0 0

b c d 0 0

c a d 0 0

d e d 0 1

e a d 0 1

Considering again the same input sequence 01010110100 starting from the initial state a.It results in
the same output sequence results although the state sequence is different.

Lovely Professional University80

Computer System Architecture

Notes

In this example of sequential circuit, the number of states are reduced from seven to five.In either
case, the representation of the states with physical components require that we use three flip flops,
we can formulate up to 8 binary states denoted by binary numbers 000 through 111, with each bit
designating the state of one flip-flop.In general, reducing the number of states in a state table is
likely to result in a circuit with less equipment

State Assignment
The cost of the combinational circuit part of a sequential circuit can be reduced by using the known
simplification methods for combinational circuits.The factor state assignment problem that comes
into play in minimizing the combinational gates.State assignment procedures are concerned with
methods for assigning binary values to states in such a way as to reduce the cost of the
combinational circuit that derives the flip flops.

State Assignment 1 Assignment 2 Assignment 3

a 001 000 000

b 010 010 100

c 011 011 010

d 100 101 101

e 101 111 011

Binary State Assignment

Assignment 1 is a straight binary assignment for the sequence of states from a through e. The other
two assignments for the sequence of states from a through e. The other two assignments are chosen
arbitrarily.

Reduced State Table with Binary Assignment 1

Lovely Professional University 81

Unit 04: Design of Synchronous Sequential Circuits

Notes

Next Stage Output

Present State x=0 x=1 x=0 x=1

001 001 010 0 0

010 011 100 0 0

011 001 100 0 0

100 101 100 0 1

101 001 100 0 1

The binary form of the state table is used to derive the combinational circuit part of sequential
circuit. The complexity of the combinational circuit obtained depends on the binary state
assignment chosen.

4.6 Characteristic Table and Excitation Table
The characteristic table is useful for analysis and for defining the operation of the flip-flop. It
specifies the next state when the inputs and present state are known. During the design process, we
usually know the transition from present state to next state and wish to find the flip-flop input
conditions that will cause the required transition. For this reason, we need a table that lists the
required inputs for a given change of state. Such a list is called an excitation table.

RS Flip Flop Characteristic Table

S R Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 ? Unpredictable

RS Flip Flop Excitation Table

Q(t) Q(t+1) S R

0 0 0 X

Lovely Professional University82

Computer System Architecture

Notes

0 1 1 0

1 0 0 1

1 1 X 0

JK Flip-Flop Characteristic Table

J K Q(t+1)

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

JK Flip Flop Excitation Table

Q(t) Q(t+1) J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

D Flip Flop Characteristic Table

D Q(t+1)

0 0 Reset

Lovely Professional University 83

Unit 04: Design of Synchronous Sequential Circuits

Notes

1 1 Set

D Flip Flop Excitation Table

Q(t) Q(t+1) D

0 0 0

0 1 1

1 0 0

1 1 1

T Flip Flop Characteristic Table

T Q(t+1)

0 Q(t) No change

1 Q’(t) Complement

T Flip Flop Excitation Table

Q(t) Q(t+1) T

0 0 0

0 1 1

1 0 1

1 1 0

Lovely Professional University84

Computer System Architecture

Notes

4.7 Design Procedure
The design of a clocked sequential circuit starts from a set of specifications and culminates in a logic
diagram or a list of Boolean functions from which the logic diagram can be obtained. In contrast to
a combinational circuit, which is fully specified by a truth table, a sequential circuit requires a state
table for its specification. The first step in the design of sequential circuits is to obtain a state table or
an equivalent representation, such as a state diagram.A synchronous sequential circuit is made up
of flip-flops and combinational gates. The design of the circuit consists of choosing the flip-flops
and then finding a combinational gate structure that, together with the flip-flops, produces a circuit
that fulfills the stated specifications.The number of flip-flops is determined from the number of
states needed in the circuit. The design process involves a transformation from the sequential-
circuit problem into a combinational-circuit problem.

Step 1: The word description of the circuit behavior is stated. This may be accompanied by a
state diagram, a timing diagram, or other pertinent information.

Step 2: From the given information about the circuit, obtain the state table.

Step 3: The number of states may be reduced by state-reduction methods if the sequential
circuit can be characterized by input-output relationships independent of the number of states.

Step 4: Assign binary values to each state if the state table obtained in step 2 or 3 contains letter
symbols.

Step 5: Determine the number of flip-flops needed and assign a letter symbol to each.

Step 6: Choose the type of flip-flop to be used.

Step 7: From the state table, derive the circuit excitation and output tables.

Step 8: Using the map or any other simplification method, derive the circuit output functions
and the flip-flop input functions.

Step 9: Draw the logic diagram.

Representation of states

The m flip-flops can represent up to 2m distinct states.A circuit may have unused binary states if the
total number of states is less than 2m. The unused states are taken as don't-care conditions during
the design of the combinational circuit part of the circuit.

Type of flip-flop to be used

The type of flip-flop to be used may be included in the design specifications or may depend on
what is available to the designer. Many digital systems are constructed entirely with JK flip-flops
because they are the most versatile available.When many types of flip-flops are available, it is
advisable to use the D flip-flop for applications requiring transfer of data (such as shift registers),
the T type for applications involving complementation (such as binary counters), and the JK type
for general applications.

Lovely Professional University 85

Unit 04: Design of Synchronous Sequential Circuits

Notes

Flip-Flop specified: JK Flip-Flop

State Table

Next State

Present State X=0 X=1

A B A B A B

0 0 0 0 0 1

0 1 1 0 0 1

1 0 1 0 1 1

1 1 1 1 0 0

Excitation Table

Inputs of Combinational
Circuit

Outputs of Combinational Circuit

Present State Input Next State Flip-Flop Inputs

A B x A B JA KA JB KB

0 0 0 0 0 0 X 0 X

0 0 1 0 1 0 X 1 X

0 1 0 1 0 1 X X 1

Lovely Professional University86

Computer System Architecture

Notes

0 1 1 0 1 0 X X 0

1 0 0 1 0 X 0 0 X

1 0 1 1 1 X 0 1 X

1 1 0 1 1 X 0 X 0

1 1 1 0 0 X 1 X 1

Block Diagram of Sequential Circuit

Derivation of simplified Boolean function

The information from the truth table is transferred into the maps.

Lovely Professional University 87

Unit 04: Design of Synchronous Sequential Circuits

Notes

Where the four simplified flip-flop input functions are derived:

• JA = Bx‘ KA= Bx

• JB = x KB = (A⊕ x)'

Logic Diagram

Design with D flip flop
The time it takes to design a sequential circuit that uses D flip-flops can be shortened if we utilize
the fact that the next state of the flip-flop is equal to its D input prior to the application of a clock
pulse.

Lovely Professional University88

Computer System Architecture

Notes

Excitation Table

Q(t) Q(t+1) D

0 0 0

0 1 1

1 0 0

1 1 1

State Table

Present State Input Next State Output

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1 0

1 1 1 0 0 0

It is not necessary to include the excitation table for flip-flop inputs DA and DB since DA = A (t + 1)
and DB = B(t + 1). The sum of min-terms is as follows:

• DA(A, B, x) = Σ (2, 4, 5, 6)

• DB(A, B, x) = Σ (I, 3, 5, 6)

• y(A, B, x) = Σ (1, 5)

Maps for Input Functions and Output y

Lovely Professional University 89

Unit 04: Design of Synchronous Sequential Circuits

Notes

The Boolean functions are simplified by means of the maps.

Logic diagram of sequential circuit

Design with unused states
A circuit with m flip-flops would have 2m states. There are occasions when a sequential circuit may
use less than this maximum number of states. When simplifying the input functions to flip-flops,
the unused states can be treated as don't-care conditions.

State Table

Present State Input Next State Flip-Flop Inputs Output

A B C X A B C SA RA SB RB SC RC Y

0 0 1 0 0 0 1 0 X 0 X X 0 0

0 0 1 1 0 1 0 0 X 1 0 0 1 0

Lovely Professional University90

Computer System Architecture

Notes

0 1 0 0 0 1 1 0 X X 0 1 0 0

0 1 0 1 1 0 0 1 0 0 1 0 X 0

0 1 1 0 0 0 1 0 X 0 1 X 0 0

0 1 1 1 1 0 0 1 0 0 1 0 1 0

1 0 0 0 1 0 1 X 0 0 X 1 0 0

1 0 0 1 1 0 0 X 0 0 X 0 X 1

1 0 1 0 0 0 1 0 1 0 X X 0 0

1 0 1 1 1 0 0 X 0 0 X 0 1 1

Flip-flop specified: RS Flip Flop

There are five states listed in the table: 001, 010, O11, 100, and 101. The other three states, 000, 110,
and 111, are not used. When an input of 0 or 1 is included with these unused states, we obtain six
min-terms: 0, 1, 12, 13, 14, and 15.

Maps for simplifying the sequential circuit

Six maps are for simplifying the input functions for the three RS flip-flops. The seventh map is for
simplifying the output y. Each map has six X's in the squares of the don't-care min-terms 0, 1, 2, 13,
14, and 15.The other don't-care terms in the maps come from the X's in the flip-flop input columns
of the table.

Lovely Professional University 91

Unit 04: Design of Synchronous Sequential Circuits

Notes

Lovely Professional University92

Computer System Architecture

Notes

Logic Diagram with RS Flip-Flop

Lovely Professional University 93

Unit 04: Design of Synchronous Sequential Circuits

Notes

4.8 Counters
A sequential circuit that goes through a prescribed sequence of states upon the application of input
pulses is called a counter. The input pulses, called count pulses, may be clock pulses or they may
originate from an external source and may occur at prescribed intervals of time or at random. In a
counter, the sequence of states may follow a binary count or any other sequence of states. Counters
are found in almost all equipment containing digital logic. They are used for counting the number
of occurrences of an event and are useful for generating timing sequences to control operations in a
digital system.

Binary Counter
Of the various sequences a counter may follow, the straight binary sequence is the simplest and
most straightforward. A counter that follows the binary sequence is called a binary counter. An n-
bit binary ripple counter consists of n flip-flops and can count in binary from O to 2n - 1.

State Diagram of a 3-bit binary ripple counter

Lovely Professional University94

Computer System Architecture

Notes

The next state of a counter depends entirely on its present state, and the state transition occurs
every time the pulse occurs.

Excitation Table for 3-bit ripple Counter

Present State Next State Flip-Flop Inputs

A2 A1 A0 A2 A1 A0 TA2 TA1 TA0

0 0 0 0 0 1 0 0 1

0 0 1 0 1 0 0 1 1

0 1 0 0 1 1 0 0 1

0 1 1 1 0 0 1 1 1

1 0 0 1 0 1 0 0 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 0 0 1

1 1 1 0 0 0 1 1 1

Maps for 3-bit ripple Counter

Lovely Professional University 95

Unit 04: Design of Synchronous Sequential Circuits

Notes

Logic Diagram of 3-bit ripple Counter

Counter with non-binary sequence-Decade Counters
A counter with n flip-flops may have a binary sequence of less than 2n states. A BCD counter counts
the binary states from 0000 to 100I and returns to 0000 to repeat the sequence. Other counters may
follow an arbitrary sequence that may not be the straight binary sequence.In any case, the design
procedure is the same.The count has a repeated sequence of six states, with flip-flops B and C
repeating the binary count 00, 01, 10, while flip-flop A alternates between 0 and 1 every three
counts. The count sequence is not straight binary and two states, 011 and 11I, are not included in
the count.

Excitation table for counter

Present State Next State Flip-Flop Inputs

A B C A B C JA KA JB KB JC KC

0 0 0 0 0 1 0 X 0 X 1 X

0 0 1 0 1 0 0 X 1 X X 1

0 1 0 1 0 0 1 X X 1 0 X

1 0 0 1 0 1 X 0 0 X 1 X

1 0 1 1 1 0 X 0 1 X X 1

1 1 0 0 0 0 X 1 X 1 0 X

Lovely Professional University96

Computer System Architecture

Notes

Inputs KB and KC have only 1's and X's in their columns, so these inputs are always equal to 1. The
other flip-flop input functions can be simplified using min-terms 3 and 7 as don't-care conditions.
The simplified functions are:

JA = B JB = C JC= B’

KA= B KB= 1 KC= 1

Logic Diagram of Counter with Non-Binary Sequence

If the circuit happens to be in state 011 because of an error signal, the circuit goes to state 100 after
the application of clock pulse. This is obtained by noting that while the circuit is in present state
011, the outputs of the flip-flops are A = 0, B = 1, and C = 1.From the flip-flop input functions, we
obtain JA = KA = 1, JB = KB = 1, JC = 0, and KC = 1. Therefore, flip-flop A is complemented and
goes to 1.Flip-flop B is also complemented and goes to O. Flip-flop C is reset to O because KC =
1.This results in next state 100. In a similar manner, we can evaluate the next state from present
state 111 to be 000.

State Diagram of Counter with Non-Binary Sequence

If the circuit ever goes to one of the unused states because of an error, the next count pulse transfers
it to one of the valid states and the circuit continues to count correctly. Thus, the counter is self-
correcting. A self-correcting counter is one that if it happens to be in one of the unused states, it
eventually reaches the normal count sequence after one or more clock pulses.

Summary
• The sequential circuit is made up of combinational circuit to which storage elements are

connected to form a feedback path.

Lovely Professional University 97

Unit 04: Design of Synchronous Sequential Circuits

Notes

• A flip-flop is a binary storage device which is capable of storing one bit of information.

• A flip flop can maintain a binary state indefinitely until directed by an input signal to switch
states.

• The cross coupled connection from the output of one gate to the input of other gate
constitutes a feedback path.

• The D flip flop has two inputs: D (Data) and C (Enable/Control).

• The analysis of a sequential circuit consists of obtaining a table or a diagram for the time
sequence of inputs, outputs and internal states.

• The state table consists of four sections labeled present state, input, next state, and output.

• The information available in a state table can be represented graphically in a state diagram.

• There are infinite number of input sequences that may be applied to the circuit; each results
in a unique output sequence.

• State assignment procedures are concerned with methods for assigning binary values to
states in such a way as to reduce the cost of the combinational circuit that derives the flip
flops.

• The design of a clocked sequential circuit starts from a set of specifications and culminates in
a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.

• The design of a combinational circuit, which is fully specified by a truth table, a sequential
circuit requires a state table for its specification.

• In a counter, the sequence of states may follow a binary count or any other sequence of
states.

Keywords
• Flip-flop:A flip-flop is a binary storage device which can store one bit of information.

• Latch:The basic storage element is called a latch. It latches 0 or 1.

• State Table:The time sequence of inputs, outputs, and flip-flop states can be enumerated in
a state table.

• State Diagram:A state is represented by a circle, and the transition between states is
indicated by directed lines connecting the circles.

• Characteristic Table: The characteristic table is useful for analysis and for defining the
operation of the flip-flop. It specifies the next state when the inputs and present state are
known.

• Counter: A sequential circuit that goes through a prescribed sequence of states upon the
application of input pulses is called a counter.

• Binary Counter:A counter that follows the binary sequence is called a binary counter.

• Self-correcting Counter:A self-correcting counter is one that if it happens to be in one of the
unused states, it eventually reaches the normal count sequence after one or more clock
pulses.

Self Assessment

1. In a state table, which of these things are included?
A. Present state, Input
B. Next state, Output
C. Present state and next state
D. All present state, input, next state and output

Lovely Professional University98

Computer System Architecture

Notes

2. A sequential circuit with m flip-flops and n inputs needs ________ rows in the state table.
A. 2m

B. 2n

C. 2m+n

D. 2m-n

3. In a state diagram, the states are represented by
A. Rectangles
B. Squares
C. Lines
D. Circles

4. In a basic flip flop circuit using NAND gates, if S=0 and R=0 are provided, then what will
be values of Q and Q’?

A. 0,0
B. 0,1
C. 1,0
D. 1,1

5. In RS flip flop, when CP=1, S=1, and R=0, what do we call this state?
A. Set state
B. Reset state
C. Memory state
D. Invalid state

6. In a basic flip flop circuit using NOR gates, what values of S and R describe the undefined
condition?

A. 0, 0
B. 0, 1
C. 1, 0
D. 1, 1

7. A basic flip-flop circuit can be made up of
A. Two NAND gates
B. Two NOR gates
C. Either two NAND gates or two NOR gates
D. None of the above

8. In D flip-flop, when CP=1 and D=0, the circuit will be in
A. Set state
B. Clear state

Lovely Professional University 99

Unit 04: Design of Synchronous Sequential Circuits

Notes

9. In D flip-flop, D input goes directly to _______ input and its complement goes to ______
input.

A. S, R
B. R, S

10. Which table lists the required inputs for a given change of state?
A. Input table
B. Characteristic table
C. Excitation table
D. None of the above

11. During the design of combinational circuit part, the unused states are taken as
A. 0
B. 1
C. X
D. None of the above

12. In applications which require the transfer the data, what kind of flip-flop is advisable to
use?

A. D flip-flop
B. T flip-flop
C. JK flip-flop
D. None of the above

13. Which of the following circuit use the clock signal as one of the inputs for
synchronization?

A. Asynchronous sequential circuit
B. Synchronous sequential circuit
C. Combinational circuit
D. None of the above

14. A flip-flop is a binary storage device which can store ______ bit of information.
A. Zero
B. One
C. Two
D. None of the above

15. If the circuit requires the storage elements, then the circuit can be described in terms of
A. Sequential circuit
B. Combinational circuit
C. Either sequential or combinational circuit
D. Both sequential and combinational circuits

Lovely Professional University100

Computer System Architecture

Notes

Answers for Self Assessment

1. D 2. C 3. D 4. D 5. A

6. D 7. C 8. B 9. A 10. C

11. C 12. A 13. B 14. B 15. A

Review Questions:

1. What is a sequential circuit? Explain its diagram and types.
2. What is a basic flip-flop circuit? How it can be constructed using different ways?
3. What is RS flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
4. What is JK flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
5. What is a state table? Explain its components with examples.
6. What is a characteristic table? Draw the characteristic table of JK, RS, D and T flip-flops.
7. Explain the design procedure of sequential circuits.
8. What is a counter? Explain 3-bit ripple binary counter.
9. Explain the counter with non-binary sequences.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d

https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm

Computer System Architecture

Notes

Answers for Self Assessment

1. D 2. C 3. D 4. D 5. A

6. D 7. C 8. B 9. A 10. C

11. C 12. A 13. B 14. B 15. A

Review Questions:

1. What is a sequential circuit? Explain its diagram and types.
2. What is a basic flip-flop circuit? How it can be constructed using different ways?
3. What is RS flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
4. What is JK flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
5. What is a state table? Explain its components with examples.
6. What is a characteristic table? Draw the characteristic table of JK, RS, D and T flip-flops.
7. Explain the design procedure of sequential circuits.
8. What is a counter? Explain 3-bit ripple binary counter.
9. Explain the counter with non-binary sequences.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d

https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm

Computer System Architecture

Notes

Answers for Self Assessment

1. D 2. C 3. D 4. D 5. A

6. D 7. C 8. B 9. A 10. C

11. C 12. A 13. B 14. B 15. A

Review Questions:

1. What is a sequential circuit? Explain its diagram and types.
2. What is a basic flip-flop circuit? How it can be constructed using different ways?
3. What is RS flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
4. What is JK flip-flop? Explain its cases. Draw its truth table, excitation table and

characteristic table.
5. What is a state table? Explain its components with examples.
6. What is a characteristic table? Draw the characteristic table of JK, RS, D and T flip-flops.
7. Explain the design procedure of sequential circuits.
8. What is a counter? Explain 3-bit ripple binary counter.
9. Explain the counter with non-binary sequences.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.electronicsforu.com/technology-trends/learn-electronics/flip-flop-rs-jk-t-d

https://www.tutorialspoint.com/digital_circuits/digital_circuits_flip_flops.htm

Lovely Professional University 101

Unit 05: Register Transfer and Micro-Operations
Notes

Unit 05: Register Transfer and Micro-Operations

CONTENTS

Objectives

Introduction

5.1 Register Transfer

5.2 Transfer under a Predetermined Control Condition

5.3 Basic Symbols for Register Transfers

5.4 Construction using Multiplexers

5.5 Construction using Three State Bus Buffers

5.6 Memory Transfer

5.7 Arithmetic Micro-Operations

5.8 Logic Micro-Operations

5.9 Applications of Logic Micro-Operations

5.10 Shift Micro-Operations

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 Understand the register transfer.
 Understand the register transfer language.
 Understand the bus line construction using multiplexers and three state buffers.
 Understand read and write operations.
 Understand the different micro-operations.

Introduction
Digital system design invariably uses a modular approach. Digital modules are defined by the
registers they contain and the operations that are performed on the data stored in them. The
internal hardware organization of a digital computer is best defined by specifying:Set of
registers, sequence of micro-operations and control to initiate the sequence of micro-
operations.

The symbolic notation used to describe the micro-operation transfers among registers is called
a register transfer language. A register transfer language is a system for expressing in symbolic
form the micro-operation sequences among the registers of a digital module.

Lovely Professional University102

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

5.1 Register Transfer
Computer registers are designated by capital letters to denote the function of a register. It is always
better to use the capital letters for the functioning of registers.

MAR, PC, IR.

Block diagram of registers

Information transfers using registers

The information can be transferred from one register to another register. This is represented as:

R1 R2. The date is transferred from register R2 to R1.

5.2 Transfer under a Predetermined Control Condition
If (P=1) then (R2 ‹– R1) P: R2 ‹– R1

Here the predetermined control condition is if P = 1, then only the data of register R1 should be
transferred to register R2. Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer.

015

15 8 7 0

Computer System Architecture

Notes

5.1 Register Transfer
Computer registers are designated by capital letters to denote the function of a register. It is always
better to use the capital letters for the functioning of registers.

MAR, PC, IR.

Block diagram of registers

Information transfers using registers

The information can be transferred from one register to another register. This is represented as:

R1 R2. The date is transferred from register R2 to R1.

5.2 Transfer under a Predetermined Control Condition
If (P=1) then (R2 ‹– R1) P: R2 ‹– R1

Here the predetermined control condition is if P = 1, then only the data of register R1 should be
transferred to register R2. Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer.

015

15 8 7 0

Computer System Architecture

Notes

5.1 Register Transfer
Computer registers are designated by capital letters to denote the function of a register. It is always
better to use the capital letters for the functioning of registers.

MAR, PC, IR.

Block diagram of registers

Information transfers using registers

The information can be transferred from one register to another register. This is represented as:

R1 R2. The date is transferred from register R2 to R1.

5.2 Transfer under a Predetermined Control Condition
If (P=1) then (R2 ‹– R1) P: R2 ‹– R1

Here the predetermined control condition is if P = 1, then only the data of register R1 should be
transferred to register R2. Every statement written in a register transfer notation implies a hardware
construction for implementing the transfer.

015

15 8 7 0

Lovely Professional University 103

Unit 05: Register Transfer and Micro-Operations
Notes

5.3 Basic Symbols for Register Transfers
T: R2<-R1,R1<-R2

Symbol Description Examples

Letters(and numerals) Denotes a register MAR, R2

Parentheses () Denotes a part of the register R2(0=7), R2(L)

Arrow <- Denotes transfer of information R2<-R1

Comma , Separates two micro-operations R2<-R1,R1<-R2

Bus and memory transfer

A more efficient scheme for transferring information between registers in a multiple register
configuration is a common bus system. A bus structure consists of a set of common lines, one for
each bit of a register, through which binary information is transferred one at a time.

Construction of a common bus system

There are two ways to construct a common bus system:

1) With multiplexers

2) With three-state bus buffers

Lovely Professional University104

Computer System Architecture

Notes

5.4 Construction using Multiplexers

Bus selection

S1 S0 Register selected

0 0 A

0 1 B

1 0 C

1 1 D

Information transfer

BUS <- C, R1 <- BUS.

5.5 Construction using Three State Bus Buffers
A three state bus buffer contains three states, i.e., logic 1, logic 0 and high impedance state.

Lovely Professional University 105

Unit 05: Register Transfer and Micro-Operations
Notes

5.6 Memory Transfer
The memory transfer contains read and write operations.Amemory word will be symbolized by the
letter M.It is necessary to specify the address of M when writing memory transfer operations.

Memory read
The memory read operation is represented using the letter M.

Read: DR <-M[AR]. This representation indicates that the information from memory address
register is read.

Memory write
The memory write operation is also represented using the letter M.

Write: M [AR] <- R1. This representation indicates that the information from R1 register is written
to memory.

Types of Micro-operations

There are various types of micro-operations like

• Register Transfer Micro-operations

• Arithmetic Micro-operations

• Logical Micro-operations

Lovely Professional University106

Computer System Architecture

Notes

• Shift Micro-operations

Register transfer micro-operation
These kinds of micro-operations don’t change the information content.Other three types of micro-
operations change the information change the information content during the transfer.

5.7 Arithmetic Micro-Operations
This set contains the basic arithmetic micro-operations, i.e.,

• Addition

• Subtraction

• Increment

• Decrement

Arithmetic micro-operations Description

R3 <- R1 + R2 Contents of R1 plus R2 are transferred to R3

R3 <- R1 - R2 Contents of R1 minus R2 are transferred to R3

R2 <- R2’ 1’s complement the contents of R2

R2 <- R2’ + 1 2’s complement the contents of R2

R3 <- R1 + R2’ +1 Subtraction operation

R1 <- R1 + 1 Increments the contents of R1 by 1

R1 <- R1 - 1 Decrements the contents of R1 by 1

5.8 Logic Micro-Operations
This set of micro-operations specifies binary operations for strings of bits stored in registers. For
example, P:R1 <- R1⊕ R2. It specifies a logic micro-operation to be executed on the individual bits
of the registers provided that the control variable P = 1.

Lovely Professional University 107

Unit 05: Register Transfer and Micro-Operations
Notes

Unit 05: Register Transfer and Micro-Operations
Notes

Unit 05: Register Transfer and Micro-Operations
Notes

Lovely Professional University108

Computer System Architecture

Notes

Computer System Architecture

Notes

Computer System Architecture

Notes

Lovely Professional University 109

Unit 05: Register Transfer and Micro-Operations
Notes

Unit 05: Register Transfer and Micro-Operations
Notes

Unit 05: Register Transfer and Micro-Operations
Notes

Lovely Professional University110

Computer System Architecture

Notes

5.9 Applications of Logic Micro-Operations
How the bits of one register (designated by A) are manipulated by logic micro-operations as a
function of the bits of another register (designated by B).

Computer System Architecture

Notes

5.9 Applications of Logic Micro-Operations
How the bits of one register (designated by A) are manipulated by logic micro-operations as a
function of the bits of another register (designated by B).

Computer System Architecture

Notes

5.9 Applications of Logic Micro-Operations
How the bits of one register (designated by A) are manipulated by logic micro-operations as a
function of the bits of another register (designated by B).

Lovely Professional University 111

Unit 05: Register Transfer and Micro-Operations
Notes

Selective set

1010 A(Before)

1100 B(Logic Operand)

1110 A(After)

Selective complement

1010 A(Before)

1100 B(Logic Operand)

0110 A(After)

Selective Clear

1010 A(Before)

1100 B(Logic Operand)

0010 A(After)

Lovely Professional University112

Computer System Architecture

Notes

Mask

0110 1010 A (Before)

0000 1111 B (Mask)

0000 1010 A (After masking)

5.10 Shift Micro-Operations
Shift micro-operations are used for serial transfer of data. There are three types of shifts: logical,
circular, and arithmetic.

Logical shift

R1 <- shl R1

R2 <- shr R2

Circular shift

R <- cil R

R <- cir R

Arithmetic shift

R <- ashl R

R <- ashr R

Summary

• A register transfer language is a system for expressing in symbolic form the micro-operation
sequences among the registers of a digital module.

• Computer registers are designated by capital letters to denote the function of a register.

• There are two ways to construct a common bus system with multiplexers and three-state bus
buffers.

• There are various types of micro-operations like register Transfer Micro-operations,
arithmetic Micro-operations, logical Micro-operations and shift Micro-operations.

• Applications of logic micro-operations are selective set, selective complement, selective clear
and mask.

Lovely Professional University 113

Unit 05: Register Transfer and Micro-Operations
Notes

Keywords
Register transfer language:A system for expressing in symbolic form the micro-operation
sequences among the registers of a digital module.

Three state bus buffers: It contains three states, i.e., logic 1, logic 0 and high impedance state.

Shift micro-operations: These are used for serial transfer of data. There are three types of shifts:
logical, circular, and arithmetic.

Self Assessment

1. The internal hardware organization of a digital computer is best defined by specifying:

A. Set of registers

B. Sequence of micro-operations

C. A control to initiate the sequence of micro-operations

D. All registers, sequence of micro-operations and a control for initializing

2. Is it allowed to use the lower case letters for representation of computer registers?

A. Yes

B. No

3. The separation of two micro-operations is done using

A. Comma

B. Semi-colon

C. Colon

D. Asterisk

4. We can construct a common bus system for transferring of information between registers
by using

A. Multiplexers

B. Three state bus buffers

C. Both multiplexers and three state bus buffers

D. None of the above

5. A three state gate exhibits

A. Logic 0 state, logic 1 state and logic 2 state

B. Logic 1 state, high-impedance state and logic 2 state

C. Logic 0 state, logic 1 state and high impedance state

D. None of the above

6. Which of the state behaves like an open circuit in three state gate?

A. Logic 0

B. Logic 1

Lovely Professional University114

Computer System Architecture

Notes

C. High impedance state

D. None of the above

7. When the control input is ______, then the gate goes to high-impedance state.

A. 0

B. 1

C. 2

D. 3

8. We can employ _____________ to ensure that no more than one control input is active at
any given time.

A. Adder

B. Multiplexer

C. Demultiplexer

D. Decoder

9. Which operation is defined in R3 ‹– R1 + R2’ + 1

A. Addition

B. Subtraction

C. Negation

D. None of the above

10. Which logical micro-operation is defined F‹–x ˄ y

A. OR

B. AND

C. XOR

D. XNOR

11. Which logical micro-operation is defined F‹–(x⊕ y)’

A. XOR

B. XNOR

C. NAND

D. NOR

12. Which logical micro-operation is defined F‹–(x ˄ y)’

A. XOR

B. XNOR

C. NAND

D. NOR

Lovely Professional University 115

Unit 05: Register Transfer and Micro-Operations
Notes

13. Apply selective clear on A, A=1010, B=1100 (logic operand)

A. 1010

B. 1100

C. 0010

D. 0011

14. Apply selective complement on A, A=1010, B=1100 (logic operand)

A. 1010

B. 0110

C. 0011

D. 1111

15. M [AR] <- R1 is

A. Memory read operation

B. Memory write operation

Answer for Self Assessment

1. D 2. B 3. A 4. C 5. C

6. C 7. A 8. D 9. B 10. B

11. B 12. C 13. C 14. B 15. B

Review Questions

1. How can we specify the internal hardware organization of a digital computer?
2. How do we represent the registers?
3. What are the two ways to construct a common bus system? Explain.
4. What are different types of micro-operations?
5. Write all the applications of logical micro-operations.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Unit 05: Register Transfer and Micro-Operations
Notes

13. Apply selective clear on A, A=1010, B=1100 (logic operand)

A. 1010

B. 1100

C. 0010

D. 0011

14. Apply selective complement on A, A=1010, B=1100 (logic operand)

A. 1010

B. 0110

C. 0011

D. 1111

15. M [AR] <- R1 is

A. Memory read operation

B. Memory write operation

Answer for Self Assessment

1. D 2. B 3. A 4. C 5. C

6. C 7. A 8. D 9. B 10. B

11. B 12. C 13. C 14. B 15. B

Review Questions

1. How can we specify the internal hardware organization of a digital computer?
2. How do we represent the registers?
3. What are the two ways to construct a common bus system? Explain.
4. What are different types of micro-operations?
5. Write all the applications of logical micro-operations.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Unit 05: Register Transfer and Micro-Operations
Notes

13. Apply selective clear on A, A=1010, B=1100 (logic operand)

A. 1010

B. 1100

C. 0010

D. 0011

14. Apply selective complement on A, A=1010, B=1100 (logic operand)

A. 1010

B. 0110

C. 0011

D. 1111

15. M [AR] <- R1 is

A. Memory read operation

B. Memory write operation

Answer for Self Assessment

1. D 2. B 3. A 4. C 5. C

6. C 7. A 8. D 9. B 10. B

11. B 12. C 13. C 14. B 15. B

Review Questions

1. How can we specify the internal hardware organization of a digital computer?
2. How do we represent the registers?
3. What are the two ways to construct a common bus system? Explain.
4. What are different types of micro-operations?
5. Write all the applications of logical micro-operations.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Lovely Professional University116

Unit 06: Instruction Codes and Instruction Cycles Notes

Unit 06: Instruction Codes and Instruction Cycles

CONTENTS

Objectives:

Introduction:

6.1 Computer Instruction

6.2 Stored Program Organization

6.3 Computer Registers

6.4 Types of control organization

6.5 Phases of Instruction Cycle

6.6 Flowchart for Instruction Cycle

6.7 Determine the type of instruction

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives: After studying this unit, you will be able to

 Understand the instruction codes and instruction cycles.
 Understand the use of registers in computers.
 Understand the common bus system for the connection of registers and memory of basic

computers.
 Understand the control unit and control timing signals.
 Understand the instruction cycle and its phases.
 Understand the different types of instructions.

Introduction:The organization of the computer is defined by

1) Its internal organization,

2) The timing and control structure,

3) The set of instructions that it uses.

The internal organization of a digital system is defined by the sequence of micro-operations. These
micro-operations are performed by the means of a program on a computer.

Program
The general purpose digital computer is capable of executing various micro-operations. A program
is a set of instructions that specify the operations, operands, and the sequence by which processing
has to occur.

Lovely Professional University 117

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

6.1 Computer Instruction
A computer instruction is a binary code that specifies a sequence of micro-operations for the
computer. The computer reads each instruction from memory and places it in a control
register. Every computer has its own unique instruction set to perform various tasks.

Instruction Code
An instruction code is a group of bits that instruct the computer to perform a specific
operation. The most basic part of an instruction code is its operation part.The operation code must

consist of atleast n bits for a given 2n (or less) distinct operations. This operation must be
performed on some data stored in processor registers or in memory.

6.2 Stored Program Organization
It has one processor register and an instruction code format with two parts.

1st part: The operation to be performed

2nd part: An address.

Accumulator
This is represented as AC. Computers that have a single-processor register. The operation
is performed with the memory operand and the content ofAC.If an operation in an
instruction code does not need an operand from memory, the rest of the bits in the
instruction can be used for other purposes.

Instruction code format
The memory unit has a capacity of 4096 words and each word contains 16 bits. Here, 12
bits represents the address of an operand, 3 bits indicates operation of the instruction and
1 bit differentiates between the direct or indirect address.

Lovely Professional University118

Unit 06: Instruction Codes and Instruction Cycles Notes

Addresses
Address bits can contain actual operand, address of the operand or address of some
memory word.

1) Immediate operand

2) Direct address

3) Indirect address

Direct and indirect address

• One bit of the instruction code can be used to distinguish between a direct and an indirect
address, i.e., I.

Direct address

Indirect address

Lovely Professional University 119

Computer System Architecture

Notes

Effective address

• The address of the operand in a computation-type instruction or the target address in a
branch-type instruction.

6.3 Computer Registers
These registers are stored in consecutive memory locations.The control reads an
instruction from a specific address in memory and executes it. A counter is needed to
calculate the address of the next instruction.

List of registers

Lovely Professional University120

Unit 06: Instruction Codes and Instruction Cycles Notes

Basic computer registers and memory

Common bus system
The basic computer has eight registers, a memory unit, and a control unit. A more efficient
scheme for transferring information in a system with many registers is to use a common
bus. The connection of the registers and the memory of basic computer to a common bus
system are shown. Five registers have three control inputs: LO (load), INR (increment),
and CLR (clear). Two registers have only a LO input.

Lovely Professional University 121

Computer System Architecture

Notes

Execution of instructions
The clock transition at the end of the cycle transfers the content of the bus into the
designated destination register and the output of the adder and logic circuit into AC. For
example, the two Microoperations: DR <-AC and AC <-DR can be executed at the same
time.

Timing and Control
The timing for all registers in the basic computer is controlled by a master clock
generator.The clock pulses do not change the state of a register unless the register is
enabled by a control signal.

6.4 Types of control organization
There are two major types of control organization:

1) Hardwired control

2) Micro-programmed control.

Hardwired Organization:
The control logic is implemented with gates, flip-flops, decoders, and other digital circuits.
It can be optimized to produce a fast mode of operation.

Micro-programmed Control
The control information is stored in a control memory.The control memory is
programmed to initiate the required sequence of micro-operations.

Control unit of basic computer

Components:

A) Two decoders (4 * 16 decoder and 3 * 8 decoder),

B) A 4 bit sequence counter,

Lovely Professional University122

Unit 06: Instruction Codes and Instruction Cycles Notes

C) A number of control logic gates.

An instruction read from memory is placed in the IR. It is divided into three parts: the I
bit, the operation code, and bits 0 through 11. The 4-bit SC can count in binary from 0
through 15. The outputs of the counter are decoded into 16 timing signals T0 through T15.
The SC can be incremented or cleared synchronously.Most of the time, the counter is
incremented to provide the sequence of timing signals out of the 4 x 16 decoder. Once in a
while, the counter is cleared to 0, causing the next active timing signal to be T0.As an
example, consider the case where SC is incremented to provide timing signals T0, T1, T2,
T3, and T4 in sequence.At time T4, SC is cleared to O if decoder output D3 is active. This is
expressed symbolically by the statement

D3T4: SC <- O

Timing control signals

The last three waveforms show how SC is cleared when D3T4 = I. Output D3 from the
operation decoder becomes active at the end of timing signal T2. When timing signal T4

becomes active, the output of the AND gate that implements the control function D3T4

becomes active. This signal is applied to the CLR input of SC. On the next positive clock
transition (the one marked T4 in the diagram) the counter is cleared to 0. This causes the
timing signal T0 to become active instead of T5 that would have been active if SC were
incremented instead of cleared.

Memory read and write
A memory read or writes cycle will be initiated with the rising edge of a timing signal.It
will be assumed that a memory cycle time is less than the clock cycle time. According to
this assumption, a memory read or writes cycle initiated by a timing signal will be
completed by the time the next clock goes through its positive transition. The clock
transition will then be used to load the memory word into a register. This timing
relationship is not valid in many computers because the memory cycle time is usually
longer than the processor clock cycle. In such a case it is necessary to provide wait cycles
in the processor until the memory word is available. For example, the register transfer
statementT0: AR <- PCspecifies a transfer of the content of PC into AR if timing signal T0

is active. T0 is active during an entire clock cycle interval.

Lovely Professional University 123

Computer System Architecture

Notes

During this time the content of PC is placed onto the bus (with S2S1S0 = 010) and the LD
(load) input of AR is enabled. The actual transfer does not occur until the end of the
clock cycle when the clock goes through a positive transition.This same positive clock
transition increments the sequence counter SC from 0000 to 0001. The next clock cycle has
T1 active and T0 inactive.

Instruction Cycle
The program is executed in the computer by going through a cycle for each instruction.

6.5 Phases of Instruction Cycle
In the basic computer each instruction cycle consists of the following phases:

• Fetch an instruction from memory.

• Decode the instruction.

• Read the effective address from memory if the instruction has an indirect address.

• Execute the instruction.

Fetch and Decode

Initially, the PC is loaded with the address of the first instruction in the program. The
sequence counter SC is cleared to 0, providing a decoded timing signal T0. After each clock
pulse, SC is incremented by one, so that the timing signals go through a sequence T0, T1,
T2, and so on. The micro-operations for the fetch and decode phases can be specified by
the following register transfer statements.

T0: AR<-PC

T1: IR<-M[AR], PC<-PC + 1

T2: D0,………. D7 <- Decode IR(12-14),

AR<-IR(0-11), I<-IR(15)

After Decoding

The timing signal that is active after the decoding is T3. During time T3, the control unit
determines the type of instruction that was just read from the memory.

Lovely Professional University124

Unit 06: Instruction Codes and Instruction Cycles Notes

6.6 Flowchart for Instruction Cycle

6.7 Determine the type of instruction
Decoder output D7 is equal to 1 if the operation code is equal to binary 111.If D7=1, then it
can be register-reference or input-output type instruction.If D7 = 0, then it is memory-
reference instruction. Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I.If D7 = 0 and I = 1, we have a memory reference
instruction with an indirect address. It is then necessary to read the effective address from
memory.The micro-operation for the indirect address condition can be symbolized by the
register transfer statement AR <- M[AR].

The three instruction types are subdivided into four separate paths. The selected operation
is activated with the clock transition associated with timing signal T3.This can be
symbolized as follows:

D7’ IT3: AR <- M[AR], D7 ‘I‘T3: Nothing

D7I’T3: Execute a register-reference instruction

D7IT3: Execute an input-output instruction

When a MRI with I = 0 is encountered, it is not necessary to do anything since the effective
address is already in AR.However, SC must be incremented when D7’ T3 = 1, so that the
execution of the MRI can be continued with timing variable T4.A register-reference or I/O
instruction can be executed with the clock associated with timing signal T3. After the
instruction is executed, SC is cleared to O and control returns to the fetch phase with T0

=1.SC is either incremented or cleared to 0 with every positive clock transition.

Lovely Professional University 125

Computer System Architecture

Notes

Register-Reference Instructions
Register-reference instructions are recognized by the control when D7= 1 and I=0.These
instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.
These 12 bits are available in IR(0-11). They were also transferred to AR during time T2 .

Memory Reference Instructions

Memory Reference Instructions - Effective Address
The decoded output Di for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction.The effective address of the instruction is in the address register AR
and was placed there during timing signal T2 when I = 0, or during timing signal T3, when
I = 1. The execution of the memory-reference instructions starts with timing signal T4.

Lovely Professional University126

Unit 06: Instruction Codes and Instruction Cycles Notes

Memory Reference Instructions- AND to AC
D0T4: DR<-M[AR]

D0T5 : AC<-AC/\DR, SC<-0

Memory Reference Instructions- ADD to AC
D1T4: DR <- M[AR]

D1T5: AC <- AC + DR, E <- Cout, SC <- 0

Memory Reference Instructions- Load to AC
D2T4: DR <- M[AR]

D2T5: AC <- DR, SC <- 0

Memory Reference Instructions- Store AC
D3T4: M[AR] <- AC, SC <- 0

Memory Reference Instructions- Branch Unconditionally
This instruction transfers the program to the instruction specified by the effective address.

D4T4: PC <- AR, SC <-0

Memory Reference Instructions- Branch and Save Return Address
M[AR] <- PC, PC <- AR + I

Memory Reference Instructions-Increment and Skip if 0
This instruction increment the word specified by the effective address, and if the
incremented value is equal to 0, PC is incremented by 1.

Input and Output Instructions
Input and output instructions are needed for transferring information to and from AC
register, for checking the flag bits, and for controlling the interrupt facility. Input-output
instructions have an operation code 1111 and are recognized by the control when D7= 1
and I = 1. The remaining bits of the instruction specify the particular operation.

Lovely Professional University 127

Computer System Architecture

Notes

Summary

 The internal organization of a digital system is defined by the sequence of micro-
operations.

 A program is a set of instructions that specify the operations, operands, and the sequence
by which processing has to occur.

 The computer reads each instruction from memory and places it in a control register.
 An instruction code is a group of bits that instruct the computer to perform a specific

operation.
 A more efficient scheme for transferring information in a system with many registers is to

use a common bus.
 The clock pulses do not change the state of a register unless the register is enabled by a

control signal.
 An instruction read from memory is placed in the IR.
 The SC can be incremented or cleared synchronously.

Keywords

 Program: It is a set of instructions that specify the operations, operands, and the sequence
by which processing has to occur.

 Clock pulses: These do not change the state of a register unless the register is enabled by a
control signal.

 Indirect address: The micro-operation for the indirect address condition can be
symbolized by the register transfer statement: AR <- M[AR].

 Branch unconditionally: This instruction transfers the program to the instruction specified
by the effective address.

 Input and output instructions: These are needed for transferring information to and from
AC register, for checking the flag bits, and for controlling the interrupt facility.

Self Assessment

1. The computer reads each instruction from memory and places it in a ______ register.
A. Control

Lovely Professional University128

Unit 06: Instruction Codes and Instruction Cycles Notes

B. Processor
C. Either control or processor
D. None of the above

2. The operation code must consist of atleast n bits for a given 2n (or less) distinct
operations.

A. n-1, 2n-1

B. n, 2n

C. n+1, 2n+1

D. None of the above

3. The instruction code format have two parts, the first part represents.
A. The operation to be performed
B. An address of operand
C. Either operation or address
D. None of the above

4. What is the total number of bits in an instruction?
A. 8
B. 12
C. 16
D. 24

5. How many bits are used to distinguish between direct and indirect address?
A. 1
B. 2
C. 4
D. 8

6. What is the total number of bits in PC?
A. 8
B. 12
C. 16
D. None of the above

7. What is the total number of bits in TR?
A. 8
B. 12
C. 16
D. None of the above

8. What is the total number of bits in OUTR?
A. 8
B. 12

Lovely Professional University 129

Computer System Architecture

Notes

C. 16
D. None of the above

9. Which of these register holds the address of instruction?
A. PC
B. AC
C. AR
D. DR

10. In a common bus system, how many registers just have LO input?
A. 1
B. 2
C. 3
D. 4

11. A ____ bit sequence counter can count in binary from 0 to 15.
A. 2
B. 4
C. 6
D. 8

12. Memory read/write cycle will be initiated with the __________ edge of a timing signal.
A. Falling
B. Rising

13. During each instruction cycle, what is the next phase after decoding of instruction is
A. Fetching of instruction from memory
B. Reading of effective address from memory
C. Execution of instruction
D. None of the above

14. If D7=0, then what type of instruction it specifies?
A. Register reference
B. Input-output
C. Memory Reference
D. None of the above

15. If D7=1 and I=1, then what type of instruction it specifies?
A. Register reference
B. Input-output
C. Memory Reference
D. None of the above

Lovely Professional University130

Unit 06: Instruction Codes and Instruction Cycles Notes

Answers for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. C 8. A 9. A 10. B

11. B 12. B 13. B 14. C 15. B

Review Questions:

1. What is stored program organization? Explain every component of it.
2. What are the kinds of addresses used in computer organization?
3. Differentiate between direct and indirect addresses with examples.
4. List all the computer registers.
5. What is common bus system? Explain its components.
6. What are the major types of control organizations?
7. What is an instruction cycle? Write about its phases.
8. What are memory reference and register reference instructions?
9. What are input-output instructions?

Further Readings

M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Unit 06: Instruction Codes and Instruction Cycles Notes

Answers for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. C 8. A 9. A 10. B

11. B 12. B 13. B 14. C 15. B

Review Questions:

1. What is stored program organization? Explain every component of it.
2. What are the kinds of addresses used in computer organization?
3. Differentiate between direct and indirect addresses with examples.
4. List all the computer registers.
5. What is common bus system? Explain its components.
6. What are the major types of control organizations?
7. What is an instruction cycle? Write about its phases.
8. What are memory reference and register reference instructions?
9. What are input-output instructions?

Further Readings

M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Unit 06: Instruction Codes and Instruction Cycles Notes

Answers for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. C 8. A 9. A 10. B

11. B 12. B 13. B 14. C 15. B

Review Questions:

1. What is stored program organization? Explain every component of it.
2. What are the kinds of addresses used in computer organization?
3. Differentiate between direct and indirect addresses with examples.
4. List all the computer registers.
5. What is common bus system? Explain its components.
6. What are the major types of control organizations?
7. What is an instruction cycle? Write about its phases.
8. What are memory reference and register reference instructions?
9. What are input-output instructions?

Further Readings

M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Lovely Professional University 131

Unit 07: Machine Language
Notes

Unit 07: Machine Language

CONTENTS

Objectives:

Introduction:

7.1 Categories of machine language

7.2 Computer Instructions

7.3 Program with Symbolic Operation Codes

7.4 Assembly Language Program to Add Two Numbers

7.5 Fortran program to add two numbers

7.6 Rules of the Language

7.7 Label field-Symbolic address

7.8 Instruction field

7.9 Memory reference instruction (MRI)

7.10 Non-MRI

7.11 Instruction field-Pseudo-instruction

7.12 Translation to binary

7.13 Representation of Symbolic Program in Memory

7.14 Hexadecimal Character Code

7.15 Representation of Symbolic Program in Memory

7.16 Tables in second pass

7.17 Error Diagnostics

7.18 Pointer Counter

Summary:

Keywords:

Self Assessment

Answer for Self Assessment

Review Questions:

Further Readings

Objectives: After studying this unit, you will be able to:

• understand the machine language

• understand the assembly language and

• understand the translation process in two passes

• understand the program loops

• understand the pointer counter

Introduction: A computer system includes both hardware and software. The hardware
components are composed of all the physical components of a computer whereas the softwares are
the programs for the computer. Both of these components have a great influence on each other.

Lovely Professional University132

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

Those concerned with computer architecture should have knowledge of both hardware and
software because of the impact of these two branches. The computers use alphanumeric character
set for machine instructions. Machine instructions inside the computer form a binary pattern which
is difficult for people to work with and understand. It is preferable to work with the more familiar
symbols of the alphanumeric character set.

Machine dependence/independence: A program written by a user may be either dependent or
independent of the physical computer that runs this program.

Machine Language

There are various types of programming languages that one may write for a computer, but the
computer can execute programs when they are represented internally in binary form.

7.1 Categories of machine language
Programs written for a computer may be in one of the following categories:

A) Binary code: A sequence of instructions and operands in binary form.

B) Octal or hexadecimal code: An equivalent translation of the binary code to octal or
hexadecimal representation.

C) Symbolic code: The user employs symbols (letters, numerals or special characters) for the
operation part, the address part and other parts of the instruction code.

D) High-level programming languages: An example of a high level language is Fortran. It
employs problem oriented symbols or formats. The program is written in a sequence of
statements in a form that people prefer to think in when solving a problem.

7.2 Computer Instructions
There are 25 instructions of the basic computer. Each instruction provides a three letter symbol to
facilitate writing symbolic programs.

Symbol Hexadecimal
code

Description

AND 0 or 8 AND M to AC

ADD 1 or 9 ADD M to AC,
carry to E

LDA 2 or A Load AC from
M

STA 3 or B Store AC in M

BUN 4 or C Branch
unconditionally
to m

BSA 5 or D Save return
address in m

Lovely Professional University 133

Unit 07: Machine Language
Notes

and branch to
m+1

ISZ 6 or E Increment M
and skip if zero

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement
AC

CME 7100 Complement E

CIR 7080 Circulate right
E and AC

CIL 7040 Circulate left E
and AC

INC 7020 Increment AC

SPA 7010 Skip if AC is
positive

SNA 7008 Skip if AC is
negative

SZA 7004 Skip if AC is
zero

SZE 7002 Skip if E is zero

HLT 7001 Halt computer

INP F800 Input
information
and clear flag

OUT F400 Output
information
and clear flag

SKI F200 Skip if input
flag is on

Lovely Professional University134

Computer System Architecture

Notes

SKO F100 Skip if output
flag is on

ION F080 Turn interrupt
on

IOF F040 Turn interrupt
off

A Binary program to add two numbers

Location Instruction code

0 0010 0000 0000 0100

1 0001 0000 0000 0101

10 0011 0000 0000 0110

11 0111 0000 0000 0001

100 0000 0000 0101 0011

101 1111 1111 1110 1001

110 0000 0000 0000 0000

Hexadecimal Program to add two numbers

Location Instruction

000 2004

001 1005

002 3006

003 7001

Lovely Professional University 135

Unit 07: Machine Language
Notes

004 0053

005 FFE9

006 0000

7.3 Program with Symbolic Operation Codes

Location Instruction Comments

000 LDA 004 Load first
operand
into AC

001 ADD 005 Add
second
operand to
AC

002 STA 006 Store sum
in location
006

003 HLT Halt
computer

004 0053 First
operand

005 FFE9 Second
operand
(negative)

006 0000 Store sum
here

7.4 Assembly Language Program to Add Two Numbers

ORG 0 /Origin of program is location 0

LDA A /Load operand from location A

ADD B /Add operand from location B

Lovely Professional University136

Computer System Architecture

Notes

STA C /Store sum in location C

HLT /Halt computer

A, DEC 83 /Decimal operand

B, DEC -23 /Decimal operand

C, DEC 0 /Sum stored in location C

END /End of symbolic symbol

Here we replaced each hexadecimal address by the symbolic address and each hexadecimal
operand by a decimal operand. This is convenient because one usually does not know exactly the
numeric memory location of operands while writing the program. The decimal numbers are more
familiar than their hexadecimal equivalents.

7.5 Fortran program to add two numbers

INTEGER A, B, C

DATA A,83 B,-23

C=A+B

END

Assembly language

A programming language is defined by the set of rules. Users must conform with all the format
rules of the language if they want their program to be translated correctly.

Almost every computer has its own particular assembly language. The basic unit of an assembly
language program is a line of code. The specific language is defined by a set of rules that specify
the symbols that can be used and how they may be combined to form a line of code.

7.6 Rules of the Language
Each line of the assembly language program is arranged in three columns called fields. The field
specify the following information:

A) Label

B) Instruction

Lovely Professional University 137

Unit 07: Machine Language
Notes

C) Comment

A) Label: This field may be empty or it may specify a symbolic address.

B) Instruction: This field specifies a machine instruction or pseudo-instruction.

C) Comment: This field may be empty or it may include a comment.

7.7 Label field-Symbolic address
A symbolic address consists of one, two, or three, but not more than three alphanumeric characters.
The first character must be a letter and the next two may be letters or numerals. The symbol can be
chosen arbitrarily by the programmer.

Recognition of Label field:

A symbolic address in the label field is terminated by a comma so that it will be recognized as a
label by the assembler.

7.8 Instruction field
The instruction field in an assembly language program may specify one of the following items:

1. Memory reference instruction (MRI)

2. A register reference or input-output instruction (Non-MRI)

3. A pseudo-instruction with or without operand

7.9 Memory reference instruction (MRI)
A memory reference instruction occupies two or three symbols separated by spaces. The
first must be a three letter symbol defining an MRI operation code. The second is a
symbolic address. The third symbol is I which may or may not be present.

I (Present) – Indirect address instruction.

I (Absent) – Direct address instruction.

7.10 Non-MRI
This instruction does not have an address part.

CLA Non-MRI

ADD OPR Direct address MRI

ADD PTR I Indirect address MRI

First three letter symbols in each line must be an instruction symbol of the computer.

7.11 Instruction field-Pseudo-instruction
It is not a machine instruction but rather an instruction to the assembler giving information about
some phase of the translation.

Lovely Professional University138

Computer System Architecture

Notes

Symbol Information
for the
assembler

ORG N Hexadecimal
number N is
the memory
location for
the
instruction
or operand

END Denotes the
end of the
symbolic
program

DEC N Signed
decimal
number N to
be converted
to binary

HEX N Hexadecimal
number N to
be converted
to binary

• ORG N: The ORG informs the assembler that the instruction or operand in the following
line is to be placed in a memory location specified by the number next to ORG.

• It is possible to use ORG more than once in a program to specify more than one segment
of the memory.

• END: It is placed at the end of the program to inform the assembler that the program has
been terminated.

Comment

These are helpful in understanding the step by step procedure taken by the program. These are
inserted for explanation purpose. These are neglected during the binary translation purposes.

Recognition of a comment:

A comment must be preceded by a slash for the assembler to recognize the beginning of the
comment field.

Lovely Professional University 139

Unit 07: Machine Language
Notes

Assembly Language Program to Subtract Two Numbers

ORG
100

/origin of the
program is
location 100

LDA
SUB

/Load
subtrahend to
AC

CMA /Complement
AC

INC /Increment
AC

ADD
MIN

/Add
minuend to
AC

STA
DIF

/Store
difference

HLT /Halt
computer

MIN, DEC
83

/Minuend

SUB, DEC
-23

/Subtrahend

DIF, HEX
0

/Difference
stored here

END /End of
symbolic
program

ORG: Define the origin of the program at memory location (100)16. Next 6 lines define machine
instructions. Last 4 lines have pseudo-instructions. Three symbolic addresses have been used and
each is listed in column 1 as a label and in column 2 as an address of a MRI. Three of pseudo-
instruction use operands and last one signifies the END of the program.

Procedure of Subtraction:

The subtraction is performed by adding the minuend to the 2's complement of the subtrahend. The
subtrahend is a negative number. It is converted into a binary number in signed-2's complement
representation because we dictate that all negative numbers be in their 2's complement form. When
the 2's complement of the subtrahend is taken (by complementing and incrementing the AC), -23
converts to +23 and the difference is 83 + (2's complement of -23) = 83+ 23 = 106.

Lovely Professional University140

Computer System Architecture

Notes

7.12 Translation to binary
The translation into binary from the symbolic program is done by a special program called an
assembler. The input symbolic program is called the source program and the resulting binary
program is called the object program. It is program that operates on character strings and produces
an equivalent binary interpretation. The tasks performed by the assembler will be better
understood if we first perform the translation on paper. The translation may be done by scanning
the program and replacing the symbols by their machine code binary equivalent. Starting from the
first line, we encounter an ORG pseudo-instruction which tells us to start the binary program at
hexadecimal location 100. Second line, i.e., LDA SUB: It has two symbols. It must be an MRI to be
placed in location 100. Since the letter I is not here, the first bit of the instruction code must be 0.
The symbolic name of the operation is LDA. The first hexadecimal digit of the instruction should be
2.

The binary value of the address part must be obtained from the address symbol SUB. We scan this
label column and find this symbol in line 9. To determine its hexadecimal value we note that the
line 2 contains an instruction for location 100 and every other line specifies a machine instruction or
an operand for sequence memory locations. Label SUB in line 9 corresponds to memory location
107. When the two parts of the instruction are assembled, we obtain the hexadecimal code 2107. In
the same way, we translate the other lines representing the machine instructions. Two lines in the
symbolic program specify the decimal operands with the pseudo-instruction DEC. A third specifies
a zero by means of a HEX pseudo-instruction (DEC could be used as well). Decimal 83 is converted
to binary and placed in location 106 in its hexadecimal equivalent. Decimal -23 is a negative
number and must be converted into binary in signed-2's complement form.

Translation to binary-Address Symbol Table

The translation process can be simplified if we scan the entire symbolic program twice. No
translation is done during the first scan. We assign a memory location to each machine instruction
and operand. This will facilitate the translation process during the second scan. We assign location
100 to the first instruction after ORG. We then assign sequential locations for each line of the code
that has a machine instruction or operand up to the end of the program. ORG and END are not
assigned a numerical location because they do not represent an instruction or an operand. When
the first scan is completed, we associate with each label its location number and form a table that
defines the hexadecimal value of each symbolic address.

For this program, the address symbol table is as follows:

Lovely Professional University 141

Unit 07: Machine Language
Notes

Address Symbol Hexadecimal address

MIN 106

SUB 107

DIF 108

During the second scan of the symbolic program we refer to the address symbol table to determine
the address value of a memory reference instruction. For example, the line of code LDA SUB is
translated during the second scan by getting the hexadecimal value of LDA and the hexadecimal
value of SUB from the address-symbol table. We then assemble the two parts into a four-digit
hexadecimal instruction. The hexadecimal code can be easily converted to binary. When the
translation from symbols to binary is done by an assembler program, the first scan is called the first
pass, and the second is called the second pass.

7.13 Representation of Symbolic Program in Memory
Prior to starting the assembly process, the symbolic program must be stored in memory. The user
types the symbolic program on a terminal. A loader program is used to input the characters of the
symbolic program into memory. Since the program consists of symbols, its representation in
memory must use an alphanumeric character code. In the basic computer, each character is
represented by an 8–bit code. The high–order bit is always 0 and the other seven bits are as
specified by ASCII.

7.14 Hexadecimal Character Code

7.15 Representation of Symbolic Program in Memory
Each character is assigned two hexadecimal digits which can be easily converted to their equivalent
8-bit code. The last entry in the table does not print a character but is associated with the physical
movement of the cursor in the terminal. The code for CR is produced when the return key is
depressed. This causes the "carriage" to return to its initial position to start typing a new line. The
assembler recognizes a CR code as the end of a line of code.

Lovely Professional University142

Computer System Architecture

Notes

A line of code is stored in consecutive memory locations with two characters in each location, i.e., a
word, since a memory word has a capacity of 16 bits. A label symbol is terminated with a comma.
Operation and address symbols are terminated with a space. The end of the line is recognized by
the CR code. For example, the following line of code: PL3,LDA SUBI

The label PL3 occupies two words and is terminated by the code for comma (2C). The instruction
field in the line of code may have one or more symbols. Each symbol is terminated by the code for
space (20) except for the last symbol, which is terminated by the code of carriage return (OD). If the
line of code has a comment, the assembler recognizes it by the code for a slash (2F). The assembler
neglects all characters in the comment field and keeps checking for a CR code. When this code is
encountered, it replaces the space code after the last symbol in the line of code. The input for the
assembler program is the user's symbolic language program in ASCII. This input is scanned by the
assembler twice to produce the equivalent binary program. The binary program constitutes the
output generated by the assembler.

First Pass
A two-pass assembler scans the entire symbolic program twice. During the first pass, it generates a
table that correlates all user-defined address symbols with their binary equivalent value. The binary
translation is done during the second pass. To keep track of the location of instructions, the
assembler uses a memory word called a LC. The content of LC stores the value of the memory
location assigned to the instruction or operand presently being processed. The ORG pseudo-
instruction initializes the LC to the value of the first location. Since instructions are stored in
sequential locations, the content of LC is incremented by 1 after processing each line of code. To
avoid ambiguity in case ORG is missing, the assembler sets the location counter to O initially.

Lovely Professional University 143

Unit 07: Machine Language
Notes

LC is initially set to 0. A line of symbolic code is analyzed to determine if it has a label (by the
presence of a comma). If the line of code has no label, the assembler checks the symbol in the
instruction field. If it contains an ORG pseudo-instruction, the assembler sets LC to the number that
follows ORG and goes back to process the next line. If the line has an END pseudo-instruction, the
assembler terminates the first pass and goes to the second pass. Note that a line with ORG or END
should not have a label. If the line of code contains a label, it is stored in the address symbol table
together with its binary equivalent number specified by the content of LC. Nothing is stored in the
table if no label is encountered. LC is then incremented by 1 and a new line of code is processed.

Address Symbol Table

Each label symbol is stored in two memory locations and is terminated by a comma. If the label
contains less than three characters, the memory locations are filled with the code for space. The
value found in LC while the line was processed is stored in the next sequential memory location.
The program has three symbolic addresses: MIN, SUB, and DIF. These symbols represent 12-bit
addresses equivalent to hexadecimal 106, 107, and 108, respectively. The address symbol table
occupies three words for each label symbol encountered and constitutes the output data that the
assembler generates during the first pass.

Second Pass

Machine instructions are translated during the second pass by means of table lookup procedures.
A table-lookup procedure is a search of table entries to determine whether a specific item matches
one of the items stored in the table. The assembler uses four tables. Any symbol that is encountered
in the program must be available as an entry in one of these tables; otherwise, the symbol cannot be
interpreted.

7.16 Tables in second pass
Four tables are:

1) Pseudo-instruction table.

2) MRI table.

3) Non-MRI table.

4) Address symbol table.

Lovely Professional University144

Computer System Architecture

Notes

1) Pseudo-instruction Table:

The entries of the pseudo-instruction table are the four symbols ORG,END, DEC, and
HEX. Each entry refers the assembler to a subroutine that processes the pseudo-instruction
when encountered in the program.

2) MRI Table:

The MRI table contains the seven symbols of the memory-reference instructions and their
3-bit operation code equivalent.

3) Non-MRI Table:

The non-MRI table contains the symbols for the 18 register-reference and input-output
instructions and their 16-bitbinary code equivalent.

4) Address Symbol Table:

The address symbol table is generated during the first pass of the assembly process.

The assembler searches these tables to find the symbol that it is currently processing in order to
determine its binary value.

LC is initially set to 0. Lines of code are then analyzed one at a time. Labels are neglected during the
second pass, so the assembler goes immediately to the instruction field and proceeds to check the
first symbol encountered. It first checks the pseudo-instruction table. A match with ORG sends the
assembler to a subroutine that sets LC to an initial value. A match with END terminates the
translation process. An operand pseudo-instruction causes a conversion of the operand into binary.
This operand is placed in the memory location specified by the content of LC. The LC is then
incremented by 1 and the assembler continues to analyze the next line of code.

If the symbol encountered is not a pseudo-instruction, the assembler refers to the MRI table. If the
symbol is not found in this table, the assembler refers to the non-MRI table. A symbol found in the
non-MRI table corresponds to a register reference or input-0utput instruction. The assembler stores
the 16-bit instruction code into the memory word specified by LC. The LC is incremented and a
new line analyzed.

When a symbol is found in the MRI table, the assembler extracts its equivalent 3-bit code and
inserts it in bits 2 through 4 of a word. A memory reference instruction is specified by two or three
symbols. The second symbol is a symbolic address and the third, which may or may not be present,
is the letter I. The symbolic address is converted to binary by searching the address symbol table.

The first bit of the instruction is set to O or 1, depending on whether the letter I is absent or present.
The three parts of the binary instruction code are assembled and then stored in the memory
location specified by the content of LC. The LC is incremented and the assembler continues to
process the next line.

7.17 Error Diagnostics
One important task of an assembler is to check for possible errors in the symbolic program. This is
called error diagnostics. One such error may be an invalid machine code symbol which is detected
by its being absent in the MRI and non-MRI tables. The assembler cannot translate such a symbol
because it does not know its binary equivalent value. In such a case, the assembler prints an error
message to inform the programmer that his symbolic program has an error at a specific line of
code. Another possible error may occur if the program has a symbolic address that did not appear
also as a label. The assembler cannot translate the line of code properly because the binary
equivalent of the symbol will not be found in the address symbol table generated during the first
pass. Other errors may occur and a practical assembler should detect all such errors and print an
error message for each.

Lovely Professional University 145

Unit 07: Machine Language
Notes

Program Loops
A program loop is a sequence of instructions that are executed many times, each time with a
different set of data. Program loops are specified in Fortran by a DO statement. The following is an
example of a FORTRAN program that forms the sum of 100 integer numbers.

DIMENSION A(100)

INTEGER SUM, A

SUM= 0

DO Ǝ J= 1, 100

Ǝ SUM=SUM+A(J)

Statement number 3 is executed 100 times, each time with a different operand AG) for J =
1, 2, ... , 100. A system program that translates a program written in a high-level
programming language to a machine language program is called a compiler. A compiler is
a more complicated program than an assembler and requires knowledge of systems
programming to fully understand its operation. Nevertheless, we can demonstrate the
basic functions of a compiler by going through the process of translating the program
above to an assembly language program. A compiler may use an assembly language as an
intermediate step in the translation or may translate the program directly to binary.

The first statement in the Fortran program is a DIMENSION statement. This statement instructs the
compiler to reserve 100 words of memory for 100 operands. The value of the operands is
determined from an input statement. The second statement informs the compiler that the numbers
are integers. If they were of the real type, the compiler would have to reserve locations for floating-
point numbers and generate instructions that perform the subsequent arithmetic with floating-
point data. These two statements are non executable and are similar to the pseudo-instructions in
an assembly language. Suppose that the compiler reserves locations (150)16 to (1B3)16 for the 100
operands. These reserved memory words are listed in lines 19 to 118 in the translated program.
This is done by the ORG pseudo-instruction in line 18, which specifies the origin of the operands.
The first and last operands are listed with a specific decimal number, although these values are not
known during compilation. The compiler just reserves the data space in memory and the values are
inserted later when an input data statement is executed. The line numbers in the symbolic program
are for reference only and are not part of the translated symbolic program. The indexing of the DO
statement is translated into the instructions in lines 2 through 5 and the constants in lines 13
through 16. The address of the first operand (150) is stored in location ADS in line 13. The number
of times that Fortran statement number 3 must be executed is 100. So -100 is stored in location NBR.
The compiler then generates the instructions in lines 2 through 5 to initialize the program loop.

Lovely Professional University146

Computer System Architecture

Notes

The address of the first operand is transferred to location PTR. This corresponds to setting AO) to
A(l). The number -100 is then transferred to location CTR. This location acts as a counter with its
content incremented by one every time the program loop is executed. When the value of the
counter reaches zero, the 100 operations will be completed and the program will exit from the loop.
Some compilers will translate the statement SUM = 0 into a machine instruction that initializes
location SUM to zero. A reference to this location is then made every time Fortran statement
number 3 is executed. A more intelligent compiler will realize that the sum can be formed in the
accumulator and only the final result stored in location SUM. This compiler will produce an
instruction in line 6 to clear the AC. It will also reserve a memory location symbolized by SUM (in
line 17) for storing the value of this variable at the termination of the loop. The program loop
specified by the DO statement is translated to the sequence of instructions listed in lines 7 through
10. Line 7 specifies an indirect ADD instruction because it has the symbol I. The address of the
current operand is stored in location PTR.

When this location is addressed indirectly the computer takes the content of PTR to be the address
of the operand. As a result, the operand in location 150 is added to the accumulator. Location PTR
is then incremented with the ISZ instruction in line 8, so its value changes to the value of the
address of the next sequential operand. Location CTR is incremented in line 9, and if it is not zero,
the computer does not skip the next instruction. The next instruction is a branch (BUN) instruction
to the beginning of the loop, so the computer returns to repeat the loop once again. When location
CTR reaches zero (after the loop is executed 100 times), the next instruction is skipped and the
computer executes the instructions in lines 11 and 12. The sum formed in the accumulator is stored
in SUM and the computer halts. The halt instruction is inserted here for clarity; actually, the
program will branch to a location where it will continue to execute the rest of the program or
branch to the beginning of another program. Note that ISZ in line 8 is used merely to add 1 to the
address pointer PTR. Since the address is a positive number, a skip will never occur.

7.18 Pointer Counter
The program introduces the idea of a pointer and a counter which can be used, together with the
indirect address operation, to form a program loop. The pointer points to the address of the current
operand and the counter counts the number of times that the program loop is executed. In this
example we use two memory locations for these functions. In computers with more than one
processor register, it is possible to use one processor register as a pointer, another as a counter, and
a third as an accumulator. When processor registers are used as pointers and counters they are
called index registers.

Summary:

 Machine instructions inside the computer form a binary pattern which is difficult for
people to work with and understand.

 A program written by a user may be either dependent or independent of the physical
computer that runs this program.

 A sequence of instructions and operands in binary form is binary code.
 An equivalent translation of the binary code to octal or hexadecimal representation is octal

code.
 The user employs symbols (letters, numerals or special characters) for the operation part,

the address part and other parts of the instruction code is symbolic code.
 High level programming languages employs problem oriented symbols or formats.
 There are 25 instructions of the basic computer.

Keywords:
Programming language: It is defined by the set of rules.

Label: This field may be empty or it may specify a symbolic address.

Instruction: This field specifies a machine instruction or pseudo-instruction.

Lovely Professional University 147

Unit 07: Machine Language
Notes

Comment: This field may be empty or it may include a comment.

Symbolic address: It consists of one, two, or three, but not more than three alphanumeric
characters.

Memory reference instruction: It occupies two or three symbols separated by spaces.

Self Assessment

1. In a basic computer, each instruction has a ______ letter symbol in programs.
A. 2
B. 3
C. 4
D. 5

2. In BUN computer instruction, the hexadecimal code is
A. 2 or A
B. 3 or B
C. 4 or C
D. 5 or D

3. In BSA computer instruction, the hexadecimal code is
A. 2 or A
B. 3 or B
C. 4 or C
D. 5 or D

4. In which category, the problem oriented symbols or formats are used?
A. Binary code
B. Octal/hexadecimal code
C. Symbolic code
D. High level programming languages

5. The fields, i.e., label, instruction and comment specify
A. Assembly language
B. High level programming language
C. Octal programming language
D. None of the above

6. A symbolic address must consist of __________ alphanumeric characters.
A. 1
B. 2
C. 3
D. Either 1, 2 or 3

7. The first character in the label field must be a

Lovely Professional University148

Computer System Architecture

Notes

A. Letter
B. Numeral
C. Symbol
D. None of the above

8. A symbolic address in the label field is terminated by a _________ so that it will be
recognized as a label by the assembler.

A. Comma
B. Semi-colon
C. Dot
D. Slash
9. A comment must be preceded by a ________ for the assembler to recognize the beginning

of the comment field.
A. Comma
B. Semi-colon
C. Dot
D. Slash

10. The instruction CLA specifies
A. Non-MRI instruction
B. Direct address instruction
C. Indirect address instruction
D. None of the above

11. The pseudo-instruction ORG N gives the memory location for the instruction; here N is a
________ number.

A. Decimal
B. Binary
C. Octal
D. Hexadecimal

12. The translation into binary from the symbolic program is done by a special program called
A. Linker
B. Assembler
C. Loader
D. None of the above

13. The assignment of a memory location to each machine instruction and operand is done in
_______ scan.

A. First
B. Second

14. The address symbol table creation is done in _______ scan.
A. First

Lovely Professional University 149

Unit 07: Machine Language
Notes

B. Second

15. The table look up procedures is implemented in _________ pass.
A. First
B. Second

Answer for Self Assessment

1. B 2. C 3. D 4. D 5. A

6. D 7. A 8. A 9. D 10. B

11. D 12. B 13. A 14. A 15. B

Review Questions:

1. What is machine language? Explain its categories.
2. Write a binary and hexadecimal program to add two numbers.
3. Write a program with symbolic operation codes and Fortran program for addition of two

numbers.
4. Explain what the rules of assembly language are.
5. Explain two passes of assembler.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links

https://www.britannica.com/technology/machine-language

Unit 07: Machine Language
Notes

B. Second

15. The table look up procedures is implemented in _________ pass.
A. First
B. Second

Answer for Self Assessment

1. B 2. C 3. D 4. D 5. A

6. D 7. A 8. A 9. D 10. B

11. D 12. B 13. A 14. A 15. B

Review Questions:

1. What is machine language? Explain its categories.
2. Write a binary and hexadecimal program to add two numbers.
3. Write a program with symbolic operation codes and Fortran program for addition of two

numbers.
4. Explain what the rules of assembly language are.
5. Explain two passes of assembler.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links

https://www.britannica.com/technology/machine-language

Unit 07: Machine Language
Notes

B. Second

15. The table look up procedures is implemented in _________ pass.
A. First
B. Second

Answer for Self Assessment

1. B 2. C 3. D 4. D 5. A

6. D 7. A 8. A 9. D 10. B

11. D 12. B 13. A 14. A 15. B

Review Questions:

1. What is machine language? Explain its categories.
2. Write a binary and hexadecimal program to add two numbers.
3. Write a program with symbolic operation codes and Fortran program for addition of two

numbers.
4. Explain what the rules of assembly language are.
5. Explain two passes of assembler.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links

https://www.britannica.com/technology/machine-language

Lovely Professional University150

Unit 08: Machine Programming

Notes

Unit 08: Machine Programming

CONTENTS

Objectives

Introduction

8.1 Logic Operations

8.2 Shift Operations

8.3 Subroutines

8.4 BSA Instruction

8.5 Subroutine Linkage

8.6 Subroutine Parameters and Data Linkage

8.7 Subroutine to Move a Block of Data

8.8 Input-Output Programming

8.9 Program to Input one Character

8.10 Program to Output one Character

8.11 Character Manipulation

8.12 Subroutine to Input and Pack two Characters

8.13 A program to Store Input Characters in a Buffer

8.14 A Program to Compare two Words

8.15 Program Interrupt

8.16 Program to Service an Interrupt

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand

 understand the arithmetic operationprogramming
 understand the logic operation programming
 understand the subroutines
 understand input-output programming

Introduction
Consider the four basic arithmetic operations. Some computers have machine instructions to add,
subtract, multiply, and divide. Others, such as the basic computer, have only one arithmetic
instruction, such as ADD. Operations not included in the set of machine instructions must be
implemented by a program.Operations with one machine instruction represents and is related to
the hardware component of a computer.Operations with a set of instructions represents and is
related to the software component of a computer.

Lovely Professional University 151

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

Some computers have a variety of hardware instructions. Others contain a smaller set of hardware
instructions and depend upon the software implementation of many operations.Both of these have
their own pros and cons.Depending upon the situation, either of these configurations can be
chosen.

For doing a multiplication program, we need a multiplicand and a multiplier. The result of the
multiplication operation is called a product. The assumptions for this are:

A) Neglect the sign bit and assume positive numbers.

B)The two binary numbers have no more than eight significant bits so their product
cannot exceed the word capacity of 16 bits.

The program has a loop that is traversed eight times, once for each significant bit of the multiplier.
Initially, location X holds the multiplicand and location Y holds the multiplier.

Lovely Professional University152

Unit 08: Machine Programming

Notes

The initialization is not listed here but should be included when the program is loaded into the
computer. Initialization of the Program:

• Multiplicand into location X

• Multiplier into locations Y,

• Counter to -8;

• Initializing location P to O.

Lovely Professional University 153

Computer System Architecture

Notes

8.1 Logic Operations
The basic computer has three machine instructions that perform logic operations: AND, CMA, and
CLA.The LOA instruction may be considered as a logic operation that transfers a logic operand into
the AC. Any logic function can be implemented using the AND and complement operations. For
example, the OR operation is not available as a machine instruction in the basic computer. From
De-Morgan's theorem we recognize the relationx + y = (x'y')'. The second expression contains only
AND and complement operations. A program that forms the OR operation of two logic operands A
and B is as follows:

• LDAA Load first operand A

• CMA Complement to get A

• STA TMP Store in a temporary location

• LDAB Load second operand B

• CMA Complement to get B

• AND TMP AND with A’ to get A’ Λ B’

• CMA Complement again to get A v B

8.2 Shift Operations
These two shifts can be programmed with a small number of instructions.The logical shift requires
that zeros be added to the extreme positions. This is easily accomplished by clearing E and
circulating the AC and E. For a logical shift-right operation we need the two instructions: CLE and
CIR.For a logical shift-left operation we need the two instructions: CLE and CIL.The arithmetic
shifts depend on the type of representation of negative numbers.For the basic computer we have
adopted the signed-2's complement representation. For an arithmetic right-shift it is necessary that
the sign bit in the left most position remain unchanged. But the sign bit itself is shifted into the
high-order bit position of the number. The program for the arithmetic right-shift requires that we
set E to the same value as the sign bit and circulate right, thus:

Lovely Professional University154

Unit 08: Machine Programming

Notes

• CLE /Clear E t o □

• SPA /Skip if AC is positive; E remains □

• CME /AC is negative; set E to 1

• CIR /Circulate E and AC

For arithmetic shift-left, it is necessary that the added bit in the least significant position be O. This
is easily done by clearing E prior to the circulate-left operation. The sign bit must not change during
this shift. With a circulate instruction, the sign bit moves into E.

8.3 Subroutines
A set of common instructions that can be used in a program many times is called a subroutine.
Branching is used for the concept of subroutine. A subroutine consists of a self-contained sequence
of instructions that carries out a given task. A branch can be made to the subroutine from any part
of the main program. It is necessary to store the return address somewhere in the computer for the
subroutine to know where to return.

8.4 BSA Instruction
In the basic computer, the link between the main program and a subroutine is the BSA instruction.
BSA is branch and save return address.

A subroutine that shifts the content of the accumulator four times to the left. Shifting a
word four times is a useful operation for processing BCD numbers or alphanumeric
characters.

8.5 Subroutine Linkage
The first memory location of each subroutine serves as a link between the main program and the
subroutine. The procedure for branching to a subroutine and returning to the main program is
referred to as a subroutine linkage.The BSA instruction performs an operation commonly called

Unit 08: Machine Programming

Notes

• CLE /Clear E t o □

• SPA /Skip if AC is positive; E remains □

• CME /AC is negative; set E to 1

• CIR /Circulate E and AC

For arithmetic shift-left, it is necessary that the added bit in the least significant position be O. This
is easily done by clearing E prior to the circulate-left operation. The sign bit must not change during
this shift. With a circulate instruction, the sign bit moves into E.

8.3 Subroutines
A set of common instructions that can be used in a program many times is called a subroutine.
Branching is used for the concept of subroutine. A subroutine consists of a self-contained sequence
of instructions that carries out a given task. A branch can be made to the subroutine from any part
of the main program. It is necessary to store the return address somewhere in the computer for the
subroutine to know where to return.

8.4 BSA Instruction
In the basic computer, the link between the main program and a subroutine is the BSA instruction.
BSA is branch and save return address.

A subroutine that shifts the content of the accumulator four times to the left. Shifting a
word four times is a useful operation for processing BCD numbers or alphanumeric
characters.

8.5 Subroutine Linkage
The first memory location of each subroutine serves as a link between the main program and the
subroutine. The procedure for branching to a subroutine and returning to the main program is
referred to as a subroutine linkage.The BSA instruction performs an operation commonly called

Unit 08: Machine Programming

Notes

• CLE /Clear E t o □

• SPA /Skip if AC is positive; E remains □

• CME /AC is negative; set E to 1

• CIR /Circulate E and AC

For arithmetic shift-left, it is necessary that the added bit in the least significant position be O. This
is easily done by clearing E prior to the circulate-left operation. The sign bit must not change during
this shift. With a circulate instruction, the sign bit moves into E.

8.3 Subroutines
A set of common instructions that can be used in a program many times is called a subroutine.
Branching is used for the concept of subroutine. A subroutine consists of a self-contained sequence
of instructions that carries out a given task. A branch can be made to the subroutine from any part
of the main program. It is necessary to store the return address somewhere in the computer for the
subroutine to know where to return.

8.4 BSA Instruction
In the basic computer, the link between the main program and a subroutine is the BSA instruction.
BSA is branch and save return address.

A subroutine that shifts the content of the accumulator four times to the left. Shifting a
word four times is a useful operation for processing BCD numbers or alphanumeric
characters.

8.5 Subroutine Linkage
The first memory location of each subroutine serves as a link between the main program and the
subroutine. The procedure for branching to a subroutine and returning to the main program is
referred to as a subroutine linkage.The BSA instruction performs an operation commonly called

Lovely Professional University 155

Computer System Architecture

Notes

subroutine call. The last instruction of the subroutine performs an operation commonly called
subroutine return.The procedure used in the basic computer for subroutine linkage is commonly
found in computers with only one processor register. Many computers have multiple processor
registers and some of them are assigned the name index registers.In such computers, an index
register is usually employed to implement the subroutine linkage. A branch-to-subroutine
instruction stores the return address in an index register. A return-from-subroutine instruction is
effected by branching to the address presently stored in the index register.

8.6 Subroutine Parameters and Data Linkage
When a subroutine is called, the main program must transfer the data it wishes the subroutine to
work with. In the previous example, the data were transferred through the accumulator. The
operand was loaded into the AC prior to the branch. The subroutine shifted the number and left it
there to be accepted by the main program. The accumulator can be used for a single input
parameter and a single output parameter. In computers with multiple processor registers, more
parameters can be transferred this way. Another way to transfer data to a subroutine is through the
memory. Data are often placed in memory locations following the call. They can also be placed in a
block of storage.The first address of the block is then placed in the memory location following the
call.In any case, the return address always gives the link information for transferring data between
the main program and the subroutine.

Consider a subroutine that performs the logic OR operation. Two operands must be transferred to
the subroutine and the subroutine must return the result of the operation.

The accumulator can be used to transfer one operand and to receive the result. The other operand is
inserted in the location following the BSA instruction. The first operand in location X is loaded into
the AC. The second operand is stored in location 202 following the BSA instruction. After the
branch, the first location in the subroutine holds the number 202. Note that in this case, 202 is not
the return address but the address of the second operand. The subroutine starts performing the OR
operation by complementing the first operand in the AC and storing it in a temporary location
TMP. The second operand is loaded into the AC by an indirect instruction at location OR.
Remember that location OR contains the number 202. When the instruction refers to it indirectly,
the operand at location 202 is loaded into the AC.

This operand is complemented and then ANDed with the operand stored in TMP. Complementing
the result forms the OR operation.The return from the subroutine must be manipulated so that the

Lovely Professional University156

Unit 08: Machine Programming

Notes

main program continues from location 203 where the next instruction is located.This is
accomplished by incrementing location OR with the ISZ instruction. Now location OR holds the
number 203 and an indirect BUN instruction causes a return to the proper place.It is possible to
have more than one operand following the BSA instruction. The subroutine must increment the
return address stored in its first location for each operand that it extracts from the calling program.
Moreover, the calling program can reserve one or more locations for the subroutine to return
results that are computed. The first location in the subroutine must be incremented for these
locations as well, before the return. If there is a large amount of data to be transferred, the data can
be placed in a block of storage and the address of the first item in the block is then used as the
linking parameter.

8.7 Subroutine to Move a Block of Data

A subroutine that moves a block of data starting at address 100 into a block starting with address
200 is listed in table.The length of the block is 16 words. The first introduction is a branch to
subroutine MVE. The first part of the subroutine transfers the three parameters 100, 200 and -16
from the main program and places them in its own storage location. The items are retrieved from
their blocks by the use of two pointers. The counter ensures that only 16 items are moved. When the
subroutine completes its operation, the data required is in the block starting from the location 200.
The return to the main program is to the HLT instruction.

8.8 Input-Output Programming
Symbols is astrings of characters and the character is a 8-bit code. INP is a binary-coded character
enters the computer. OUT is a binary-coded character is transferred to the output device.

Lovely Professional University 157

Computer System Architecture

Notes

8.9 Program to Input one Character

• SKI: Checks the input flag for the availability of character.

• The next instruction is skipped if the input flag bit is 1.

• INP: Transfers the binary-coded character into AC (0-7).

• OUT: Prints the character.

OUT Instruction

A terminal unit that communicates directly with a computer does not print the character when a
key is depressed. To type it, it is necessary to send an OUT instruction for the printer. In this way,
the user is ensured that the correct transfer has occurred.

Flag=0

What happens when the flag is 0:

• Then, the next instruction in sequence is executed.

• This instruction is a branch to return and check the flag bit again.

8.10 Program to Output one Character

The character is first loaded into the AC. The output flag is then checked. If it is 0, the computer
remains in a two-instruction loop checking the flag bit. When the flag changes to 1, the character is
transferred from the accumulator to the printer.

8.11 Character Manipulation
A computer can also work as a symbol manipulator. One character manipulation task is to pack
two characters in one word. This is convenient because each character occupies 8 bits and a
memory word contains 16 bits.

Lovely Professional University158

Unit 08: Machine Programming

Notes

8.12 Subroutine to Input and Pack two Characters

The program lists a subroutine named IN2 that inputs two characters and packs them into one 16-
bit word. The packed word remains in the accumulator.

8.13 A program to Store Input Characters in a Buffer
In assembler, the symbolic program is stored in a section of memory which is sometimes called a
buffer. The symbolic program being typed enters through the input device and is stored in
consecutive memory locations in the buffer.

The first address of the buffer is 500. The first double character is stored in location 500 and all
characters are stored in sequential locations.No counter is used in the program, so characters will
be read as long as they are available or until the buffer reaches location O (after location FFFF).
This is an operation that searches a table to find out if it contains a given symbol. The search may be
done by comparing the given symbol with each of the symbols stored in the table.

Lovely Professional University 159

Computer System Architecture

Notes

8.14 A Program to Compare two Words

The comparison is accomplished by forming the 2's complement of a word (as if it were a number)
and arithmetically adding it to the second word. If the result is zero, the two words are equal and a
match occurs. If the result is not zero, the words are not the same.

8.15 Program Interrupt
The running time of input and output programs is made up primarily of the time spent by
the computer in waiting for the external device to set its flag.The waiting loop that checks
the flag keeps the computer occupied with a task that wastes a large amount of time. This
waiting time can be eliminated if the interrupt facility is used to notify the computer when
a flag is set. The advantage of using the interrupt is that the information transfer is
initiated upon request from the external device. It is useful in a multi-program
environment.The program currently being executed is referred to as the running program.
The other programs are usually waiting for input or output data. The function of the
interrupt facility is to take care of the data transfer of one (or more) program while another
program is currently being executed. The running program must include an ION
instruction to turn the interrupt on. If the interrupt facility is not used, the program must
include an IOF instruction to turn it off.

The interrupt facility allows the running program to proceed until the input or output
device sets its ready flag.Whenever a flag is set to 1, the computer completes the execution
of the instruction in progress and then acknowledges the interrupt. The result of this
action is that the return address is stored in location 0. The instruction in location 1 is then
performed; this initiates a service routine for the input or output transfer.The service
routine can be stored anywhere in memory provided a branch to the start of the routine is
stored in location 1. The service routine must have instructions to perform the following
tasks:

• Save contents of processor registers.

• Check which flag is set.

• Service the device whose flag is set.

• Restore contents of processor registers.

• Turn the interrupt facility on.

• Return to the running program.

Lovely Professional University160

Unit 08: Machine Programming

Notes

The contents of processor registers before the interrupt and after the return to the running
program must be the same; otherwise, the running program may be in error. Since the
service routine may use these registers, it is necessary to save their contents at the
beginning of the routine and restore them at the end. The sequence by which the flags are
checked dictates the priority assigned to each device. The device with higher priority is
serviced first followed by the one with lower priority. The sequence by which the flags are
checked dictates the priority assigned to each device. The device with higher priority is
serviced first followed by the one with lower priority.

8.16 Program to Service an Interrupt

The contents of AC and E are stored in special locations. (These are the only processor
registers in the basic computer.) The flags are checked sequentially, the input flag first and
the output flag second.If any or both flags are set, an item of data is transferred to or from
the corresponding memory buffer.Before returning to the running program the previous
contents of E and AC are restored and the interrupt facility is turned on.The last
instruction causes a branch to the address stored in location 0. This is the return address
stored there previously during the interrupt cycle. Hence the running program will
continue from location 104, where it was interrupted.A typical computer (may have many
more input and output devices connected to the interrupt facility.Furthermore, interrupt
sources are not limited to input and output transfers. Interrupts can be used for other
purposes, such as internal processing errors or special alarm conditions.

Summary

 The basic computer, have only one arithmetic instruction, such as ADD.
 Operations not included in the set of machine instructions must be implemented by a

program.
 Any logic function can be implemented using the AND and complement operations.

Lovely Professional University 161

Computer System Architecture

Notes

 The logical shift requires that zeros be added to the extreme positions.
 In the basic computer, the link between the main program and a subroutine is the BSA

instruction.
 The accumulator can be used to transfer one operand and to receive the result.

Keywords
• Logical shift-right:For this operation, we need the two instructions: CLE and CIR.

• Logical shift-left: For this operation, we need the two instructions: CLE and CIL.

• Subroutine: A set of common instructions that can be used in a program many times.

• Subroutine Linkage: The procedure for branching to a subroutine and returning to the
main program.

• Buffer: In assembler, the symbolic program is stored in a section of memory.

SelfAssessment

1. Which of the operation is not available as a machine instruction in basic computer?
A. OR
B. AND
C. NOT
D. None of the above

2. For arithmetic shift-left, it is necessary that the added bit in the least significant position
should be _______.

A. -1

B. 0

C. 1

D. 2

3. Which of these instructions is considered as a logic operation that transfers a logic operand
into the AC?

A. LOA
B. CMA
C. AND
D. CLA

4. Any logic function can be implemented using ______ and ___________ operations.
A. OR, XOR
B. NOR, XNOR
C. AND, complement
D. OR, complement

5. CMA instruction is used for
A. Complementation

Lovely Professional University162

Unit 08: Machine Programming

Notes

B. Accumulation
C. Correlation
D. None of the above

6. In the basic computer, the link between the main program and a subroutine is the
____________ instruction.

A. LDA
B. BSA
C. BAS
D. None of the above

7. Which memory location of each subroutine serves as a link between the main program and
the subroutine?

A. First
B. Second
C. Fifth
D. Last

8. Which instruction of the subroutine performs an operation commonly called subroutine
return?

A. First
B. Second
C. Fifth
D. Last

9. When computers have multiple processor registers then which register is usually employed
to implement the subroutine linkage?

A. Index register
B. Input register
C. Output Register
D. None of the above

10. The return to the main program after execution of subroutine is done by using ___________.
A. HLT
B. Exit
C. Back
D. None of the above

11. Which of the instruction checks the input flag for the availability of character?
A. SKI
B. INP
C. OUT
D. None of the above
12. A binary-coded character is transferred to the output device using _____ instruction?

Lovely Professional University 163

Computer System Architecture

Notes

A. SKI
B. INP
C. OUT
D. None of the above

13. To turn the interrupt on, which instruction is used?
A. INP
B. ION
C. IOF
D. None of the above

14. Interrupt sources can be used for
A. Input transfers
B. Output transfers
C. Internal processing errors
D. All input and output transfers and internal processing errors

15. A binary-coded character enters the computer using __________ instruction
A. INP
B. ION
C. IOF
D. None of the above

Answer for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. A 8. D 9. A 10. A

11. A 12. C 13. B 14. D 15. A

Review Questions

1. Explain the instructions for multiplying two numbers.
2. Explain the shift operations.
3. What is a subroutine and its linkage.
4. What are subroutine parameters and data linkage?
5. Write a subroutine to move a block of data.
6. Write a program to input and output one character.
7. Write a subroutine to input and pack two characters.
8. Explain program interrupt. Write a program to service an interrupt.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Computer System Architecture

Notes

A. SKI
B. INP
C. OUT
D. None of the above

13. To turn the interrupt on, which instruction is used?
A. INP
B. ION
C. IOF
D. None of the above

14. Interrupt sources can be used for
A. Input transfers
B. Output transfers
C. Internal processing errors
D. All input and output transfers and internal processing errors

15. A binary-coded character enters the computer using __________ instruction
A. INP
B. ION
C. IOF
D. None of the above

Answer for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. A 8. D 9. A 10. A

11. A 12. C 13. B 14. D 15. A

Review Questions

1. Explain the instructions for multiplying two numbers.
2. Explain the shift operations.
3. What is a subroutine and its linkage.
4. What are subroutine parameters and data linkage?
5. Write a subroutine to move a block of data.
6. Write a program to input and output one character.
7. Write a subroutine to input and pack two characters.
8. Explain program interrupt. Write a program to service an interrupt.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Computer System Architecture

Notes

A. SKI
B. INP
C. OUT
D. None of the above

13. To turn the interrupt on, which instruction is used?
A. INP
B. ION
C. IOF
D. None of the above

14. Interrupt sources can be used for
A. Input transfers
B. Output transfers
C. Internal processing errors
D. All input and output transfers and internal processing errors

15. A binary-coded character enters the computer using __________ instruction
A. INP
B. ION
C. IOF
D. None of the above

Answer for Self Assessment

1. A 2. B 3. A 4. C 5. A

6. B 7. A 8. D 9. A 10. A

11. A 12. C 13. B 14. D 15. A

Review Questions

1. Explain the instructions for multiplying two numbers.
2. Explain the shift operations.
3. What is a subroutine and its linkage.
4. What are subroutine parameters and data linkage?
5. Write a subroutine to move a block of data.
6. Write a program to input and output one character.
7. Write a subroutine to input and pack two characters.
8. Explain program interrupt. Write a program to service an interrupt.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Lovely Professional University164

Unit 08: Machine Programming

Notes

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Unit 08: Machine Programming

Notes

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Unit 08: Machine Programming

Notes

Web Links

https://vardhaman.org/wp-content/uploads/2018/03/CAO%20Unit-I%20part-3.pdf

http://www.nou.ac.in/econtent/BCA%20Part%20I/Paper%207/BCA%20Paper-
VII%20Block-2%20Unit-6.pdf

Lovely Professional University 165

Unit 09: Register Organization
Notes

Unit 09: Register Organization

CONTENTS

Objectives

Introduction

9.1 General Register Organization

9.2 Encoding of register selection fields

9.3 Encoding of ALU operations

9.4 Operations of a stack

9.5 Register stack

9.6 64 word stack

9.7 PUSH operation

9.8 POP operation

9.9 Memory stack

9.10 Demonstration of representations

9.11 Procedure of evaluation

9.12 Evaluation of arithmetic expression

9.13 Representation in stack

Summary

Keywords

Self Assessment Questions:

Answers for Self Assessment

Review Questions:

Further Readings

Objectives
After studying this unit, you will be

 Know the major components of CPU and their role.
 Understand the general register organization in CPU.
 Understand the basic data structure, i.e., stack
 Understand the basic operations on stack
 understand the infix, prefix and postfix notation

Introduction
CPU stands for Central processing unit. It performs the data processing operations in a computer.
The major components of a CPU are register sets, arithmetic logic unit (ALU) and the control. Every
component has its own functionalities. The register set is used to store and transfer the data. The
ALU is responsible for performing various micro-operations. The control, i.e., the head is the
supervisor of the information transfer.

Lovely Professional University166

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

9.1 General Register Organization
The memory locations are needed for storing pointers, counters, return addresses, temporary
results and partial products during any kind of operation. Having to refer to memory locations for
such applications is time consuming because memory access is the most time consuming operation
in a computer.It is more convenient and efficient to use registers to store these immediate values. If
CPU has a large number of registers, a common bus is used to connect the registers.The registers
communicate with each other not only for direct data transfer, but also while performing the micro-
operations. So, a common unit is necessary that can perform all the arithmetic, logic and shift
micro-operations in the processor.The general register organization contains registers, decoders,
multiplexers and the arithmetic logic unit in which each component works in a responsible way for
the management of data. This management involves the storage, retrieval, transfer and exchange of
the data.

The output of each register is connected to two multiplexers (MUX) to form the two buses A and B.
The selection lines in each multiplexer select one register or the input data for the particular
bus.The A and B buses form the inputs to a common ALU.The operation selected in ALU

Computer System Architecture

Notes

9.1 General Register Organization
The memory locations are needed for storing pointers, counters, return addresses, temporary
results and partial products during any kind of operation. Having to refer to memory locations for
such applications is time consuming because memory access is the most time consuming operation
in a computer.It is more convenient and efficient to use registers to store these immediate values. If
CPU has a large number of registers, a common bus is used to connect the registers.The registers
communicate with each other not only for direct data transfer, but also while performing the micro-
operations. So, a common unit is necessary that can perform all the arithmetic, logic and shift
micro-operations in the processor.The general register organization contains registers, decoders,
multiplexers and the arithmetic logic unit in which each component works in a responsible way for
the management of data. This management involves the storage, retrieval, transfer and exchange of
the data.

The output of each register is connected to two multiplexers (MUX) to form the two buses A and B.
The selection lines in each multiplexer select one register or the input data for the particular
bus.The A and B buses form the inputs to a common ALU.The operation selected in ALU

Computer System Architecture

Notes

9.1 General Register Organization
The memory locations are needed for storing pointers, counters, return addresses, temporary
results and partial products during any kind of operation. Having to refer to memory locations for
such applications is time consuming because memory access is the most time consuming operation
in a computer.It is more convenient and efficient to use registers to store these immediate values. If
CPU has a large number of registers, a common bus is used to connect the registers.The registers
communicate with each other not only for direct data transfer, but also while performing the micro-
operations. So, a common unit is necessary that can perform all the arithmetic, logic and shift
micro-operations in the processor.The general register organization contains registers, decoders,
multiplexers and the arithmetic logic unit in which each component works in a responsible way for
the management of data. This management involves the storage, retrieval, transfer and exchange of
the data.

The output of each register is connected to two multiplexers (MUX) to form the two buses A and B.
The selection lines in each multiplexer select one register or the input data for the particular
bus.The A and B buses form the inputs to a common ALU.The operation selected in ALU

Lovely Professional University 167

Unit 09: Register Organization
Notes

determines the arithmetic or logic operation that is to be performed. The results of the micro-
operations are available for output data and also go into the inputs of all the registers. The register
that receives the information from the output bus is selected by the decoder. The decoder activates
one of the register load inputs, thus providing a transfer path between the data in the output bus
and the inputs of the selected destination register. The control unit that operates the CPU bus
system directs the information flow through the registers and ALU by selecting the various
components in the system.

For example: R1R2+R3 To perform this operation, the control must provide binary selection
variables as:

1. MUX A selector SELA: is used to place the content of R2 into bus A. (SEL A): BUS AR2

2. MUX B selector SELB: is used to place the content of R3 into bus B. (SEL B): BUS BR3

3. ALU operation selector (OPR): selects the arithmetic addition. (OPR): A+B

4. Decoder destination selector (SELD): is used to transfer the content of output bus into R1.

Control word
There are 14 binary selection inputs in the unit and their combined value specifies a control word.It
consists of 4 fields.Three fields contain three bits each and one field has five bits.The three bits of
SELA select a source register for the A input of ALU. The three bits of SELB select a source register
for the B input of ALU. The three bits of SELD select a destination register using the decoder and its
seven load outputs. The five bits of OPR selects one of the operations in ALU.The 14 bit control
word when applied to selection inputs specifies a particular micro-operation.

Lovely Professional University168

Computer System Architecture

Notes

9.2 Encoding of register selection fields

The three bit binary code listed in the first column of the table specifies the binary code for each of
the three fields.The register selected by fields SELA, SELB and SELD is the one whose decimal
number is equivalent to the binary number in the code.When SELA or SELB is 000, the
corresponding multiplexer selects the external input data.When SELD=000, no destination register
is selected but the contents of the output bus are available in the external output.

9.3 Encoding of ALU operations

The ALU provides arithmetic and logic micro-operations.The OPR field has five bits and each
operation is designated with a symbolic name.

Computer System Architecture

Notes

9.2 Encoding of register selection fields

The three bit binary code listed in the first column of the table specifies the binary code for each of
the three fields.The register selected by fields SELA, SELB and SELD is the one whose decimal
number is equivalent to the binary number in the code.When SELA or SELB is 000, the
corresponding multiplexer selects the external input data.When SELD=000, no destination register
is selected but the contents of the output bus are available in the external output.

9.3 Encoding of ALU operations

The ALU provides arithmetic and logic micro-operations.The OPR field has five bits and each
operation is designated with a symbolic name.

Computer System Architecture

Notes

9.2 Encoding of register selection fields

The three bit binary code listed in the first column of the table specifies the binary code for each of
the three fields.The register selected by fields SELA, SELB and SELD is the one whose decimal
number is equivalent to the binary number in the code.When SELA or SELB is 000, the
corresponding multiplexer selects the external input data.When SELD=000, no destination register
is selected but the contents of the output bus are available in the external output.

9.3 Encoding of ALU operations

The ALU provides arithmetic and logic micro-operations.The OPR field has five bits and each
operation is designated with a symbolic name.

Lovely Professional University 169

Unit 09: Register Organization
Notes

Stack
A useful feature that is included in the CPU of most computer systems is a stack.A stack is a storage
device for storing information in such a manner that the item stored last is the first item retrieved
(LIFO – last-in, first-out).The operation of a stack can be compared to a stack of trays. The last tray
placed on the top of the stack is the first to be taken off.The stack in digital computers is essentially
a memory unit with an address register that can count only (after an initial element is loaded into
it).The register that holds the address for stack is called a stack pointer (SP) because its value
always points out its top item in the stack.

9.4 Operations of a stack
There are two main operations which can be performed on a stack:

1) Push
2) Pop

The push operation deals with the insertion of elements in the stack and the pop operation deals
with the deletion of elements from the stack. Both of these highly used operations deals with the
stack pointer, i.e., top of the stack which always incremented and decremented depending upon the
operation performed. These operations are simulated by incrementing or decrementing the stack
pointer register.

9.5 Register stack
A stack can be placed in a portion of large memory or it can be organized as a collection of a finite
number of memory words or registers.The stack pointer register SP contains a binary number
whose value is equal to the address of the word that is currently on the top of it.

9.6 64 word stack

Three items are placed in the stack: A, B and C, in that order. Item C is on the top of the stack so
that the content of SP is now 3. To remove the top item, the stack is popped by reading the memory
word at address 3 and decrementing the content of SP. Item B is now at the top of the stack since SP

Unit 09: Register Organization
Notes

Stack
A useful feature that is included in the CPU of most computer systems is a stack.A stack is a storage
device for storing information in such a manner that the item stored last is the first item retrieved
(LIFO – last-in, first-out).The operation of a stack can be compared to a stack of trays. The last tray
placed on the top of the stack is the first to be taken off.The stack in digital computers is essentially
a memory unit with an address register that can count only (after an initial element is loaded into
it).The register that holds the address for stack is called a stack pointer (SP) because its value
always points out its top item in the stack.

9.4 Operations of a stack
There are two main operations which can be performed on a stack:

1) Push
2) Pop

The push operation deals with the insertion of elements in the stack and the pop operation deals
with the deletion of elements from the stack. Both of these highly used operations deals with the
stack pointer, i.e., top of the stack which always incremented and decremented depending upon the
operation performed. These operations are simulated by incrementing or decrementing the stack
pointer register.

9.5 Register stack
A stack can be placed in a portion of large memory or it can be organized as a collection of a finite
number of memory words or registers.The stack pointer register SP contains a binary number
whose value is equal to the address of the word that is currently on the top of it.

9.6 64 word stack

Three items are placed in the stack: A, B and C, in that order. Item C is on the top of the stack so
that the content of SP is now 3. To remove the top item, the stack is popped by reading the memory
word at address 3 and decrementing the content of SP. Item B is now at the top of the stack since SP

Unit 09: Register Organization
Notes

Stack
A useful feature that is included in the CPU of most computer systems is a stack.A stack is a storage
device for storing information in such a manner that the item stored last is the first item retrieved
(LIFO – last-in, first-out).The operation of a stack can be compared to a stack of trays. The last tray
placed on the top of the stack is the first to be taken off.The stack in digital computers is essentially
a memory unit with an address register that can count only (after an initial element is loaded into
it).The register that holds the address for stack is called a stack pointer (SP) because its value
always points out its top item in the stack.

9.4 Operations of a stack
There are two main operations which can be performed on a stack:

1) Push
2) Pop

The push operation deals with the insertion of elements in the stack and the pop operation deals
with the deletion of elements from the stack. Both of these highly used operations deals with the
stack pointer, i.e., top of the stack which always incremented and decremented depending upon the
operation performed. These operations are simulated by incrementing or decrementing the stack
pointer register.

9.5 Register stack
A stack can be placed in a portion of large memory or it can be organized as a collection of a finite
number of memory words or registers.The stack pointer register SP contains a binary number
whose value is equal to the address of the word that is currently on the top of it.

9.6 64 word stack

Three items are placed in the stack: A, B and C, in that order. Item C is on the top of the stack so
that the content of SP is now 3. To remove the top item, the stack is popped by reading the memory
word at address 3 and decrementing the content of SP. Item B is now at the top of the stack since SP

Lovely Professional University170

Computer System Architecture

Notes

holds address 2. To insert a new item, the stack is pushed by incrementing SP and writing a word
in the next higher location in the stack.

9.7 PUSH operation

The stack pointer is incremented so that it points to the address of the next higher word. The
memory write operation inserts the word from DR into the top of the stack. The first item stored in
the stack is at address 1.The last item is stored at address 0. If SP reaches 0, the stack is full of items,
so FULL is set to 1. If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 1.

9.8 POP operation

The top item is read from the stack into DR. The stack pointer is then decremented. If its value
reaches 0, then the stack is empty and then EMTY is set to 1. This condition is reached if the item
read was in location 1.

9.9 Memory stack
Stack can also be implemented with a RAM attached to a CPU:

A portion of memory is assigned to a stack operation

A processor register is used as a stack pointer

A portion of memory is partitioned into three segments: program, data, and stack.Most computer
do not provide hardware for checking stack overflow or underflow.If registers are used to store the
upper limit (e.g. 3000) and the lower limit (e.g. 4000), then after push SP can be compared against
the upper limit register, and after pull against the lower limit register. The advantage of the
memory stack is that CPU can refer it without having to specify an address: the address in always
in SP and automatically updated during a push or pop instruction.

Computer System Architecture

Notes

holds address 2. To insert a new item, the stack is pushed by incrementing SP and writing a word
in the next higher location in the stack.

9.7 PUSH operation

The stack pointer is incremented so that it points to the address of the next higher word. The
memory write operation inserts the word from DR into the top of the stack. The first item stored in
the stack is at address 1.The last item is stored at address 0. If SP reaches 0, the stack is full of items,
so FULL is set to 1. If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 1.

9.8 POP operation

The top item is read from the stack into DR. The stack pointer is then decremented. If its value
reaches 0, then the stack is empty and then EMTY is set to 1. This condition is reached if the item
read was in location 1.

9.9 Memory stack
Stack can also be implemented with a RAM attached to a CPU:

A portion of memory is assigned to a stack operation

A processor register is used as a stack pointer

A portion of memory is partitioned into three segments: program, data, and stack.Most computer
do not provide hardware for checking stack overflow or underflow.If registers are used to store the
upper limit (e.g. 3000) and the lower limit (e.g. 4000), then after push SP can be compared against
the upper limit register, and after pull against the lower limit register. The advantage of the
memory stack is that CPU can refer it without having to specify an address: the address in always
in SP and automatically updated during a push or pop instruction.

Computer System Architecture

Notes

holds address 2. To insert a new item, the stack is pushed by incrementing SP and writing a word
in the next higher location in the stack.

9.7 PUSH operation

The stack pointer is incremented so that it points to the address of the next higher word. The
memory write operation inserts the word from DR into the top of the stack. The first item stored in
the stack is at address 1.The last item is stored at address 0. If SP reaches 0, the stack is full of items,
so FULL is set to 1. If an item is written in the stack, obviously the stack cannot be empty, so EMTY
is cleared to 1.

9.8 POP operation

The top item is read from the stack into DR. The stack pointer is then decremented. If its value
reaches 0, then the stack is empty and then EMTY is set to 1. This condition is reached if the item
read was in location 1.

9.9 Memory stack
Stack can also be implemented with a RAM attached to a CPU:

A portion of memory is assigned to a stack operation

A processor register is used as a stack pointer

A portion of memory is partitioned into three segments: program, data, and stack.Most computer
do not provide hardware for checking stack overflow or underflow.If registers are used to store the
upper limit (e.g. 3000) and the lower limit (e.g. 4000), then after push SP can be compared against
the upper limit register, and after pull against the lower limit register. The advantage of the
memory stack is that CPU can refer it without having to specify an address: the address in always
in SP and automatically updated during a push or pop instruction.

Lovely Professional University 171

Unit 09: Register Organization
Notes

Notations
Stack organization is very effective for evaluating arithmetic expressions.The common
mathematical method of writing arithmetic expressions imposes difficulties when evaluated by a
computer.The common arithmetic expressions are written in INFIX notation, with each operator
written between the operands: A*B+C*D.To evaluate this expression, it is necessary to compute the
product A*B, store the product while computing C*D, and then sum the two products. Two other
notations used are: PREFIX and POSTFIX.

PREFIX notation: This representation is also known as polish notation which places the operator
before the operands.

POSTFIX notation: It is referred to as reverse polish notation, places the operator after the
operands.

9.10 Demonstration of representations
A+B INFIX notation

+AB PREFIX or POLISH notation

AB+ POSTFIX or REVERSE POLISH notation

9.11 Procedure of evaluation
The reverse polish notation is in a form suitable for stack manipulation, the expression A*B +C*D
can be written as AB*CD*+.Scan the expression from left to right. When an operator is reached,
perform the operation with the two operands found on the left side of the operator. Remove the
two operands and the operator and replace them by the number obtained from the result of the
operation. Continue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

9.12 Evaluation of arithmetic expression
The postfix notation, combined with a stack arrangement of registers is the most efficient way
known for evaluating arithmetic expressions.This procedure is employed in some electronic
calculators and also in some computers.It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation

Consider the arithmetic expression: (3 * 4) + (5 * 6)

In reverse polish notation, it is expressed as: 3 4 * 5 6 * +

9.13 Representation in stack

Each box represents one stack operation and the arrow always points to the top of the
stack.Scanning the expression from left to right, we encounter two operands. First the number 3 is
pushed into the stack, then the number 4. Then *. This causes a multiplication of the two topmost

Unit 09: Register Organization
Notes

Notations
Stack organization is very effective for evaluating arithmetic expressions.The common
mathematical method of writing arithmetic expressions imposes difficulties when evaluated by a
computer.The common arithmetic expressions are written in INFIX notation, with each operator
written between the operands: A*B+C*D.To evaluate this expression, it is necessary to compute the
product A*B, store the product while computing C*D, and then sum the two products. Two other
notations used are: PREFIX and POSTFIX.

PREFIX notation: This representation is also known as polish notation which places the operator
before the operands.

POSTFIX notation: It is referred to as reverse polish notation, places the operator after the
operands.

9.10 Demonstration of representations
A+B INFIX notation

+AB PREFIX or POLISH notation

AB+ POSTFIX or REVERSE POLISH notation

9.11 Procedure of evaluation
The reverse polish notation is in a form suitable for stack manipulation, the expression A*B +C*D
can be written as AB*CD*+.Scan the expression from left to right. When an operator is reached,
perform the operation with the two operands found on the left side of the operator. Remove the
two operands and the operator and replace them by the number obtained from the result of the
operation. Continue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

9.12 Evaluation of arithmetic expression
The postfix notation, combined with a stack arrangement of registers is the most efficient way
known for evaluating arithmetic expressions.This procedure is employed in some electronic
calculators and also in some computers.It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation

Consider the arithmetic expression: (3 * 4) + (5 * 6)

In reverse polish notation, it is expressed as: 3 4 * 5 6 * +

9.13 Representation in stack

Each box represents one stack operation and the arrow always points to the top of the
stack.Scanning the expression from left to right, we encounter two operands. First the number 3 is
pushed into the stack, then the number 4. Then *. This causes a multiplication of the two topmost

Unit 09: Register Organization
Notes

Notations
Stack organization is very effective for evaluating arithmetic expressions.The common
mathematical method of writing arithmetic expressions imposes difficulties when evaluated by a
computer.The common arithmetic expressions are written in INFIX notation, with each operator
written between the operands: A*B+C*D.To evaluate this expression, it is necessary to compute the
product A*B, store the product while computing C*D, and then sum the two products. Two other
notations used are: PREFIX and POSTFIX.

PREFIX notation: This representation is also known as polish notation which places the operator
before the operands.

POSTFIX notation: It is referred to as reverse polish notation, places the operator after the
operands.

9.10 Demonstration of representations
A+B INFIX notation

+AB PREFIX or POLISH notation

AB+ POSTFIX or REVERSE POLISH notation

9.11 Procedure of evaluation
The reverse polish notation is in a form suitable for stack manipulation, the expression A*B +C*D
can be written as AB*CD*+.Scan the expression from left to right. When an operator is reached,
perform the operation with the two operands found on the left side of the operator. Remove the
two operands and the operator and replace them by the number obtained from the result of the
operation. Continue to scan the expression and repeat the procedure for every operator
encountered until there are no more operators.

9.12 Evaluation of arithmetic expression
The postfix notation, combined with a stack arrangement of registers is the most efficient way
known for evaluating arithmetic expressions.This procedure is employed in some electronic
calculators and also in some computers.It is based on the fact that any arithmetic expression can be
expressed in parentheses-free Polish notation

Consider the arithmetic expression: (3 * 4) + (5 * 6)

In reverse polish notation, it is expressed as: 3 4 * 5 6 * +

9.13 Representation in stack

Each box represents one stack operation and the arrow always points to the top of the
stack.Scanning the expression from left to right, we encounter two operands. First the number 3 is
pushed into the stack, then the number 4. Then *. This causes a multiplication of the two topmost

Lovely Professional University172

Computer System Architecture

Notes

items in the stack. The stack is then popped and the product is placed on the top of the stack,
replacing the original operands.Next we encounter the two operands 5 and 6, so they are pushed
into the stack. The stack operation that results from the next * replaces these two numbers by their
product. The last operation causes an arithmetic addition to produce the final result of 42.

Summary
• CPU performs the data processing operations in a computer.

• If CPU has a large number of registers, a common bus is used to connect the registers.

• The registers communicate with each other not only for direct data transfer, but also while
performing the micro-operations.

• The registers communicate with each other not only for direct data transfer, but also while
performing the micro-operations.

• There are 14 binary selection inputs in the unit and their combined value specifies a
control word.

• A stack is a storage device for storing information in such a manner that the item stored
last is the first item retrieved (LIFO – last-in, first-out).

• Stack organization is very effective for evaluating arithmetic expressions.

Keywords
• Stack: It is a useful feature that is included in the CPU of most computer systems.

• Stack pointer: The register that holds the address for stack.

• PREFIX notation: This representation is also known as polish notation which places the
operator before the operands.

• POSTFIX notation: It is referred to as reverse polish notation, places the operator after the
operands.

Self Assessment Questions:

1. Which of the following component of CPU performs micro-operations?
A. Control
B. ALU
C. Register set
D. None of the above

2. The register that receives the information from the output bus is selected by the

A. Encoder
B. Multiplexer
C. Decoder
D. Demultiplexer

3. How many fields are included in a control word?
A. 2
B. 3
C. 4

Lovely Professional University 173

Unit 09: Register Organization
Notes

D. 5

4. Which of the following field is of 5 bits?
A. SELA
B. SELB
C. SELD
D. OPR

5. The fields SELA, SELB and SELD each consists of
A. 2
B. 3
C. 4
D. 5

6. A stack follows the rule of
A. FIFO
B. LIFO
C. LILO
D. None of the above

7. The register that holds the address for stack is called a _________
A. Stack Pointer
B. Stack Register
C. Stack Pop
D. Stack Push

8. The value of stack pointer always points towards the _____ of the stack
A. Bottom
B. Left
C. Right
D. Top

9. When we are removing any item from the stack, the content in SP will be
A. Incremented
B. Decremented
C. Remains same
D. None of the above

10. When we are inserting any item to the stack, the content in SP will be
A. Incremented
B. Decremented
C. Remains same
D. None of the above

Lovely Professional University174

Computer System Architecture

Notes

11. The arithmetic expressions can be effectively calculated by _______ organization
A. Stack
B. Queue
C. Graph
D. Tree

12. In polished notation, we place the operator is placed _______
A. Between the operands
B. Before the operands
C. After the operands
D. The operator is not placed

13. Which of the following referred to as reverse polished notation?
A. Infix notation
B. Prefix notation
C. Postfix notation
D. None of the above

14. The expression AB+ refers to as ____________
A. Infix notation expression
B. Prefix notation expression
C. Postfix notation expression
D. None of the above

15. Which of the following form is best suitable for stack manipulation?
A. Polished notation
B. Reverse Polished notation
C. Accurate Polished notation
D. None of the above

Answers for Self Assessment

1. B 2. C 3. C 4. D 5. B

6. B 7. A 8. D 9. B 10. A

11. A 12. B 13. C 14. C 15. B

Review Questions:

1. What is a CPU? Explain all its components.
2. What is general register organization? Explain its components.

Lovely Professional University 175

Unit 09: Register Organization
Notes

3. What is a control word? Explain the encoding of register selection fields and ALU
operations.

4. What is a stack? Explain its operations.
5. What are notations of a stack? Explain infix, prefix and postfix notations with examples.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.geeksforgeeks.org/introduction-of-general-register-based-cpu-
organization/

Unit 09: Register Organization
Notes

3. What is a control word? Explain the encoding of register selection fields and ALU
operations.

4. What is a stack? Explain its operations.
5. What are notations of a stack? Explain infix, prefix and postfix notations with examples.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.geeksforgeeks.org/introduction-of-general-register-based-cpu-
organization/

Unit 09: Register Organization
Notes

3. What is a control word? Explain the encoding of register selection fields and ALU
operations.

4. What is a stack? Explain its operations.
5. What are notations of a stack? Explain infix, prefix and postfix notations with examples.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education

Asia, 2002.

Web Links
https://www.geeksforgeeks.org/introduction-of-general-register-based-cpu-
organization/

Lovely Professional University176

Unit 10: Addressing Modes
Notes

Unit 10: Addressing Modes

CONTENTS

Objectives

Introduction

10.1 Fields of Instruction

10.2 Types of CPU Organization

10.3 General Register Type Organization

10.4 Stack Organization

10.5 Three-Address Instruction

10.6 Two-Address Instruction

10.7 One Address Instruction

10.8 Zero Address Instruction

10.9 RISC Instruction

10.10 Implied Mode

10.11 Immediate Mode

10.12 Register Mode

10.13 Register Indirect Mode

10.14 Auto-increment or auto-decrement mode

10.15 Direct Address Mode

10.16 Indirect Address Mode

10.17 Relative Address Mode

10.18 Index Address Mode

10.19 Base Register Addressing Mode

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 Understand the format of an instruction.
 Understand different types of instructions.
 Understand the addressing modes.
 Understand the different modes of an instruction.
 Understand the use of effective address

Lovely Professional University 177

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

Introduction
A computer will usually have a variety of instruction code formats.It is the function of the
control unit within the CPU to interpret each instruction code and provide the necessary
control functions needed to process the instruction.The format of an instruction is usually
depicted in a rectangular box symbolizing the bits of the instruction as they appear in
memory words or in a control register.

10.1 Fields of Instruction
The bits of the instruction are divided into groups called fields. The most common fields found in
instruction formats are:

• Operation code: An operation code field that specifies the operation to be performed.

• Address field: An address field that designates a memory address or a processor register.

• Mode field: A mode field that specifies the way the operand or the effective address is
determined.

Other special fields are sometimes employed under certain circumstances, as for example a field
that gives the number of shifts in a shift-type instruction. The operation code field of an instruction
is a group of bits that define various processor operations, such as add, subtract, complement, and
shift. The bits that define the mode field of an instruction code specify a variety of alternatives for
choosing the operands from the given address.

Register Address

Operations specified by computer instructions are executed on some data stored in memory or
processor registers. Operands residing in memory are specified by their memory address.
Operands residing in processor registers are specified with a register address. A register address is
a binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 16 processor
registers R0through R15 will have a register address field of four bits. The binary number 0101, for
example, will designate register R5.

10.2 Types of CPU Organization
Computers may have instructions of several different lengths containing varying number of
addresses.The number of address fields in the instruction format of a computer depends on the
internal organization of its registers.Most computers fall into one of three types of CPU
organizations:

• Single accumulator organization.

• General register organization.

• Stack organization.

Single Accumulator Organization:
An example of an accumulator-type organization is the basic computer.All operations are
performed with an implied accumulator register.The instruction format in this type of computer
uses one address field.

The instruction that specifies an arithmetic addition is defined by an assembly language
instruction as

ADD Xwhere X is the address of the operand.

The ADD instruction in this case results in the operation AC <- AC + M[X]. AC is the accumulator
register and M[X] symbolizes the memory word located at address X.

Computer System Architecture

Notes

Introduction
A computer will usually have a variety of instruction code formats.It is the function of the
control unit within the CPU to interpret each instruction code and provide the necessary
control functions needed to process the instruction.The format of an instruction is usually
depicted in a rectangular box symbolizing the bits of the instruction as they appear in
memory words or in a control register.

10.1 Fields of Instruction
The bits of the instruction are divided into groups called fields. The most common fields found in
instruction formats are:

• Operation code: An operation code field that specifies the operation to be performed.

• Address field: An address field that designates a memory address or a processor register.

• Mode field: A mode field that specifies the way the operand or the effective address is
determined.

Other special fields are sometimes employed under certain circumstances, as for example a field
that gives the number of shifts in a shift-type instruction. The operation code field of an instruction
is a group of bits that define various processor operations, such as add, subtract, complement, and
shift. The bits that define the mode field of an instruction code specify a variety of alternatives for
choosing the operands from the given address.

Register Address

Operations specified by computer instructions are executed on some data stored in memory or
processor registers. Operands residing in memory are specified by their memory address.
Operands residing in processor registers are specified with a register address. A register address is
a binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 16 processor
registers R0through R15 will have a register address field of four bits. The binary number 0101, for
example, will designate register R5.

10.2 Types of CPU Organization
Computers may have instructions of several different lengths containing varying number of
addresses.The number of address fields in the instruction format of a computer depends on the
internal organization of its registers.Most computers fall into one of three types of CPU
organizations:

• Single accumulator organization.

• General register organization.

• Stack organization.

Single Accumulator Organization:
An example of an accumulator-type organization is the basic computer.All operations are
performed with an implied accumulator register.The instruction format in this type of computer
uses one address field.

The instruction that specifies an arithmetic addition is defined by an assembly language
instruction as

ADD Xwhere X is the address of the operand.

The ADD instruction in this case results in the operation AC <- AC + M[X]. AC is the accumulator
register and M[X] symbolizes the memory word located at address X.

Computer System Architecture

Notes

Introduction
A computer will usually have a variety of instruction code formats.It is the function of the
control unit within the CPU to interpret each instruction code and provide the necessary
control functions needed to process the instruction.The format of an instruction is usually
depicted in a rectangular box symbolizing the bits of the instruction as they appear in
memory words or in a control register.

10.1 Fields of Instruction
The bits of the instruction are divided into groups called fields. The most common fields found in
instruction formats are:

• Operation code: An operation code field that specifies the operation to be performed.

• Address field: An address field that designates a memory address or a processor register.

• Mode field: A mode field that specifies the way the operand or the effective address is
determined.

Other special fields are sometimes employed under certain circumstances, as for example a field
that gives the number of shifts in a shift-type instruction. The operation code field of an instruction
is a group of bits that define various processor operations, such as add, subtract, complement, and
shift. The bits that define the mode field of an instruction code specify a variety of alternatives for
choosing the operands from the given address.

Register Address

Operations specified by computer instructions are executed on some data stored in memory or
processor registers. Operands residing in memory are specified by their memory address.
Operands residing in processor registers are specified with a register address. A register address is
a binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU with 16 processor
registers R0through R15 will have a register address field of four bits. The binary number 0101, for
example, will designate register R5.

10.2 Types of CPU Organization
Computers may have instructions of several different lengths containing varying number of
addresses.The number of address fields in the instruction format of a computer depends on the
internal organization of its registers.Most computers fall into one of three types of CPU
organizations:

• Single accumulator organization.

• General register organization.

• Stack organization.

Single Accumulator Organization:
An example of an accumulator-type organization is the basic computer.All operations are
performed with an implied accumulator register.The instruction format in this type of computer
uses one address field.

The instruction that specifies an arithmetic addition is defined by an assembly language
instruction as

ADD Xwhere X is the address of the operand.

The ADD instruction in this case results in the operation AC <- AC + M[X]. AC is the accumulator
register and M[X] symbolizes the memory word located at address X.

Lovely Professional University178

Unit 10: Addressing Modes
Notes

10.3 General Register Type Organization
The instruction format in this type of computer needs three register address fields. Thus the
instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2,R3to denote the operation R1 <- R2 + R3.

The number of address fields in the instruction can be reduced from three to two if the destination
register is the same as one of the source registers. Thus the instruction ADD R1,R2would
denote the operation R1 <- R1+R2.Only register addresses for R1 and R2 need be specified in this
instruction.

Computers with multiple processor registers use the move instruction with a mnemonic MOV to
symbolize a transfer instruction. Thus the instruction MOVR1, R2denotes the transfer R1 <- R2 (or
R2<-R1, depending on the particular computer). Thus transfer-type instructions need two address
fields to specify the source and the destination.

General register-type computers employ two or three address fields in their instruction format.
Each address field may specify a processor register or a memory word. An instruction symbolized
byADD R1, Xwould specify the operation R1 <-R1 + M[X]. It has two address fields, one for
register R1 and the other for the memory address X.

10.4 Stack Organization
Computers with stack organization would have PUSH and POP instructions which require an
address field.

PUSH X

Thus the instruction will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address field in stack-organized
computers. This is because the operation is performed on the two items that are on top of the stack.
The instructionADDin a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack, adding the numbers,
and pushing the sum into the stack. There is no need to specify operands with an address field
since all operands are implied to be in the stack.Most computers fall into one of the three types of
organizations that have just been described.

Some computers combine features from more than one organizational structure. For example, the
Intel 8080 microprocessor has seven CPU registers, one of which is an accumulator register.As a
consequence, the processor has some of the characteristics of a general register type and some of the
characteristics of an accumulator type.

All arithmetic and logic instructions, as well as the load and store instructions, use the accumulator
register, so these instructions have only one address field.On the other hand, instructions that
transfer data among the seven processor registers have a format that contains two register address
fields.Moreover, the Intel 8080 processor has a stack pointer and instructions to push and pop from
a memory stack. The processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

Evaluation of Arithmetic Expression
To illustrate the influence of the number of addresses on computer programs, we will evaluate the
arithmetic statement X = (A + B) * (C + D)using zero, one, two, or three address instructions. We
will use the symbols

1) ADD, SUB, MUL, and DIV for the four arithmetic operations;

2) MOV for the transfer-type operation;

Unit 10: Addressing Modes
Notes

10.3 General Register Type Organization
The instruction format in this type of computer needs three register address fields. Thus the
instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2,R3to denote the operation R1 <- R2 + R3.

The number of address fields in the instruction can be reduced from three to two if the destination
register is the same as one of the source registers. Thus the instruction ADD R1,R2would
denote the operation R1 <- R1+R2.Only register addresses for R1 and R2 need be specified in this
instruction.

Computers with multiple processor registers use the move instruction with a mnemonic MOV to
symbolize a transfer instruction. Thus the instruction MOVR1, R2denotes the transfer R1 <- R2 (or
R2<-R1, depending on the particular computer). Thus transfer-type instructions need two address
fields to specify the source and the destination.

General register-type computers employ two or three address fields in their instruction format.
Each address field may specify a processor register or a memory word. An instruction symbolized
byADD R1, Xwould specify the operation R1 <-R1 + M[X]. It has two address fields, one for
register R1 and the other for the memory address X.

10.4 Stack Organization
Computers with stack organization would have PUSH and POP instructions which require an
address field.

PUSH X

Thus the instruction will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address field in stack-organized
computers. This is because the operation is performed on the two items that are on top of the stack.
The instructionADDin a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack, adding the numbers,
and pushing the sum into the stack. There is no need to specify operands with an address field
since all operands are implied to be in the stack.Most computers fall into one of the three types of
organizations that have just been described.

Some computers combine features from more than one organizational structure. For example, the
Intel 8080 microprocessor has seven CPU registers, one of which is an accumulator register.As a
consequence, the processor has some of the characteristics of a general register type and some of the
characteristics of an accumulator type.

All arithmetic and logic instructions, as well as the load and store instructions, use the accumulator
register, so these instructions have only one address field.On the other hand, instructions that
transfer data among the seven processor registers have a format that contains two register address
fields.Moreover, the Intel 8080 processor has a stack pointer and instructions to push and pop from
a memory stack. The processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

Evaluation of Arithmetic Expression
To illustrate the influence of the number of addresses on computer programs, we will evaluate the
arithmetic statement X = (A + B) * (C + D)using zero, one, two, or three address instructions. We
will use the symbols

1) ADD, SUB, MUL, and DIV for the four arithmetic operations;

2) MOV for the transfer-type operation;

Unit 10: Addressing Modes
Notes

10.3 General Register Type Organization
The instruction format in this type of computer needs three register address fields. Thus the
instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2,R3to denote the operation R1 <- R2 + R3.

The number of address fields in the instruction can be reduced from three to two if the destination
register is the same as one of the source registers. Thus the instruction ADD R1,R2would
denote the operation R1 <- R1+R2.Only register addresses for R1 and R2 need be specified in this
instruction.

Computers with multiple processor registers use the move instruction with a mnemonic MOV to
symbolize a transfer instruction. Thus the instruction MOVR1, R2denotes the transfer R1 <- R2 (or
R2<-R1, depending on the particular computer). Thus transfer-type instructions need two address
fields to specify the source and the destination.

General register-type computers employ two or three address fields in their instruction format.
Each address field may specify a processor register or a memory word. An instruction symbolized
byADD R1, Xwould specify the operation R1 <-R1 + M[X]. It has two address fields, one for
register R1 and the other for the memory address X.

10.4 Stack Organization
Computers with stack organization would have PUSH and POP instructions which require an
address field.

PUSH X

Thus the instruction will push the word at address X to the top of the stack. The stack pointer is
updated automatically. Operation-type instructions do not need an address field in stack-organized
computers. This is because the operation is performed on the two items that are on top of the stack.
The instructionADDin a stack computer consists of an operation code only with no address field.
This operation has the effect of popping the two top numbers from the stack, adding the numbers,
and pushing the sum into the stack. There is no need to specify operands with an address field
since all operands are implied to be in the stack.Most computers fall into one of the three types of
organizations that have just been described.

Some computers combine features from more than one organizational structure. For example, the
Intel 8080 microprocessor has seven CPU registers, one of which is an accumulator register.As a
consequence, the processor has some of the characteristics of a general register type and some of the
characteristics of an accumulator type.

All arithmetic and logic instructions, as well as the load and store instructions, use the accumulator
register, so these instructions have only one address field.On the other hand, instructions that
transfer data among the seven processor registers have a format that contains two register address
fields.Moreover, the Intel 8080 processor has a stack pointer and instructions to push and pop from
a memory stack. The processor, however, does not have the zero-address-type instructions which
are characteristic of a stack-organized CPU.

Evaluation of Arithmetic Expression
To illustrate the influence of the number of addresses on computer programs, we will evaluate the
arithmetic statement X = (A + B) * (C + D)using zero, one, two, or three address instructions. We
will use the symbols

1) ADD, SUB, MUL, and DIV for the four arithmetic operations;

2) MOV for the transfer-type operation;

Lovely Professional University 179

Computer System Architecture

Notes

3) LOAD and STORE for transfers to and from memory and AC register.

We will assume that the operands are in memory addresses A, B, C, and D, and the result must be
stored in memory at address X.

10.5 Three-Address Instruction
Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand. The program in assembly language that evaluates

X = (A + B) * (C + D) is

ADD R1, A, B R1 <- M[A] + M[B]

ADD R2, C, D R2 <- M[C] + M[D]

MUL X, R1, R2 M [X] <- R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A] denotes
the operand at memory address symbolized by A.The advantage of the three-address format is that
it results in short programs when evaluating arithmetic expressions. The disadvantage is that the
binary-coded instructions require too many bits to specify three addresses.

A commercial computer that uses three-address instructions is the Cyber 170.

10.6 Two-Address Instruction
Two-address instructions are the most common in commercial computers. Here again each address
field can specify either a processor register or a memory word. The program to evaluate X = (A + B)
* (C + D) is as follows:

MOV R1, A R1 <- M[A]

ADD R1, B R1 <- R1 + M[B]

MOV R2, C R2 <- M[C]

ADD R2, D R2 <- R2 + M[D]

MUL R1, R2 R1 <- R1 * R2

MOV X, R1 M[X] <- R1

The MOV instruction moves or transfers the operands to and from memory and processor
registers.The first symbol listed in an instruction is assumed to be both a source and the destination
where the result of the operation is transferred.

10.7 One Address Instruction
One-address instructions use an implied accumulator (AC) register for all data manipulation. For
multiplication and division there is a need for a second register. However, here we will neglect the
second register and assume that the AC contains the result of all operations.

The program to evaluate X = (A + B) * (C + D) is

LOAD A AC <- M[A]

ADD B AC <- AC + M[B]

STORE T M[T] <- AC

LOAD C AC <- M[C]

ADD D AC <- AC + M[D]

MUL T AC <- AC * M[T]

Computer System Architecture

Notes

3) LOAD and STORE for transfers to and from memory and AC register.

We will assume that the operands are in memory addresses A, B, C, and D, and the result must be
stored in memory at address X.

10.5 Three-Address Instruction
Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand. The program in assembly language that evaluates

X = (A + B) * (C + D) is

ADD R1, A, B R1 <- M[A] + M[B]

ADD R2, C, D R2 <- M[C] + M[D]

MUL X, R1, R2 M [X] <- R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A] denotes
the operand at memory address symbolized by A.The advantage of the three-address format is that
it results in short programs when evaluating arithmetic expressions. The disadvantage is that the
binary-coded instructions require too many bits to specify three addresses.

A commercial computer that uses three-address instructions is the Cyber 170.

10.6 Two-Address Instruction
Two-address instructions are the most common in commercial computers. Here again each address
field can specify either a processor register or a memory word. The program to evaluate X = (A + B)
* (C + D) is as follows:

MOV R1, A R1 <- M[A]

ADD R1, B R1 <- R1 + M[B]

MOV R2, C R2 <- M[C]

ADD R2, D R2 <- R2 + M[D]

MUL R1, R2 R1 <- R1 * R2

MOV X, R1 M[X] <- R1

The MOV instruction moves or transfers the operands to and from memory and processor
registers.The first symbol listed in an instruction is assumed to be both a source and the destination
where the result of the operation is transferred.

10.7 One Address Instruction
One-address instructions use an implied accumulator (AC) register for all data manipulation. For
multiplication and division there is a need for a second register. However, here we will neglect the
second register and assume that the AC contains the result of all operations.

The program to evaluate X = (A + B) * (C + D) is

LOAD A AC <- M[A]

ADD B AC <- AC + M[B]

STORE T M[T] <- AC

LOAD C AC <- M[C]

ADD D AC <- AC + M[D]

MUL T AC <- AC * M[T]

Computer System Architecture

Notes

3) LOAD and STORE for transfers to and from memory and AC register.

We will assume that the operands are in memory addresses A, B, C, and D, and the result must be
stored in memory at address X.

10.5 Three-Address Instruction
Computers with three-address instruction formats can use each address field to specify either a
processor register or a memory operand. The program in assembly language that evaluates

X = (A + B) * (C + D) is

ADD R1, A, B R1 <- M[A] + M[B]

ADD R2, C, D R2 <- M[C] + M[D]

MUL X, R1, R2 M [X] <- R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A] denotes
the operand at memory address symbolized by A.The advantage of the three-address format is that
it results in short programs when evaluating arithmetic expressions. The disadvantage is that the
binary-coded instructions require too many bits to specify three addresses.

A commercial computer that uses three-address instructions is the Cyber 170.

10.6 Two-Address Instruction
Two-address instructions are the most common in commercial computers. Here again each address
field can specify either a processor register or a memory word. The program to evaluate X = (A + B)
* (C + D) is as follows:

MOV R1, A R1 <- M[A]

ADD R1, B R1 <- R1 + M[B]

MOV R2, C R2 <- M[C]

ADD R2, D R2 <- R2 + M[D]

MUL R1, R2 R1 <- R1 * R2

MOV X, R1 M[X] <- R1

The MOV instruction moves or transfers the operands to and from memory and processor
registers.The first symbol listed in an instruction is assumed to be both a source and the destination
where the result of the operation is transferred.

10.7 One Address Instruction
One-address instructions use an implied accumulator (AC) register for all data manipulation. For
multiplication and division there is a need for a second register. However, here we will neglect the
second register and assume that the AC contains the result of all operations.

The program to evaluate X = (A + B) * (C + D) is

LOAD A AC <- M[A]

ADD B AC <- AC + M[B]

STORE T M[T] <- AC

LOAD C AC <- M[C]

ADD D AC <- AC + M[D]

MUL T AC <- AC * M[T]

Lovely Professional University180

Unit 10: Addressing Modes
Notes

STORE X M[X] <- AC

All operations are done between the AC register and a memory operand. T is the address of a
temporary memory location required for storing the intermediate result.

10.8 Zero Address Instruction
A stack-organized computer does not use an address field for the instructions ADD and MUL. The
PUSH and POP instructions, however, need an address field to specify the operand that
communicates with the stack. The following program shows how X = (A + B) * (C + D) will be
written for a stack organized computer. TOS stands for top of stack.

PUSH A TOS <- A

PUSH B TOS <- B

ADD TOS <- (A+B)

PUSH C TOS <- C

PUSH D TOS <- D

ADD TOS <- (C+D)

MUL TOS <- (C+D) * (A+B)

POP X M[X] <- TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the expression
into reverse Polish notation. The name "zero-address" is given to this type of computer because of
the absence of an address field in the computational instructions.

10.9 RISC Instruction
The instruction set of a typical RISC processor is restricted
to the use of load and store instructions when communicating between memory and CPU. All other
instructions are executed within the registers of the CPU without referring to memory. A program
for a RISC-type CPU consists of LOAD and STORE instructions that have one memory and one
register address, and computational-type instructions that have three addresses with all three
specifying processor registers. The following is a program to evaluate

X = (A + B) * (C + D)

LOAD R1, A R1 <- M[A]

LOAD R2, B R2 <- M[B]

LOAD R3, C R3 <- M[C]

LOAD R4, D R4 <- M[D]

ADD R1, R1, R2 R1 <- R1 + R2

ADD R3, R3, R2 R3 <- R3 + R4

MUL R1, R1, R3 R1 <- R1 * R3

STORE X, R1 M[X] <- R1

The load instructions transfer the operands from memory to CPU registers. The add and multiply
operations are executed with data in the registers without accessing memory.The result of the
computations is then stored in memory with a store instruction.

Addressing Modes
The operation field of an instruction specifies the operation to be performed. This operation must
be executed on some data stored in computer registers or memory words. The way the operands

Lovely Professional University 181

Computer System Architecture

Notes

are chosen during program execution is dependent on the addressing mode of the instruction. The
addressing mode specifies a rule for interpreting or modifying the address field of the instruction
before the operand is actually referenced.

Computers use addressing mode techniques for the purpose of accommodating one or both of the
following provisions:

1. To give programming versatility to the user by providing such facilities as pointers to memory,
counters for loop control, indexing of data, and program relocation.

2. To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly language programmer
flexibility for writing programs that are more efficient with respect to the number of instructions
and execution time.To understand the various addressing modes to be presented in this section, it
is imperative that we understand the basic operation cycle of the computer.The control unit of a
computer is designed to go through an instruction cycle that is divided into three major phases:

• Fetch the instruction from memory.

• Decode the instruction.

• Execute the instruction.

Program Counter
There is one register in the computer called the program counter or PC that keeps track of the
instructions in the program stored in memory. PC holds the address of the instruction to be
executed next and is incremented each time an instruction is fetched from memory. The decoding
done in step 2 determines the operation to be performed, the addressing mode of the instruction,
and the location of the operands. The computer then executes the instruction and returns to step 1
to fetch the next instruction in sequence.In some computers the addressing mode of the instruction
is specified with a distinct binary code, just like the operation code is specified. Other computers
use a single binary code that designates both the operation and the mode of the instruction.
Instructions may be defined with a variety of addressing modes, and sometimes, two or more
addressing modes are combined in one instruction.

Mode field
The operation code specifies the operation to be per-formed. The mode field is used to locate
the operands needed for the operation. There may or may not be an address field in the
instruction. If there is an address field, it may designate a memory address or a processor
register. Moreover, as discussed in the preceding section, the instruction may have more than
one address field, and each address field may be associated with its own particular addressing
mode.Although most addressing modes modify the address field of the instruction, there are
two modes that need no address field at all. These are the implied and immediate modes.

10.10 Implied Mode
In this mode the operands are specified implicitly in the definition of the instruction. For example,
the instruction "complement accumulator" is an implied-mode instruction because the operand in
the accumulator register is implied in the definition of the instruction. In fact, all register reference
instructions that use an accumulator are implied-mode instructions. Zero-address instructions in a
stack-organized computer are implied-mode instructions since the operands are implied to be on
top of the stack.

Opcode Mode Address

Lovely Professional University182

Unit 10: Addressing Modes
Notes

10.11 Immediate Mode
In this mode the operand is specified in the instruction itself. In other words, an immediate-mode
instruction has an operand field rather than an address field.The operand field contains the actual
operand to be used in conjunction with the operation specified in the instruction.Immediate-mode
instructions are useful for initializing registers to a constant value. It was mentioned previously that
the address field of an instruction may specify either a memory word or a processor register.When
the address field specifies a processor register, the instruction is said to be in the register mode.

10.12 Register Mode
In this mode the operands are in registers that reside within the CPU. The particular register is
selected from a register field in the instruction. A k-bit field can specify any one of 2k registers.

10.13 Register Indirect Mode
In this mode the instruction specifies a register in the CPU whose contents give the address of the
operand in memory. In other words, the selected register contains the address of the operand rather
than the operand itself.Before using a register indirect mode instruction, the programmer must
ensure that the memory address of the operand is placed in the processor register with a previous
instruction. A reference to the register is then equivalent to specifying a memory address. The
advantage of a register indirect mode instruction is that the address field of the instruction uses
fewer bits to select a register than would have been required to specify a memory address directly.

10.14 Auto-increment or auto-decrement mode
This is similar to the register indirect mode except that the register is incremented or decremented
after (or before) its value is used to access memory. When the address stored in the register refers to
a table of data in memory, it is necessary to increment or decrement the register after every access
to the table. This can be achieved by using the increment or decrement instruction. However,
because it is such a common requirement, some computers incorporate a special mode that auto-
matically increments or decrements the content of the register after data access.

Effective Address

The address field of an instruction is used by the control unit in the CPU to obtain the operand
from memory.Sometimes the value given in the address field is the address of the operand, but
sometimes it is just an address from which the address of the operand is calculated. To differentiate
among the various addressing modes it is necessary to distinguish between the address part of the
instruction and the effective address used by the control when executing the instruction.The
effective address is defined to be the memory address obtained from the computation dictated by the
given addressing mode. The effective address is the address of the operand in a computational -
type instruction. It is the address where control branches in response to a branch - type instruction.

10.15 Direct Address Mode
In this mode the effective address is equal to the address part of the instruction. The operand
resides in memory and its address is given directly by the address field of the instruction.In a
branch-type instruction the address field specifies the actual branch address.

10.16 Indirect Address Mode
In this mode the address field of the instruction gives the address where the effective address is
stored in memory. Control fetches the instruction from memory and uses its address part to access
memory again to read the effective address.A few addressing modes require that the address field
of the instruction be added to the content of a specific register in the CPU.

The effective address in these modes is obtained from the following computation:

Lovely Professional University 183

Computer System Architecture

Notes

Effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a base
register. In either case we have a different addressing mode which is used for a different
application.

10.17 Relative Address Mode
In this mode the content of the program counter is added to the address part of the instruction in
order to obtain the effective address. The address part of the instruction is usually a signed number
(in 2's complement representation) which can be either positive or negative. When this number is
added to the content of the program counter, the result produces an effective address whose
position in memory is relative to the address of the next instruction. To clarify with an example,
assume that the program counter contains the number 825 and the address part of the instruction
contains the number 24.

The instruction at location 825 is read from memory during the fetch phase and the program
counter is then incremented by one to 826. The effective address computation for the relative
address mode is826 + 24 = 850. This is 24 memory locations forward from the address of the next
instruction. Relative addressing is often used with branch-type instructions when the branch
address is in the area surrounding the instruction word itself.It results in a shorter address field in
the instruction format since the relative address can be specified with a smaller number of bits
compared to the number of bits required to designate the entire memory address.

10.18 Index Address Mode
In this mode the content of an index register is added to the address part of the instruction to obtain
the effective address. The index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array in memory. Each
operand in the array is stored in memory relative to the beginning address. The distance between
the beginning address and the address of the operand is the index value stored in the index
register. Any operand in the array can be accessed with the same instruction provided that the
index register contains the correct index value. The index register can be incremented to facilitate
access to consecutive operands. Note that if an index type instruction does not include an address
field in its format, the instruction converts to the register indirect mode of operation.Some
computers dedicate one CPU register to function solely as an index register. This register is
involved implicitly when the index-mode instruction is used. In computers with many processor
registers, any one of the CPU registers can contain the index number. In such a case the register
must be specified explicitly in a register field within the instruction format.

10.19 Base Register Addressing Mode
In this mode the content of a base register is added to the address part of the instruction to obtain
the effective address. This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register.The difference between the two modes is in the
way they are used rather than in the way that they are computed. An index register is assumed to
hold an index number that is relative to the address part of the instruction.A base register is
assumed to hold a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in computers to facilitate
the relocation of programs in memory.When programs and data are moved from one segment of
memory to another, as required in multiprogramming systems, the address values of instructions
must reflect this change of position. With a base register, the displacement values of instructions do
not have to change.Only the value of the base register requires updating to reflect the beginning of
a new memory segment.

To show the differences between the various modes, we will show the effect of the
addressing modes on the instruction. The two-word instruction at address 200 and 201 is a
“load to AC” instruction with an address field equal to 500.The first word of the instruction
specifies the operation code and mode, and the second word specifies the address part. PC

Computer System Architecture

Notes

Effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a base
register. In either case we have a different addressing mode which is used for a different
application.

10.17 Relative Address Mode
In this mode the content of the program counter is added to the address part of the instruction in
order to obtain the effective address. The address part of the instruction is usually a signed number
(in 2's complement representation) which can be either positive or negative. When this number is
added to the content of the program counter, the result produces an effective address whose
position in memory is relative to the address of the next instruction. To clarify with an example,
assume that the program counter contains the number 825 and the address part of the instruction
contains the number 24.

The instruction at location 825 is read from memory during the fetch phase and the program
counter is then incremented by one to 826. The effective address computation for the relative
address mode is826 + 24 = 850. This is 24 memory locations forward from the address of the next
instruction. Relative addressing is often used with branch-type instructions when the branch
address is in the area surrounding the instruction word itself.It results in a shorter address field in
the instruction format since the relative address can be specified with a smaller number of bits
compared to the number of bits required to designate the entire memory address.

10.18 Index Address Mode
In this mode the content of an index register is added to the address part of the instruction to obtain
the effective address. The index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array in memory. Each
operand in the array is stored in memory relative to the beginning address. The distance between
the beginning address and the address of the operand is the index value stored in the index
register. Any operand in the array can be accessed with the same instruction provided that the
index register contains the correct index value. The index register can be incremented to facilitate
access to consecutive operands. Note that if an index type instruction does not include an address
field in its format, the instruction converts to the register indirect mode of operation.Some
computers dedicate one CPU register to function solely as an index register. This register is
involved implicitly when the index-mode instruction is used. In computers with many processor
registers, any one of the CPU registers can contain the index number. In such a case the register
must be specified explicitly in a register field within the instruction format.

10.19 Base Register Addressing Mode
In this mode the content of a base register is added to the address part of the instruction to obtain
the effective address. This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register.The difference between the two modes is in the
way they are used rather than in the way that they are computed. An index register is assumed to
hold an index number that is relative to the address part of the instruction.A base register is
assumed to hold a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in computers to facilitate
the relocation of programs in memory.When programs and data are moved from one segment of
memory to another, as required in multiprogramming systems, the address values of instructions
must reflect this change of position. With a base register, the displacement values of instructions do
not have to change.Only the value of the base register requires updating to reflect the beginning of
a new memory segment.

To show the differences between the various modes, we will show the effect of the
addressing modes on the instruction. The two-word instruction at address 200 and 201 is a
“load to AC” instruction with an address field equal to 500.The first word of the instruction
specifies the operation code and mode, and the second word specifies the address part. PC

Computer System Architecture

Notes

Effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a base
register. In either case we have a different addressing mode which is used for a different
application.

10.17 Relative Address Mode
In this mode the content of the program counter is added to the address part of the instruction in
order to obtain the effective address. The address part of the instruction is usually a signed number
(in 2's complement representation) which can be either positive or negative. When this number is
added to the content of the program counter, the result produces an effective address whose
position in memory is relative to the address of the next instruction. To clarify with an example,
assume that the program counter contains the number 825 and the address part of the instruction
contains the number 24.

The instruction at location 825 is read from memory during the fetch phase and the program
counter is then incremented by one to 826. The effective address computation for the relative
address mode is826 + 24 = 850. This is 24 memory locations forward from the address of the next
instruction. Relative addressing is often used with branch-type instructions when the branch
address is in the area surrounding the instruction word itself.It results in a shorter address field in
the instruction format since the relative address can be specified with a smaller number of bits
compared to the number of bits required to designate the entire memory address.

10.18 Index Address Mode
In this mode the content of an index register is added to the address part of the instruction to obtain
the effective address. The index register is a special CPU register that contains an index value. The
address field of the instruction defines the beginning address of a data array in memory. Each
operand in the array is stored in memory relative to the beginning address. The distance between
the beginning address and the address of the operand is the index value stored in the index
register. Any operand in the array can be accessed with the same instruction provided that the
index register contains the correct index value. The index register can be incremented to facilitate
access to consecutive operands. Note that if an index type instruction does not include an address
field in its format, the instruction converts to the register indirect mode of operation.Some
computers dedicate one CPU register to function solely as an index register. This register is
involved implicitly when the index-mode instruction is used. In computers with many processor
registers, any one of the CPU registers can contain the index number. In such a case the register
must be specified explicitly in a register field within the instruction format.

10.19 Base Register Addressing Mode
In this mode the content of a base register is added to the address part of the instruction to obtain
the effective address. This is similar to the indexed addressing mode except that the register is now
called a base register instead of an index register.The difference between the two modes is in the
way they are used rather than in the way that they are computed. An index register is assumed to
hold an index number that is relative to the address part of the instruction.A base register is
assumed to hold a base address and the address field of the instruction gives a displacement
relative to this base address. The base register addressing mode is used in computers to facilitate
the relocation of programs in memory.When programs and data are moved from one segment of
memory to another, as required in multiprogramming systems, the address values of instructions
must reflect this change of position. With a base register, the displacement values of instructions do
not have to change.Only the value of the base register requires updating to reflect the beginning of
a new memory segment.

To show the differences between the various modes, we will show the effect of the
addressing modes on the instruction. The two-word instruction at address 200 and 201 is a
“load to AC” instruction with an address field equal to 500.The first word of the instruction
specifies the operation code and mode, and the second word specifies the address part. PC

Lovely Professional University184

Unit 10: Addressing Modes
Notes

has the value 200 for fetching this instruction.

The content of processor register R1 is 400, and the content of an index register XR is 100.
AC receives the operand after the instruction is executed.

The mode field of the instruction can specify any one of a number of modes.

For each possible mode we calculate the effective address and the operand that must be
loaded into AC.

In the direct address mode the effective address is the address part of the instruction 500
and the operand to be loaded into AC is 800.

In the immediate mode the second word of the instruction is taken as the operand rather
than an address, so 500 is loaded into AC.

(The effective address in this case is 201.)

In the indirect mode the effective address is stored in memory at address 500.

Therefore, the effective address is 800 and the operand is 300.

In the relative mode the effective address is 500 + 202 = 702 and the operand is 325.

Note that the value in PC after the fetch phase and during the execute phase is 202.)

In the index mode the effective address is

XR + 500 = 100 + 500 = 600 and the operand is 900. In the register mode the
operand is in R1 and 400 is loaded into AC.

There is no effective address in this case.

In the register indirect mode the effective address is 400, equal to the content of R1 and the
operand loaded into AC is 700.

The auto-increment mode is the same as the register in direct mode except that R1 is
incremented to 401 after the execution of the instruction.

The auto-decrement mode decrements R1 to 399 prior to the execution of the instruction.

The operand loaded into AC is now 450.

Addressing Mode Effective Address Content of AC

Direct Address 500 800

Lovely Professional University 185

Computer System Architecture

Notes

Immediate Operand 201 500

Indirect Address 800 300

Relative Address 702 325

Indexed Address 600 900

Register -- 400

Register Indirect 400 700

Auto increment 400 700

Auto decrement 399 450

Summary

 The bits of the instruction are divided into groups called fields.
 An operation code field that specifies the operation to be performed.
 An address field that designates a memory address or a processor register.
 A mode field that specifies the way the operand or the effective address is determined.
 Operands residing in memory are specified by their memory address.
 Operands residing in processor registers are specified with a register address.
 Most computers fall into one of three types of CPU organizations: single accumulator

organization, general register organization and stack organization.

Keywords
Implied Mode: In this mode the operands are specified implicitly in the definition of the
instruction.

Immediate Mode: The immediate-mode instruction has an operand field rather than an address
field.

Register Mode:In this mode the operands are in registers that reside within the CPU.

Register indirect mode:In this mode the instruction specifies a register in the CPU whose contents
give the address of the operand in memory.

Effective address:The effective addressis defined to be the memory address obtained from the
computation dictated by the given addressing mode.

Indirect address mode:In this mode the address field of the instruction gives the address where the
effective address is stored in memory.

Self Assessment

1. What all contains in a common instruction format?
A. Field of operation
B. Field of address
C. Field of mode
D. All the fields mentioned above

2. The instruction of kind MUL X defines

Lovely Professional University186

Unit 10: Addressing Modes
Notes

A. General register organization
B. Stack organization
C. Stack Accumulator organization
D. None of the above

3. The instruction MUL R1, R2 represents
A. Single accumulator organization
B. General register type organization
C. Stack organization
D. None of the above

4. The operations are performed between a memory operand and AC register. What kind of
instruction is discussed here?

A. Zero address instruction
B. One address instruction
C. Two address instruction
D. Three address instruction

5. When the communication between CPU and memory occurs, which instruction set is just
bound to use store and load instructions?

A. RISC instructions
B. CISC instructions
C. MISC instructions
D. None of the above

6. The PUSH and POP operations are performed in what kind of organization?
A. General Register Organization
B. Queue Organization
C. Stack Organization
D. Single Accumulator Organization

7. The register reference instructions which employs accumulator are known as ______.
A. Relative mode
B. Implied mode
C. Immediate mode
D. None of the above

8. What kind of instructions does not require any kind of address field?
A. Implied and immediate mode instructions
B. Implied and relative mode instructions
C. Relative and immediate mode instructions
D. None of the above

9. The effective address is calculated by adding the content of base register with the address
part of instruction. What kind of addressing mode is discussed here?

A. Indexed addressing mode
B. Relative addressing mode

Lovely Professional University 187

Computer System Architecture

Notes

C. Base register addressing mode
D. None of the above

10. In indirect address mode, the effective address is calculated as:
A. Effective address = address part of instruction - content of CPU register
B. Effective address = address part of instruction + content of CPU register
C. Effective address = address part of instruction * content of CPU register
D. Effective address = address part of instruction / content of CPU register

11. The operand is specified in the instruction itself. What kind of mode is specified here?
A. Implied mode
B. Register mode
C. Immediate mode
D. Relative address mode

12. THE CLA or CME represents
A. Implied mode
B. Immediate mode
C. Register mode
D. Relative address mode

13. In an operation, which field is used to locate the operands?
A. Whole instruction
B. Operation field
C. Mode field
D. None of the above

14. What increments every time an instruction is fetched from the memory?
A. Instruction register
B. Input register
C. Output register
D. Program Counter
15. What holds the address of instruction which is to be executed next?
A. Instruction register
B. Input register
C. Output register
D. Program Counter

Answer for Self Assessment

1. A 2. C 3. B 4. B 5. A

6. C 7. B 8. A 9. B 10. B

11. C 12. A 13. C 14. D 15. D

Lovely Professional University188

Unit 10: Addressing Modes
Notes

Review Questions

1. What is an instruction? Explain its fields.
2. What are the different types of CPU organization? Explain.
3. What is three address instructions? Explain with example.
4. What are two address and one address instructions? Explain with examples.
5. What are zero address and RISC instructions? Explain with examples.
6. What is a mode field? Explain different types of mode fields.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/addressing-modes/

Unit 10: Addressing Modes
Notes

Review Questions

1. What is an instruction? Explain its fields.
2. What are the different types of CPU organization? Explain.
3. What is three address instructions? Explain with example.
4. What are two address and one address instructions? Explain with examples.
5. What are zero address and RISC instructions? Explain with examples.
6. What is a mode field? Explain different types of mode fields.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/addressing-modes/

Unit 10: Addressing Modes
Notes

Review Questions

1. What is an instruction? Explain its fields.
2. What are the different types of CPU organization? Explain.
3. What is three address instructions? Explain with example.
4. What are two address and one address instructions? Explain with examples.
5. What are zero address and RISC instructions? Explain with examples.
6. What is a mode field? Explain different types of mode fields.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/addressing-modes/

Lovely Professional University 189

Unit 11: Pipeline Processing
Notes

Unit 11: Pipeline Processing

CONTENTS

Unit 11: Pipeline Processing

CONTENTS

Objectives:

Introduction:

11.1 Different levels of complexity

11.2 Classification of parallel processing

11.3 Pipelining

11.4 Applicability of the pipelining

11.5 Processing of each instruction

11.6 Difficulties in instruction pipeline

11.7 Four-Segment Instruction Pipeline

11.8 Timing of instruction pipeline

11.9 Data dependency

11.10 Branching of instructions

Summary:

Keywords:

Self Assessment

Answers for Self Assessment

Review Questions:

Further Readings

Objectives:
After studying this unit, you will be able to

 understand the parallel processing
 know the classification of parallel processing
 understand the pipeline
 understand the different types of pipeline
 know the pipeline hazards and their possible solutions

Introduction:
Parallel processing is a term used to denote a large class of techniques that are used to provide
simultaneous data-processing task for the purpose of increasing the computational speed of a
computer system.Parallel processing is used to provide simultaneous data-processing task. It also
performs concurrent data processing. A system may have two or more ALUs and two or more
processors. The purpose of employing parallel processing is speeding up the computer processing
capability and increasing its throughput.

Lovely Professional University190

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

11.1 Different levels of complexity
Parallel processing can be viewed from various levels of complexity:

1) Between parallel and serial operations.

2) Having a multiplicity of functional units.

In the image shown below, a processor with multiple functional parts is shown. There are various
modules which performs the different functionalities. These are adder-subtractors, integer
multiply, logic unit, shift unit, floating point add-subtract, floating point multiply and floating
point divide.

11.2 Classification of parallel processing
The classification introduced by M.J.Flynn considers the organization of a computer system by the
number of instructions and data items that are manipulated simultaneously.

Instruction stream: The sequence of instructions read from memory.

Data stream: The operations performed on the data in the processor.

Parallel processing may occur in the instruction stream, in the data stream, or in both.

Flynn's classification divides computers into four major groups as follows:

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data stream (SIMD)

• Multiple instruction stream, single data stream (MISD)

• Multiple instruction stream, multiple data stream(MIMD)

Single instruction stream, single data stream
The organization of a single computer contains a control unit, a processor unit, and a memory unit.
Instructions are executed sequentially and the system may or may not have internal parallel
processing capabilities.

Computer System Architecture

Notes

11.1 Different levels of complexity
Parallel processing can be viewed from various levels of complexity:

1) Between parallel and serial operations.

2) Having a multiplicity of functional units.

In the image shown below, a processor with multiple functional parts is shown. There are various
modules which performs the different functionalities. These are adder-subtractors, integer
multiply, logic unit, shift unit, floating point add-subtract, floating point multiply and floating
point divide.

11.2 Classification of parallel processing
The classification introduced by M.J.Flynn considers the organization of a computer system by the
number of instructions and data items that are manipulated simultaneously.

Instruction stream: The sequence of instructions read from memory.

Data stream: The operations performed on the data in the processor.

Parallel processing may occur in the instruction stream, in the data stream, or in both.

Flynn's classification divides computers into four major groups as follows:

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data stream (SIMD)

• Multiple instruction stream, single data stream (MISD)

• Multiple instruction stream, multiple data stream(MIMD)

Single instruction stream, single data stream
The organization of a single computer contains a control unit, a processor unit, and a memory unit.
Instructions are executed sequentially and the system may or may not have internal parallel
processing capabilities.

Computer System Architecture

Notes

11.1 Different levels of complexity
Parallel processing can be viewed from various levels of complexity:

1) Between parallel and serial operations.

2) Having a multiplicity of functional units.

In the image shown below, a processor with multiple functional parts is shown. There are various
modules which performs the different functionalities. These are adder-subtractors, integer
multiply, logic unit, shift unit, floating point add-subtract, floating point multiply and floating
point divide.

11.2 Classification of parallel processing
The classification introduced by M.J.Flynn considers the organization of a computer system by the
number of instructions and data items that are manipulated simultaneously.

Instruction stream: The sequence of instructions read from memory.

Data stream: The operations performed on the data in the processor.

Parallel processing may occur in the instruction stream, in the data stream, or in both.

Flynn's classification divides computers into four major groups as follows:

• Single instruction stream, single data stream (SISD)

• Single instruction stream, multiple data stream (SIMD)

• Multiple instruction stream, single data stream (MISD)

• Multiple instruction stream, multiple data stream(MIMD)

Single instruction stream, single data stream
The organization of a single computer contains a control unit, a processor unit, and a memory unit.
Instructions are executed sequentially and the system may or may not have internal parallel
processing capabilities.

Lovely Professional University 191

Unit 11: Pipeline Processing
Notes

Single instruction stream, multiple data stream
Thisorganization includes many processing units under the supervision of a common control unit.
All processors receive the same instruction from the control unit but operate on different items of
data.

Multiple instruction stream, single data stream
This kind of organization is just of theoretical interest, there is no practical application found on this
classification.

Multiple instruction stream, multiple data stream
It refers to a computer system capable of processing several programs at the same time.

11.3 Pipelining
It is a technique of decomposing a sequential process into sub-operations. It is a collection of
processing segments.The final result is obtained after the data have passed through all segments.
The term pipeline implies the flow of information.Several computations can be seen in progress in
distinct segments at the same time.The overlapping of computation is there but registers provide
isolation.

Flow of information

Each segment consists of an input register followed by a combinational circuit. The output of the
combinational circuit in a given segment is applied to the input register of the next segment. The
information flows through the pipeline one step at a time. Suppose we want to apply the combined
multiply and add operations with a stream of numbers.

for i=1,2,3,…….7

R1 through R5 are registers that receive new data with every clock pulse. The multiplier and adder
are combinational circuits.

The suboperations performed in each segment of the pipeline are as follows:

Rl<-Ai, R2<-Bi Input Aiand Bi

R3<- Rl*R2, R4<-Ci Multiply and input Ci

R5<-R3+R4 Add Ci to product

iii CBA *

Unit 11: Pipeline Processing
Notes

Single instruction stream, multiple data stream
Thisorganization includes many processing units under the supervision of a common control unit.
All processors receive the same instruction from the control unit but operate on different items of
data.

Multiple instruction stream, single data stream
This kind of organization is just of theoretical interest, there is no practical application found on this
classification.

Multiple instruction stream, multiple data stream
It refers to a computer system capable of processing several programs at the same time.

11.3 Pipelining
It is a technique of decomposing a sequential process into sub-operations. It is a collection of
processing segments.The final result is obtained after the data have passed through all segments.
The term pipeline implies the flow of information.Several computations can be seen in progress in
distinct segments at the same time.The overlapping of computation is there but registers provide
isolation.

Flow of information

Each segment consists of an input register followed by a combinational circuit. The output of the
combinational circuit in a given segment is applied to the input register of the next segment. The
information flows through the pipeline one step at a time. Suppose we want to apply the combined
multiply and add operations with a stream of numbers.

for i=1,2,3,…….7

R1 through R5 are registers that receive new data with every clock pulse. The multiplier and adder
are combinational circuits.

The suboperations performed in each segment of the pipeline are as follows:

Rl<-Ai, R2<-Bi Input Aiand Bi

R3<- Rl*R2, R4<-Ci Multiply and input Ci

R5<-R3+R4 Add Ci to product

Unit 11: Pipeline Processing
Notes

Single instruction stream, multiple data stream
Thisorganization includes many processing units under the supervision of a common control unit.
All processors receive the same instruction from the control unit but operate on different items of
data.

Multiple instruction stream, single data stream
This kind of organization is just of theoretical interest, there is no practical application found on this
classification.

Multiple instruction stream, multiple data stream
It refers to a computer system capable of processing several programs at the same time.

11.3 Pipelining
It is a technique of decomposing a sequential process into sub-operations. It is a collection of
processing segments.The final result is obtained after the data have passed through all segments.
The term pipeline implies the flow of information.Several computations can be seen in progress in
distinct segments at the same time.The overlapping of computation is there but registers provide
isolation.

Flow of information

Each segment consists of an input register followed by a combinational circuit. The output of the
combinational circuit in a given segment is applied to the input register of the next segment. The
information flows through the pipeline one step at a time. Suppose we want to apply the combined
multiply and add operations with a stream of numbers.

for i=1,2,3,…….7

R1 through R5 are registers that receive new data with every clock pulse. The multiplier and adder
are combinational circuits.

The suboperations performed in each segment of the pipeline are as follows:

Rl<-Ai, R2<-Bi Input Aiand Bi

R3<- Rl*R2, R4<-Ci Multiply and input Ci

R5<-R3+R4 Add Ci to product

Lovely Professional University192

Computer System Architecture

Notes

Effect of each clock pulse

Every operation is done with the clock pulses.

11.4 Applicability of the pipelining
There are two areas where the pipeline organization is applicable:

• Arithmetic pipeline

• Instruction pipeline

Arithmetic pipeline
It is used to implement:

A) Floating-point operations,

B) Multiplication of fixed-point numbers,

C) Similar computations encountered in scientific problems.

Computer System Architecture

Notes

Effect of each clock pulse

Every operation is done with the clock pulses.

11.4 Applicability of the pipelining
There are two areas where the pipeline organization is applicable:

• Arithmetic pipeline

• Instruction pipeline

Arithmetic pipeline
It is used to implement:

A) Floating-point operations,

B) Multiplication of fixed-point numbers,

C) Similar computations encountered in scientific problems.

Computer System Architecture

Notes

Effect of each clock pulse

Every operation is done with the clock pulses.

11.4 Applicability of the pipelining
There are two areas where the pipeline organization is applicable:

• Arithmetic pipeline

• Instruction pipeline

Arithmetic pipeline
It is used to implement:

A) Floating-point operations,

B) Multiplication of fixed-point numbers,

C) Similar computations encountered in scientific problems.

Lovely Professional University 193

Unit 11: Pipeline Processing
Notes

The inputs to the floating-point adder pipeline are two normalized floating-point binary
numbers.

X=A * 2a, Y=B * 2b.

The sub-operations that are performed in the four segments are:

• Compare the exponents.

• Align the mantissas.

• Add or subtract the mantissas.

• Normalize the result.

There are two conditions which can occur here. These are overflow and underflow.

A) Overflow: The mantissa of the sum or difference is shifted right and the exponent
incremented by one.

B) Underflow: The number of leading zeros in the mantissa determines the number of
left shifts in the mantissa and the number that must be subtracted from the exponent.

Pipeline for floating point addition and subtraction

Lovely Professional University194

Computer System Architecture

Notes

Consider the two normalized floating point numbers:

X= 0.9504 * 103, Y=0.8200 * 102

1st segment: Two exponents are subtracted, 3-2=1. The larger exponent 3 is chosen as
the exponent of the result.

2nd segment: It shifts the mantissa of Y to the right to obtain: X= 0.9504 * 103, Y=0.08200
* 103.

3rd segment: Adds the two mantissa: Z= 1.0324 * 103

4th segment: Normalization of values, Z=0.10324 * 104

Instruction pipeline
Pipeline processing can occur not only in the data stream but in the instruction stream as
well. The instruction’s fetch and execute phases to overlap and perform simultaneous
operations.It may cause a branch out of sequence - in that case the pipeline must be
emptied and all the instructions that have been read from memory after the branch
instruction must be discarded. It follows the FIFO rule. Consider a computer with an
instruction fetch unit and an instruction execution unit designed to provide a two-segment
pipeline. The instruction fetch segment can be implemented by means of a first-in, first-out
(FIFO) buffer. Whenever the execution unit is not using memory, the control increments
the program counter and uses its address value to read consecutive instructions from
memory.

11.5 Processing of each instruction
The computer needs to process each instruction with the following sequence of steps:

• Fetch the instruction from memory.

• Decode the instruction.

• Calculate the effective address.

• Fetch the operands from memory.

• Execute the instruction.

• Store the result in the proper place.

11.6 Difficulties in instruction pipeline
1) Different segments may take different times to operate on the incoming information.

2) Some segments are skipped for certain operations.

3) Two or more segments may require memory access at the same time, causing one segment to
wait until another is finished with the memory.

11.7 Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calculation of the
effective address into one segment.

Computer System Architecture

Notes

Consider the two normalized floating point numbers:

X= 0.9504 * 103, Y=0.8200 * 102

1st segment: Two exponents are subtracted, 3-2=1. The larger exponent 3 is chosen as
the exponent of the result.

2nd segment: It shifts the mantissa of Y to the right to obtain: X= 0.9504 * 103, Y=0.08200
* 103.

3rd segment: Adds the two mantissa: Z= 1.0324 * 103

4th segment: Normalization of values, Z=0.10324 * 104

Instruction pipeline
Pipeline processing can occur not only in the data stream but in the instruction stream as
well. The instruction’s fetch and execute phases to overlap and perform simultaneous
operations.It may cause a branch out of sequence - in that case the pipeline must be
emptied and all the instructions that have been read from memory after the branch
instruction must be discarded. It follows the FIFO rule. Consider a computer with an
instruction fetch unit and an instruction execution unit designed to provide a two-segment
pipeline. The instruction fetch segment can be implemented by means of a first-in, first-out
(FIFO) buffer. Whenever the execution unit is not using memory, the control increments
the program counter and uses its address value to read consecutive instructions from
memory.

11.5 Processing of each instruction
The computer needs to process each instruction with the following sequence of steps:

• Fetch the instruction from memory.

• Decode the instruction.

• Calculate the effective address.

• Fetch the operands from memory.

• Execute the instruction.

• Store the result in the proper place.

11.6 Difficulties in instruction pipeline
1) Different segments may take different times to operate on the incoming information.

2) Some segments are skipped for certain operations.

3) Two or more segments may require memory access at the same time, causing one segment to
wait until another is finished with the memory.

11.7 Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calculation of the
effective address into one segment.

Computer System Architecture

Notes

Consider the two normalized floating point numbers:

X= 0.9504 * 103, Y=0.8200 * 102

1st segment: Two exponents are subtracted, 3-2=1. The larger exponent 3 is chosen as
the exponent of the result.

2nd segment: It shifts the mantissa of Y to the right to obtain: X= 0.9504 * 103, Y=0.08200
* 103.

3rd segment: Adds the two mantissa: Z= 1.0324 * 103

4th segment: Normalization of values, Z=0.10324 * 104

Instruction pipeline
Pipeline processing can occur not only in the data stream but in the instruction stream as
well. The instruction’s fetch and execute phases to overlap and perform simultaneous
operations.It may cause a branch out of sequence - in that case the pipeline must be
emptied and all the instructions that have been read from memory after the branch
instruction must be discarded. It follows the FIFO rule. Consider a computer with an
instruction fetch unit and an instruction execution unit designed to provide a two-segment
pipeline. The instruction fetch segment can be implemented by means of a first-in, first-out
(FIFO) buffer. Whenever the execution unit is not using memory, the control increments
the program counter and uses its address value to read consecutive instructions from
memory.

11.5 Processing of each instruction
The computer needs to process each instruction with the following sequence of steps:

• Fetch the instruction from memory.

• Decode the instruction.

• Calculate the effective address.

• Fetch the operands from memory.

• Execute the instruction.

• Store the result in the proper place.

11.6 Difficulties in instruction pipeline
1) Different segments may take different times to operate on the incoming information.

2) Some segments are skipped for certain operations.

3) Two or more segments may require memory access at the same time, causing one segment to
wait until another is finished with the memory.

11.7 Four-Segment Instruction Pipeline
Assume that the decoding of the instruction can be combined with the calculation of the
effective address into one segment.

Lovely Professional University 195

Unit 11: Pipeline Processing
Notes

Once in a while, an instruction in the sequence may be a program control type that causes
a branch out of normal sequence - in that case the pending operations in the last two
segments are completed and all information stored in the instruction buffer is deleted. The
pipeline then restarts from the new address stored in the program counter. Similarly, an
interrupt request, when acknowledged, will cause the pipeline to empty and start again
from a new address value.

11.8 Timing of instruction pipeline

Pipeline hazards
The problems that occur in the pipeline are called hazards. Hazards that arise in the
pipeline prevent the next instruction from executing during its designated clock cycle.

1) Data dependency

2) Branching of instructions

Unit 11: Pipeline Processing
Notes

Once in a while, an instruction in the sequence may be a program control type that causes
a branch out of normal sequence - in that case the pending operations in the last two
segments are completed and all information stored in the instruction buffer is deleted. The
pipeline then restarts from the new address stored in the program counter. Similarly, an
interrupt request, when acknowledged, will cause the pipeline to empty and start again
from a new address value.

11.8 Timing of instruction pipeline

Pipeline hazards
The problems that occur in the pipeline are called hazards. Hazards that arise in the
pipeline prevent the next instruction from executing during its designated clock cycle.

1) Data dependency

2) Branching of instructions

Unit 11: Pipeline Processing
Notes

Once in a while, an instruction in the sequence may be a program control type that causes
a branch out of normal sequence - in that case the pending operations in the last two
segments are completed and all information stored in the instruction buffer is deleted. The
pipeline then restarts from the new address stored in the program counter. Similarly, an
interrupt request, when acknowledged, will cause the pipeline to empty and start again
from a new address value.

11.8 Timing of instruction pipeline

Pipeline hazards
The problems that occur in the pipeline are called hazards. Hazards that arise in the
pipeline prevent the next instruction from executing during its designated clock cycle.

1) Data dependency

2) Branching of instructions

Lovely Professional University196

Computer System Architecture

Notes

11.9 Data dependency
A data dependency occurs when an instruction needs data that are not yet available. Similarly, an
address dependency may occur when an operand address cannot be calculated because the
information needed by the addressing mode is not available.

Dealing with data dependency

Pipelined computers deal with such conflicts between data dependencies in a variety of ways:

1) Hardware interlocks

2) Operand forwarding

3) Delayed load

11.10 Branching of instructions
This is the Occurrence of branch instructions. An unconditional branch always alters the sequential
program flow by loading the program counter with the target address.In a conditional branch, the
control selects the target instruction if the condition is satisfied or the next sequential instruction if
the condition is not satisfied.

Dealing with branching of instructions

Pipelined computers employ various hardware techniques for this:

1) Pre-fetch target instruction

2) Branch target buffer

3) Loop buffer

4) Branch prediction

5) Delayed branch

Summary:

 Pipelining is a technique of decomposing a sequential process into sub-operations.
 There are two areas where the pipeline organization is applicable: arithmetic pipeline and

instruction pipeline.
 The sub-operations are per formed in the four segments. These are compare the exponents,

align the mantissas, add or subtract the mantissas and normalize the result.
 Pipeline processing can occur not only in the data stream but in the instruction stream as

well.
 The instructions fetch and execute phases to overlap and perform simultaneous

operations.

Keywords:
Overflow: The mantissa of the sum or difference is shifted right and the exponent incremented by
one.

Underflow: The number of leading zeros in the mantissa determines the number of left shifts in the
mantissa and the number that must be subtracted from the exponent.

Parallel Processing:Parallel processing is a term used to denote a large class of techniques that are
used to provide simultaneous data-processing task for the purpose of increasing the computational
speed of a computer system.

SISD:SISD represents the organization of a single computer containing a control unit, a processor
unit, and a memory unit.

Lovely Professional University 197

Unit 11: Pipeline Processing
Notes

SIMD: SIMD represents an organization that includes many processing units under the supervision
of a common control unit.

MIMD:MIMD organization refers to a computer system capable of
processingseveralprogramsatthesametime.

Delayed load: A procedure employed in some computers is to give the responsibility for solving
data conflicts problems to the compiler that translates the high-level programming language into a
machine language program.

Self Assessment

1. Where can we apply the concept of pipeline organization?
A. Arithmetic pipeline
B. Instruction pipeline
C. Both arithmetic and instruction pipelines
D. None of the above

2. In which condition, the mantissa of the sum or difference is shifted right and the exponent
incremented by one?

A. Overflow
B. Underflow
C. Baseflow
D. None of the above

3. In which condition, the number of leading zeros in the mantissa determines the number of
left shifts in the mantissa and the number that must be subtracted from the exponent?

A. Overflow
B. Underflow
C. Baseflow
D. None of the above

4. The instruction fetch segment can be implemented by means of _______ buffer.
A. FIFO
B. LIFO
C. FILO
D. LILO

5. ________ occurs when an operand address cannot be calculated
A. Data dependency
B. Address dependency
C. Calculation dependency
D. None of the above

6. ________ occurs when an instruction needs data that are not available yet.
A. Data dependency
B. Address dependency
C. Calculation dependency
D. None of the above

Lovely Professional University198

Computer System Architecture

Notes

7. Which of the following defines a way for dealing conflicts of data dependencies?
A. Hardware interlocks
B. Operand forwarding
C. Delayed load
D. All hardware interlocks, operand forwarding and delayed load

8. In ____________ the control selects the target instruction if the condition is satisfied or the
next sequential instruction if the condition is not satisfied.

A. Conditional branch
B. Unconditional branch
C. Semiconditional branch
D. None of the above

9. An ____________ always alters the sequential program flow by loading the program
counter with the target address.

A. Conditional branch
B. Unconditional branch
C. Uniconditional branch
D. None of the above

10. Which of the following is a way for dealing with branching of instructions?
A. Loop buffer
B. Branch prediction
C. Delayed branch
D. All loop buffer, branch prediction and delayed branch

11. Why it is preferred to do parallel processing?
A. For increasing the computer processing capabilities
B. For increasing the throughput
C. For both increasing the throughput and processing capabilities
D. None of the above

12. Parallel processing can occur in
A. Data stream
B. Instruction stream
C. Both data and instruction stream
D. None of the above

13. In which group, all processors receive the same instruction from the control unit but
operate on different items of data?

A. SISD
B. SIMD
C. MISD
D. MIMD

14. Of which group, as such there is no practical application. It is studied due to the
theoretical interest?

Lovely Professional University 199

Unit 11: Pipeline Processing
Notes

A. SISD
B. SIMD
C. MISD
D. MIMD

15. In which group, the computer systems are capable of processing several programs at the
same time?

A. SISD
B. SIMD
C. MISD
D. MIMD

Answers for Self Assessment

1. C 2. A 3. B 4. A 5. B

6. A 7. D 8. A 9. B 10. D

11. C 12. C 13. B 14. C 15. D

Review Questions:

1. What is parallel processing? Explain its purpose and levels of complexity.
2. What is the classification of parallel processing?
3. What is pipeline and its flow of information? Write about its applicability.
4. Explain the instruction pipeline.
5. Explain pipeline hazards.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/computer-organization-and-architecture-pipelining-
set-1-execution-stages-and-throughput/

Unit 11: Pipeline Processing
Notes

A. SISD
B. SIMD
C. MISD
D. MIMD

15. In which group, the computer systems are capable of processing several programs at the
same time?

A. SISD
B. SIMD
C. MISD
D. MIMD

Answers for Self Assessment

1. C 2. A 3. B 4. A 5. B

6. A 7. D 8. A 9. B 10. D

11. C 12. C 13. B 14. C 15. D

Review Questions:

1. What is parallel processing? Explain its purpose and levels of complexity.
2. What is the classification of parallel processing?
3. What is pipeline and its flow of information? Write about its applicability.
4. Explain the instruction pipeline.
5. Explain pipeline hazards.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/computer-organization-and-architecture-pipelining-
set-1-execution-stages-and-throughput/

Unit 11: Pipeline Processing
Notes

A. SISD
B. SIMD
C. MISD
D. MIMD

15. In which group, the computer systems are capable of processing several programs at the
same time?

A. SISD
B. SIMD
C. MISD
D. MIMD

Answers for Self Assessment

1. C 2. A 3. B 4. A 5. B

6. A 7. D 8. A 9. B 10. D

11. C 12. C 13. B 14. C 15. D

Review Questions:

1. What is parallel processing? Explain its purpose and levels of complexity.
2. What is the classification of parallel processing?
3. What is pipeline and its flow of information? Write about its applicability.
4. Explain the instruction pipeline.
5. Explain pipeline hazards.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links

https://www.geeksforgeeks.org/computer-organization-and-architecture-pipelining-
set-1-execution-stages-and-throughput/

Lovely Professional University200

Unit 12: Memory technology

Notes

Unit 12: Memory Technology

CONTENTS

Objectives

Introduction

12.1 Memory Hierarchy

12.2 Use of cache memory

12.3 Main Memory

12.4 RAM and ROM chips

12.5 Memory Address Map

12.6 Auxiliary memory

12.7 Associative Memory

12.8 Cache Memory:

12.9 Mapping Process

12.10 Virtual Memory

12.11 Memory Management Hardware

12.12 Logical address

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 understand what is memory
 understand the different types of memory
 understand the associative memory
 understand the cache memory
 understand the concept of virtual memory
 understand the memory management unit

Introduction
The memory unit is an essential component in any digital computer since it is needed for storing
programs and data. It is more economical to use low-cost storage devices to serve as a backup for
storing the information that is not currently used by CPU. The memory unit that communicates
directly with the CPU is called the main memory. Devices that provide backup storage are called
auxiliary memory.Only programs and data currently needed by the processor reside in main
memory. All other information is stored in auxiliary memory and transferred to main memory
when needed.

Lovely Professional University 201

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

12.1 Memory Hierarchy
The memory hierarchy system consists of all storage devices employed in a computer system:

1) Slow but high-capacity auxiliary memory,

2) Relatively faster main memory,

3) Smaller and faster cache memory.

Components in Memory Hierarchy
At the bottom of the hierarchy, are the relatively slow magnetic tapes used to store removable
files.Next there are the magnetic disks used as backup storage.The main memory occupies a central
position by being able to communicate directly with the CPU and with auxiliary memory devices
through an IOprocessor. When programs not residing in main memory are needed by the CPU,
they are brought in from auxiliary memory. Programs not currently needed in main memory are
transferred into auxiliary memory to provide space for currently used programs and data.A special
very-high-speed memory called a cacheis sometimes used to increase the speed of processing by
making current programs and data available to the CPU at a rapid rate.

12.2 Use of cache memory
The cache memory is employed in computer systems to compensate for the speed differential
between main memory access time and processor logic. CPU logic is usually faster than main
memory access time, with the result that processing speed is limited primarily by the speed of main
memory. A technique used to compensate for the mismatch in operating speed is to employ an
extremely fast, small cache between the CPU and main memory whose access time is close to
processor logic clock cycle time.The cache is used for storing segments of programs currently being
executed in the CPU and temporary data frequently needed in the present calculations.

Levels in Memory Hierarchy
The reason for having two or three levels of memory hierarchy is economics. As the storage
capacity of the memory increases, the cost per bit for storing binary information decreases and the
access time of the memory becomes longer. The auxiliary memory has a large storage capacity, is
relatively inexpensive, but has low access speed compared to main memory. The cache memory is
very small, relatively expensive, and has very high access speed. Thus as the memory access speed
increases, so does its relative cost. The overall goal of using a memory hierarchy is to obtain the
highest-possible average access speed while minimizing the total cost of the entire memory system.

Lovely Professional University202

Unit 12: Memory technology

Notes

Multiprogramming
Many operating systems are designed to enable the CPU to process a number of independent
programs concurrently. This concept is called multiprogramming. It refers to the existence of two or
more programs in different partsof the memory hierarchy at the same time. In this way it is possible
to keep all parts of the computer busy by working with several programs in sequence. For example,
suppose that a program is being executed in the CPU and an I/Otransfer is required. The CPU
initiates the VO processor to start executing the transfer. This leaves the CPU free to execute
another program. In a multiprogramming system, when one program is waiting for input or output
transfer, there is another program ready to utilize the CPU.

12.3 Main Memory
The main memory is the central storage unit in a computer system. It is a relatively large and fast
memory used to store programs and data during the computer operation. The principal technology
used for the main memory is based on semiconductor integrated circuits.

RAM
Integrated circuit RAM chips are available in two possible operating modes:

A) Static

B) Dynamic.

Static RAM: The static RAM consists essentially of internal flip-flops that store the binary
information. The stored information remains valid as long as power is applied to the unit.
The static RAM is easier to use and has shorter read and write cycles.

Dynamic RAM:The dynamic RAM stores the binary information in the form of electric
charges that are applied to capacitors. The dynamic RAM offers reduced power
consumption and larger storage capacity in a single memory chip.

ROM
ROM is used for storing programs that are permanently resident in the computer and for tables of
constants that do not change in value once the production of the computer is completed.The ROM
portion of main memory is needed for storing an initial program called a bootstrap loader.The
bootstrap loader is a program whose function is to start the computer software operating when
power is turned on.

Since RAM is volatile, its contents are destroyed when power is turned off. But the contents of
ROM remain unchanged after power is turned off and on again. The startup of a computer consists
of turning the power on and starting the execution of an initial program. Thus when power is
turned on, the hardware of the computer sets the program counter to the first address of the
bootstrap loader. The bootstrap program loads a portion of the operating system from disk to main
memory and control is then transferred to the operating system, which prepares the computer for
general use.

12.4 RAM and ROM chips
RAM chips
A RAM chip is better suited for communication with the CPU if it has one or more control inputs
that select the chip only when needed. Another common feature is a bidirectional data bus that
allows the transfer of data either from memory to CPU during a read operation or from CPU to
memory during a write operation. A bidirectional bus can be constructed with three-state buffers. A
three-state buffer output can be placed in one of three possible states: a signal equivalent to logic 1,
a signal equivalent to logic 0, or a high impedance state. The logic 1 and O are normal digital
signals. The high impedance state behaves like an open circuit, which means that the output does
not carry a signal and has no logic significance.

Lovely Professional University 203

Computer System Architecture

Notes

The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit
address and an 8-bit bidirectional data bus. The read and write inputs specifies, the memory
operation and the two chips select (CS) control inputs are fee enabling the chip only when it is
selected by the microprocessor. The availability of more than one control input to select the chip
facilitates the decoding ofthe address lines when multiple chips are used in the microcomputer. The
read and write inputs are sometimes combined into one line labeled R/W. When the chip is
selected, the two binary states in this line specify the two operations of read or write.

The unit is in operation only when CSl = 1 and CS2’= 0. The bar on top
ofthesecondselectvariableindicatesthatthisinputisenabledwhenitis equal
to0.Ifthechipselectinputsarenotenabled, oriftheyareenabled but theread or write inputs are not
enabled, the memory is inhibited and its data bus is in a high-impedance state. When CSl = 1 and
CS2’= 0, the memory can be placed in a write or read mode. When the WR input is enabled,the
memorystores a byte from the data bus into a location specified by the address input lines. When
the RD input is enabled, the content of the selected byte is placed
intothedatabus.TheRDandWRsignalscontrolthememoryoperationaswell as the bus buffers
associated with the bidirectional databus.

ROM chips
A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the
data bus can only be in an output mode.

Lovely Professional University204

Unit 12: Memory technology

Notes

For the same-size chip, it is possible to have more bits of ROM than of RAM, because the internal
binary cells in ROM occupy less space than in RAM. For this reason, the diagram specifies a 512-
byte ROM, while the RAM has only 128 bytes. The nine address lines in the ROM chip specify any
one of the 512 bytes stored in it. The two chip select inputs must be CSl = 1 and CS2= O for the unit
to operate. Otherwise, the data bus is in a high-impedance state. There is no need for a read or write
control because the unit can only read. Thus when the chip is enabled by the two select inputs, the
byte selected by the address lines appears on the data bus.

12.5 Memory Address Map
The designer of a computer system must calculate the amount of memory required for the
particular application and assign it to either RAM or ROM. The interconnection between memory
and processor is then established from knowledge of the size of memory needed and the type of
RAM and ROM chips available. The addressing of memory can be established by means of a table
that specifies the memory address assigned to each chip. The table, called a memory address map,
is a pictorial representation of assigned address space for each chip in the system.

Memory Address Map for Microcomputer
Assume that a computer system needs 512 bytes of RAM and 512 bytes of ROM. The component
column specifies whether a RAM or a ROM chip is used. The hexadecimal address column assigns
a range of hexadecimal equivalent addresses for each chip. The address bus lines are listed in the
third column. The small x's under the address bus lines designate those lines that must be
connected to the address inputs in each chip. The RAM chips have 128 bytes and need seven
address lines. The ROM chip has 512 bytes and needs 9 address lines. The x's are always assigned
to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It is
now necessary to distinguish between four RAM chips by assigning to each a different address.

For this particular example we choose bus lines 8and 9 to represent four distinct binary
combinations. Note that any other pair of unused bus lines can be chosen for this purpose. The

Lovely Professional University 205

Computer System Architecture

Notes

table clearly shows that the nine low-order bus lines constitute a memory space for RAM equal to 29

= 512 bytes. The distinction between a RAM and ROM address is done with another bus line. Here
we choose line 10 for this purpose. When line 10 is O, the CPU selects a RAM, and when this line is
equal to 1, it selects the ROM. The equivalent hexadecimal address for each chip is obtained from
the information under the address bus assignment. The address bus linesare subdivided into
groups of four bits each so that each group can be represented with a hexadecimal digit. The first
hexadecimal digit represents lines 13 to 16 and is always 0. The next hexadecimal digit represents
lines 9 to 12, but lines 11 and 12 are always 0. The range of hexadecimal addresses for each
component is determined from the x's associated with it. These x's represent a binary number that
can range from an all-O's to an all-l's value.

12.6 Auxiliary memory
The most common auxiliary memory devices used in computer systems are magnetic disks and
tapes. Other components used, but not as frequently, are magnetic drums, magnetic bubble
memory, and optical disks. To understand fully the physical mechanism of auxiliary memory
devices one must have knowledge of magnetic, electronics, and electromechanical systems.
Although the physical properties of these storage devices can be quite complex, their logical
properties can be characterized and compared by a few parameters. The important characteristics
of any device are its access mode, access time, transfer rate, capacity, and cost.

The average time required to reach a storage location in memory and obtain its contents is called
the access time. In electromechanical devices with moving parts such as disks and tapes, the access
time consists of a seek time required to position the read-write head to a location and a transfer
time required to transfer data to or from the device.Because the seek time is usually much longer
than the transfer time, auxiliary storage is organized in records or blocks. A record is a specified
number of characters or words. Reading or writing is always done on entire records. The transfer
rate is the number of characters or words that the device can transfer per second, after it has been
positioned at the beginning of the record.

Magnetic drums and disks are quite similar in operation. Both consist of high-speed rotating
surfaces coated with a magnetic recording medium. The rotating surface of the drum is a cylinder
and that of the disk, around flat plate. The recording surface rotates at uniform speed and is not
started or stopped during access operations. Bits are recorded as magnetic spots on the surface as it
passes a stationary mechanism called a write head. Stored bits are detected by a change in magnetic
field produced by a recorded spot on the surface as it passes through a read head. The amount of
surface available for recording in a disk is greater than in a drum of equal physical size.Therefore,
more information can be stored on a disk than on a drum of comparable size. For this reason, disks
have replaced drums in more recent computers.

Lovely Professional University206

Unit 12: Memory technology

Notes

Magnetic Disks

A magnetic disk is a circular plate constructed of metal or plastic coated with magnetized material.
Often both sides of the disk are used and several disks may be stacked on one spindle with read/
write heads available on each surface. All disks rotate together at high speed and are not stopped or
started for access purposes. Bits are stored in the magnetized surface in spots along concentric
circles called tracks. The tracks are commonly divided into sections called sectors. In most systems,
the minimum quantity of information which can be transferred is a sector.

Some units use a single read/write head for each disk surface. In this type of unit, the track address
bits are used by a mechanical assembly to move the head into the specified track position before
reading or writing. In other disk systems, separate read/write heads are provided for each track in
each surface. The address bits can then select a particular track electronically through a decoder
circuit. This type of unit is more expensive and is found only in very large computer systems.

Permanent timing tracks are used in disks to synchronize the bits and recognize the sectors. A disk
system is addressed by address bits that specify the disk number, the disk surface, the sector
number and the track within the sector. After the read/write heads are positioned in the specified
track, the system has to wait until the rotating disk reaches the specified sector under the read/
write head. Information transfer is very fast once the beginning of a sector has been reached. Disks
may have multiple heads and simultaneous transfer of bits from several tracks at the same time.

A track in a given sector near the circumference is longer than a track near the center of the disk.If
bits are recorded with equal density, some tracks will contain more recorded bits than others. To
make all the records in a sector of equal length, some disks use a variable recording density with
higher density on tracks near the center than on tracks near the circumference. This equalizes the
number of bits on all tracks of a given sector.Disks that are permanently attached to the unit
assembly and cannot be removed by the occasional user are called hard disks.A disk drive with
removable disks is called a floppy disk. The disks used with a floppy disk drive are small
removable disks made of plastic coated with magnetic recording material. There are two sizes
commonly used, with diameters of 5.25 and 3.5 inches.The 3.5-inch disks are smaller and can store
more data than can the 5.25-inch disks. Floppy disks are extensively used in personal computers as
a medium for distributing software to computer users.

Magnetic Tape
A magnetic tape transport consists of the electrical, mechanical, and electronic components to
provide the parts and control mechanism for a magnetic-tape unit. The tape itself is a strip of plastic
coated with a magnetic recording medium. Bits are recorded as magnetic spots on the tape along

Lovely Professional University 207

Computer System Architecture

Notes

several tracks. Usually, seven or nine bits are recorded simultaneously to form a character together
with a parity bit.Read/ write heads are mounted one in each track so that data can be recorded and
read as a sequence of characters.

Magnetic tape units can be stopped, started to move forward or in re verse, or can be rewound.
However, they cannot be started or stopped fast enough between individual characters.For this
reason, information is recorded in blocks referred to as records. Gaps of unrecorded tape are
inserted between records where the tape can be stopped.The tape starts moving while in a gap and
attains its constant speed by the time it reaches the next record.Each record on tape has an
identification bit pattern at the beginning and end.By reading the bit pattern at the beginning, the
tape control identifies the record number. By reading the bit pattern at the end of the record, the
control recognizes the beginning of a gap.A tape unit is addressed by specifying the record number
and the number of characters in the record.Records may be of fixed or variable length.

Many data-processing applications require the search of items in a table stored in memory.
Examples:

A) An assembler program.

B) An account number.

The search procedure is a strategy for choosing a sequence of addresses.The number of accesses to
memory depends on the location of the item and the efficiency of the search algorithm.

12.7 Associative Memory
A memory unit accessed by content is called an associative memory or content addressable
memory (CAM).

Characteristics of Associative Memory
Memory is accessed simultaneously and in parallel on the basis of data content.No address is given
when writing. It works by finding an empty unused location.The content of the word, or part of the
word, is specified. The memory locates all words which match the specified content and mark them
for reading.The associative memory is expensive because of storage capabilities and logic circuits
for matching.

Applications
It performs parallel searches by data association. It is applicable where the search time is very
critical and must be very short.

Lovely Professional University208

Unit 12: Memory technology

Notes

It consists of a memory array and logic for m words with n bits per word. The argument register A
and key register K each have n bits, one for each bit of a word. The match register M has m bits, one
for each memory word.

Matching process:
1) Each word in memory is compared in parallel with the content of the argument register.

2) The words that match the bits of the argument register set a corresponding bit in the
match register.

3) After the matching process, those bits in the match register that have been set indicate the
fact that their corresponding words have been matched.

Example:

A 101 111100

K 111 000000

Word 1 100 111100 No match

Word 2 101 000001 Match

Unit 12: Memory technology

Notes

It consists of a memory array and logic for m words with n bits per word. The argument register A
and key register K each have n bits, one for each bit of a word. The match register M has m bits, one
for each memory word.

Matching process:
1) Each word in memory is compared in parallel with the content of the argument register.

2) The words that match the bits of the argument register set a corresponding bit in the
match register.

3) After the matching process, those bits in the match register that have been set indicate the
fact that their corresponding words have been matched.

Example:

A 101 111100

K 111 000000

Word 1 100 111100 No match

Word 2 101 000001 Match

Unit 12: Memory technology

Notes

It consists of a memory array and logic for m words with n bits per word. The argument register A
and key register K each have n bits, one for each bit of a word. The match register M has m bits, one
for each memory word.

Matching process:
1) Each word in memory is compared in parallel with the content of the argument register.

2) The words that match the bits of the argument register set a corresponding bit in the
match register.

3) After the matching process, those bits in the match register that have been set indicate the
fact that their corresponding words have been matched.

Example:

A 101 111100

K 111 000000

Word 1 100 111100 No match

Word 2 101 000001 Match

Lovely Professional University 209

Computer System Architecture

Notes

This shows the relationship between the memory array and external registers in an associative
memory.This is how the cell is internally organized.

The match logic for each word can be derived from the comparison algorithm for two binary
numbers. First, we neglect the key bits and compare the argument in A with the bits stored in the
cells of the words. Word i is equal to the argument in A if Aj = Fij for j = 1, 2,…n. Two bits are equal
if they are both1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

Where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0.

12.8 Cache Memory:
It is placed between the CPU and main memory.The cache memory access time is less than the
access time of main memory by a factor of 5 to 10.It is the fastest component in the memory
hierarchy and approaches the speed of CPU components. The fundamental idea is to keep the most
frequently accessed instructions and data, the average memory access time will approach the access
time of the cache. If the word addressed by the CPU is not found in the cache, the main memory is

Lovely Professional University210

Unit 12: Memory technology

Notes

accessed to read the word. A block of words containing the one just accessed is then transferred
from main memory to cache memory.The ratio of the number of hits divided by the total CPU
references to memory (hits plus misses) is the hit ratio.The high ratio verifies the validity of the
locality of reference property.The average memory access time of a computer system can be
improved considerably by use of a cache.

12.9 Mapping Process
The basic characteristic of cache memory is its fast access time. Therefore, very little or no
time must be wasted when searching for words in the cache. The transformation of data
from main memory to cache memory is referred to as a mapping process.

Types of mapping
There are three types of mapping procedures:

1) Associative mapping

2) Direct mapping

3) Set-associative mapping

Associative Mapping:

Lovely Professional University 211

Computer System Architecture

Notes

Here three words presently stored in the cache. The address value of 15 bits is shown as a five-digit
octal number and its corresponding 12-bit word is shown as a four-digit octal number. A CPU
address of 15 bits is placed in the argument register and the associative memory is searched for a
matching address. If the address is found, the corresponding 12-bit data is read and sent to the
CPU. If no match occurs, the main memory is accessed for the word. The address-data pair is then
transferred to the associative cache memory. For replacement it uses round-robin order.

Direct Mapping

In this, the CPU address of 15 bits is divided into two fields: 9 bits: index field and 6 bits:
tag field.The main memory needs an address that includes both the tag and the index bits.

In the general case, there are 2k words in cache memory and 2n words in main memory.
The direct mapping cache organization uses the n-bit address to access the main memory
and the k-bit index to access the cache.

Disadvantage of direct mapping:
Direct mapping is that the hit ratio can drop considerably if two or more words whose

addresses have the same index but different tags are accessed repeatedly.

Set Associative Mapping
It is an improvement over the direct mapping organization in that each word of cache can store
two or more words of memory under the same index address. Each data word is stored together
with its tag and the number of tag-data items in one word of cache is said to form a set. Each index
address refers to two data words and their associated tags. Each tag requires 6 bits and each data
word has 12 bits, so the word length is 2(6 + 12) = 36 bits. An index address of 9 bits can
accommodate 512 words. Thus the size of cache memory is 512x36. It can accommodate 1024 words
of main memory since each word of cache contains two data words.In general, a set-associative
cache of set size k will accommodate k words of main memory in each word of cache.When the
CPU generates a memory request, the index value of the address is used to access the cache. The tag
field of the CPU address is then compared with both tags in the cache to determine if a match
occurs. The comparison logic is done by an associative search of the tags in the set similar to an
associative memory search: thus the name "set-associative.

Lovely Professional University212

Unit 12: Memory technology

Notes

Replacement algorithms
When a miss occurs in a set-associative cache and the set is full, it is necessary to replace
one of the tag-data items with a new value. The most common replacement algorithms
used are:

1) Random replacement

2) First-in-first out (FIFO)

3) Least recently used (LRU)

Both FIFO and LRU can be implemented by adding a few extra bits in each word of cache.

Writing into Cache
An important aspect of cache organization is concerned with memory write requests.
When the CPU finds a word in cache during a read operation, the main memory is not
involved in the transfer. However, if the operation is a write, there are two ways that the
system can precede:

1) Write through method

2) Write back method

Cache Initialization
The cache is initialized when power is applied to the computer or when the main memory
is loaded with a complete set of programs from auxiliary memory. After initialization the
cache is considered to be empty, but in effect it contains some non valid data. It have an
inclusion of valid bit.The cache is initialized by clearing all the valid bits to 0. The valid bit
of a particular cache word is set to 1 the first time this word is loaded from main memory
and stays set unless the cache has to be initialized again. The introduction of the valid bit
means that a word in cache is not replaced by another word unless the valid bit is set to 1
and a mismatch of tags occurs. If the valid bit happens to be 0, the new word
automatically replaces the invalid data.Thus the initialization condition has the effect of
forcing misses from the cache until it fills with valid data.

Lovely Professional University 213

Computer System Architecture

Notes

12.10 Virtual Memory
Virtual memory is a concept used in some large computer systems that permit the user to
construct programs as though a large memory space were available, equal to the totality of
auxiliary memory.Each address that is referenced by the CPU goes through an address
mapping from the so-called virtual address to a physical address in main memory. A
virtual memory system provides a mechanism for translating program generated
addresses into correct main memory locations. The translation or mapping is handled
automatically by the hardware by means of a mapping table.

Address Space and Memory Space
An address used by a programmer will be called a virtual address, and the set of such addresses the
address space. An address in main memory is called a location or physical address. The set of such
locations is called the memory space. In a multi-program computer system, programs and data are
transferred to and from auxiliary memory and main memory based on demands imposed by the
CPU. Suppose that program 1 is currently being executed in the CPU. Program 1 and a portion of
its associated data are moved from auxiliary memory into main memory.

In a virtual memory system, programmers are told that they have the total address space at their
disposal. Moreover, the address field of the instruction code has a sufficient number of bits to
specify all virtual addresses. For efficient transfers, auxiliary storage moves an entire record to the
main memory. A table is then needed, to map a virtual address of 20 bits to a physical address of 15
bits. The mapping is a dynamic operation, which means that every address is translated
immediately as a word is referenced by CPU.

Memory Table for Mapping a Virtual Address
The mapping table may be stored in a separate memory or in main memory:In the first case, an
additional memory unit is required as well as one extra memory access time and in the second case,
the table takes space from main memory and two accesses to memory are required with the
program running at half speed.

Lovely Professional University214

Unit 12: Memory technology

Notes

Address Mapping Using Pages
The physical memory is broken down into groups of equal size called blocks, which may range
from 64 to 4096 words each.The term page refers to groups of address space of the same size. For
example, if a page or block consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although both a page and a
block are split into groups of 1K words, a page refers to the organization of address space, while a
block refers to the organization of memory space.The programs are also considered to be split into
pages. Portions of programs are moved from auxiliary memory to main memory in records equal to
the size of a page. The term "page frame" is sometimes used to denote a block.

Example:

Consider a computer with an address space of 8K and a memory space of 4K.

If we split each into groups of 1K words we obtain eight pages and four blocks.
At any given time, up to four pages of address space may reside in main memory
in any one of the four blocks.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage utilization.In general, a
system with n pages and m blocks would require a memory-page table of n locations of which up
to m blocks will be marked with block numbers and all others will be empty. As a numerical
example, consider an address space of 1024K words and memory space of 32K words.If each page
or block contains 1K words, the number of pages is 1024 and the number of blocks 32.The capacity

Unit 12: Memory technology

Notes

Address Mapping Using Pages
The physical memory is broken down into groups of equal size called blocks, which may range
from 64 to 4096 words each.The term page refers to groups of address space of the same size. For
example, if a page or block consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although both a page and a
block are split into groups of 1K words, a page refers to the organization of address space, while a
block refers to the organization of memory space.The programs are also considered to be split into
pages. Portions of programs are moved from auxiliary memory to main memory in records equal to
the size of a page. The term "page frame" is sometimes used to denote a block.

Example:

Consider a computer with an address space of 8K and a memory space of 4K.

If we split each into groups of 1K words we obtain eight pages and four blocks.
At any given time, up to four pages of address space may reside in main memory
in any one of the four blocks.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage utilization.In general, a
system with n pages and m blocks would require a memory-page table of n locations of which up
to m blocks will be marked with block numbers and all others will be empty. As a numerical
example, consider an address space of 1024K words and memory space of 32K words.If each page
or block contains 1K words, the number of pages is 1024 and the number of blocks 32.The capacity

Unit 12: Memory technology

Notes

Address Mapping Using Pages
The physical memory is broken down into groups of equal size called blocks, which may range
from 64 to 4096 words each.The term page refers to groups of address space of the same size. For
example, if a page or block consists of 1K words, then, using the previous example, address space is
divided into 1024 pages and main memory is divided into 32 blocks. Although both a page and a
block are split into groups of 1K words, a page refers to the organization of address space, while a
block refers to the organization of memory space.The programs are also considered to be split into
pages. Portions of programs are moved from auxiliary memory to main memory in records equal to
the size of a page. The term "page frame" is sometimes used to denote a block.

Example:

Consider a computer with an address space of 8K and a memory space of 4K.

If we split each into groups of 1K words we obtain eight pages and four blocks.
At any given time, up to four pages of address space may reside in main memory
in any one of the four blocks.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage utilization.In general, a
system with n pages and m blocks would require a memory-page table of n locations of which up
to m blocks will be marked with block numbers and all others will be empty. As a numerical
example, consider an address space of 1024K words and memory space of 32K words.If each page
or block contains 1K words, the number of pages is 1024 and the number of blocks 32.The capacity

Lovely Professional University 215

Computer System Architecture

Notes

of the memory-page table must be 1024 words and only 32 locations may have a presence bit equal
to 1.At any given time, at least 992 locations will be empty and not in use.A more efficient way to
organize the page table would be to construct it with a number of words equal to the number of
blocks in main memory.In this way the size of the memory is reduced and each location is fully
utilized. This method can be implemented by means of an associative memory with each word in
memory containing a page number together with its corresponding block number. The page field in
each word is compared with the page number in the virtual address. If a match occurs, the word is
read from memory and its corresponding block number is extracted.

Each entry in associative memory array consists of two fields.First three bits specify a field
for storing the page number. Last two fields constitute a field for storing the block
number.Virtual address is placed in the argument register.

Page Replacement
A virtual memory system is a combination of hardware and software techniques. When a
program starts execution, one or more pages are transferred into main memory and the
page table is set to indicate their position. The program is executed from main memory
until it attempts to reference a page that is still in auxiliary memory. This condition is
called page fault.When a page fault occurs in a virtual memory system, it signifies that the
page referenced by the CPU is not in main memory.A new page is then transferred from
auxiliary memory to main memory. The policy for choosing pages to remove is
determined from the replacement algorithm that is used.Two of the most common
replacement algorithms used are the FIFO and LRU.

12.11 Memory Management Hardware
The demands on computer memory brought about by multiprogramming have created
the need for a memory management system.A memory management system is a collection
of hardware and software procedures for managing the various programs residing in
memory.

Basic Components of a Memory Management Unit
The basic components of a memory management unit are:

• A facility for dynamic storage relocation that maps logical memory references into
physical memory addresses.

Lovely Professional University216

Unit 12: Memory technology

Notes

• A provision for sharing common programs stored in memory by different users.

• Protection of information against unauthorized access between users and preventing users
from changing operating system functions.

A facility for dynamic storage relocation
The dynamic storage relocation hardware is a mapping process similar to the paging system.The
fixed page size used in the virtual memory system causes certain difficulties with respect to
program size and the logical structure of programs. It is more convenient to divide programs and
data into logical parts called segments. Examples of segments are a subroutine, an array of data, a
table of symbols, or a user's program.The sharing of common programs is an integral part of a
multi-programming system.

Protection of information against unauthorized access
The issue in multiprogramming is protecting one program from unwanted interaction with
another. The secrecy of certain programs must be kept from unauthorized personnel to prevent
abuses in the confidential activities of an organization.

12.12 Logical address
The address generated by a segmented program is called a logical address. This is similar
to a virtual address except that logical address space is associated with variable-length
segments rather than fixed-length pages. In addition to relocation information, each
segment has protection information associated with it. Shared programs are placed in a
unique segment in each user's logical address space so that a single physical copy can be
shared. The function of the memory management unit is to map logical addresses into
physical addresses similar to the virtual memory mapping concept.

Segmented-Page Mapping
The property of logical space is that it uses variable-length segments. The length of each
segment is allowed to grow and contract according to the needs of the program being
executed. One way of specifying the length of a segment is by associating it with a number
of equal-size pages. The logical address is partitioned into three fields:

A) The segment field specifies a segment number.

B) The page field specifies the page within the segment.

C) The word field gives the specific word within the page. A page field of k bits can specify
up to 2k pages.

Lovely Professional University 217

Computer System Architecture

Notes

Logical to physical address mapping

TLB

Example:

Consider the 20-bit logical address.

Computer System Architecture

Notes

Logical to physical address mapping

TLB

Example:

Consider the 20-bit logical address.

Computer System Architecture

Notes

Logical to physical address mapping

TLB

Example:

Consider the 20-bit logical address.

Lovely Professional University218

Unit 12: Memory technology

Notes

Summary

 The memory hierarchy system consists of all storage devices employed in a computer
system:auxiliary memory, main memory and cache memory.

 A cacheis sometimes used to make current programs and data available to the CPU
at a rapid rate.

 The overall goal is to obtain the highest-possible average access speed while
minimizing the total cost of the entire memory system.

 RAM is volatile and ROM is non-volatile in nature.
 Some examples of auxiliary memory aremagnetic disks, tapes, magnetic drums,

magnetic bubble memory, and optical disks.
 Cache memory is placed between the CPU and main memory.
 The most common replacement algorithms used are: random replacement, first-in-

first out (FIFO) and least recently used (LRU).

Keywords
Access time: The average time required to reach a storage location in memory and obtain
its contents is called the access time.

Seek time: In electromechanical devices with moving parts such as disks and tapes, the
access time consists of a seek time required to position the read-write head to a location
and a transfer time required to transfer data to or from the device.

Transfer rate: It is the number of characters or words that the device can transfer per
second, after it has been positioned at the beginning of the record.

Write head:Bits are recorded as magnetic spots on the surface as it passes a stationary
mechanism called a write head.

Read head:Stored bits are detected by a change in magnetic field produced by a recorded
spot on the surface as it passes through a read head.

Associative memory: A memory unit accessed by content is called an associative memory
or content addressable memory (CAM).

Hit ratio:The ratio of the number of hits divided by the total CPU references to memory
(hits plus misses) is the hit ratio.

Self Assessment

1. Memory space belongs to
A. Auxiliary memory

Lovely Professional University 219

Computer System Architecture

Notes

B. Main memory
C. Cache memory
D. None of the above

2. Address space belongs to
A. Auxiliary memory
B. Main memory
C. Cache memory
D. None of the above

3. Which of the following word is used to denote a block?
A. Page frame
B. Word frame
C. Line frame
D. Sentence frame

4. Which of the following is page replacement algorithm?
A. LRU
B. FIFO
C. Both LRU and FIFO
D. None of the above

5. Which memory is placed between CPU and main memory?
A. Cache memory
B. Associative memory
C. Random memory
D. None of the above

6. In which memory, no address is specified when writing?
A. Cache memory
B. Associative memory
C. Random memory
D. None of the above

7. Which memory requires the logic circuit for matching the content?
A. Cache memory
B. Associative memory
C. Random memory
D. Main memory

8. Which of the following is fastest kind of memory?
A. Auxiliary memory
B. Cache memory
C. Main memory

Lovely Professional University220

Unit 12: Memory technology

Notes

D. None of the above

9. Which of the following is slowest kind of memory?
A. Auxiliary memory
B. Cache memory
C. Main memory
D. None of the above

10. Magnetic tapes are a kind of
A. Auxiliary memory
B. Cache memory
C. Main memory
D. None of the above

11. Which of the following memory does not deal directly with the CPU?
A. Auxiliary memory
B. Cache memory
C. Main memory
D. None of the above

12. Which of the following memory is employed to compensate for speed differential between
main memory access time and processor logic?

A. Magnetic tapes
B. Magnetic disks
C. Cache memory
D. None of the above

13. In which of the following memory, the electric charges are applied to the capacitors?
A. Static RAM
B. Dynamic RAM
C. Both static and dynamic RAMs
D. None of the above

14. Which of the following is an important characteristic of any device?
A. Access time
B. Transfer rate
C. Cost
D. All access time, transfer rate and cost

15. Which of the following memory is non volatile in nature?
A. RAM
B. ROM
C. Both ROM and RAM

Lovely Professional University 221

Computer System Architecture

Notes

D. None of the above

Answers for Self Assessment

1. B 2. A 3. A 4. C 5. A

6. B 7. B 8. B 9. A 10. A

11. A 12. C 13. B 14. D 15. B

Review Questions

1. What is memory hierarchy? Explain its components.
2. What are RAM and ROM? Explain its chips also.
3. What is memory address map? Explain for microcomputer.
4. What is auxiliary memory? Explain its types also.
5. What is associative memory? Explain its characteristics and

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://www.britannica.com/technology/computer-memory

Computer System Architecture

Notes

D. None of the above

Answers for Self Assessment

1. B 2. A 3. A 4. C 5. A

6. B 7. B 8. B 9. A 10. A

11. A 12. C 13. B 14. D 15. B

Review Questions

1. What is memory hierarchy? Explain its components.
2. What are RAM and ROM? Explain its chips also.
3. What is memory address map? Explain for microcomputer.
4. What is auxiliary memory? Explain its types also.
5. What is associative memory? Explain its characteristics and

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://www.britannica.com/technology/computer-memory

Computer System Architecture

Notes

D. None of the above

Answers for Self Assessment

1. B 2. A 3. A 4. C 5. A

6. B 7. B 8. B 9. A 10. A

11. A 12. C 13. B 14. D 15. B

Review Questions

1. What is memory hierarchy? Explain its components.
2. What are RAM and ROM? Explain its chips also.
3. What is memory address map? Explain for microcomputer.
4. What is auxiliary memory? Explain its types also.
5. What is associative memory? Explain its characteristics and

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://www.britannica.com/technology/computer-memory

Lovely Professional University222

Unit 13: I/O Subsystems

Notes

Unit 13: I/O Subsystems

CONTENTS

Objectives

Introduction

13.1 Peripheral Devices

13.2 ASCII Alphanumeric Characters

13.3 Input-Output Interface

13.4 I/0 Bus and Interface Modules

13.5 Input-Output command

13.6 I/O versus Memory Bus

13.7 Strobe and handshaking

13.8 Strobe Control

13.9 Handshaking

13.10 Asynchronous Serial Transfer

13.11 Serial Synchronous Transmission

13.12 Serial Asynchronous Transmission:

13.13 Modes of Transfer

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand:

• understand the peripheral devices

• understand the I/O interface

• understand the I/O bus and interface modules

• understand the synchronous and asynchronous methods of transfer

• understand the strobe and handshaking process in asynchronous data transfer

• understand the three modes of data transfer

Introduction
The I/O devices Provides an efficient mode of communication between the central system and the

outside environment. Programs and data must be entered into computer memory for processing
and results obtained from computations must be recorded or displayed for the user. The most
familiar means of entering information into a computer is through a typewriter-like keyboard that
allows a person to enter alphanumeric information directly.The fastest possible speed for entering
information this way depends on the person's typing speed. On the other hand, the CPU is an
extremely fast device capable of performing operations at very high speed. To increase the

Lovely Professional University 223

Dr. Divya, Lovely Professional University

Computer System Architecture

Notes

efficiency, the data must be prepared in advance and transmitted into a storage medium such as
magnetic tapes or disks. The information in the disk is then transferred into computer memory at a
rapid rate.

13.1 Peripheral Devices
The devices that are under the direct control of the computer are said to be connected on-
line. These devices are designed to read and write information. Input or output devices
attached to the computer are also called peripherals.

Monitor and keyboard
Video monitors are the most commonly used peripherals. They consist of a keyboard as the input
device and a display unit as the output device. There are different types of video monitors, but the
most popular use a CRT.A characteristic feature of display devices is a cursor. These devices can
operate in different modes: single-character mode and block mode.

Printer
Printers provide a permanent record on paper of computer output data or text. There are three
basic types of character printers: daisywheel, dot matrix, and laser printers.

Magnetic tapes
These magnetic tapes are used to store files of data. Here the access is sequential and the tape
moves along a stationary read-write mechanism. It is one of the cheapest and slowest methods for
storage. It can also be removed when not in use.

Magnetic disks
These are high-speed rotational surfaces coated with magnetic material. Here the access is achieved
by moving a read-write mechanism to a track in the magnetized surface. It is used for bulk storage
of programs and data.

Other input and output devices:
The other input and output devices are digital incremental plotters, optical and magnetic character
readers, analog-todigital converters, and various data acquisition equipment. Computers are not
just intended for humans but also used to control various processes in real time.The input-output
organization of a computer is a function of the size of the computer and the devices connected to it.

13.2 ASCII Alphanumeric Characters
The standard binary code is ASCII. It uses 7 bits to code 128 characters. The bits are designated by
b1 through b7,with b, being the most significant bit.The letter A, for example, is represented in
ASCII as 100 0001 (column 100, row 0001). The ASCII code contains 94 characters that can be
printed and 34 nonprinting characters used for various control functions. The printing characters
consist of the 26 uppercase letters A through Z, the 26 lowercase letters, the 10 numerals O through
9, and 32 special printable characters such as %, *, and$. The ASCII characters are:

Lovely Professional University224

Unit 13: I/O Subsystems

Notes

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit called a byte.
Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes used for
other purposes, depending on the application.The control characters are used for routing data and
arranging the printed text into a prescribed format. There are three types of control characters:

1) Format effectors: Controls the layout of printing.

Example:
BS, HT and CR.

2) Information separators: Separates the data into divisions like paragraphs and pages.

Example:
RS and FS.

3) Communication control characters: Used during the transmission of text between remote
terminals.

Example:
RETXS and FS.

Unit 13: I/O Subsystems

Notes

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit called a byte.
Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes used for
other purposes, depending on the application.The control characters are used for routing data and
arranging the printed text into a prescribed format. There are three types of control characters:

1) Format effectors: Controls the layout of printing.

Example:
BS, HT and CR.

2) Information separators: Separates the data into divisions like paragraphs and pages.

Example:
RS and FS.

3) Communication control characters: Used during the transmission of text between remote
terminals.

Example:
RETXS and FS.

Unit 13: I/O Subsystems

Notes

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit called a byte.
Therefore, ASCII characters most often are stored one per byte. The extra bit is sometimes used for
other purposes, depending on the application.The control characters are used for routing data and
arranging the printed text into a prescribed format. There are three types of control characters:

1) Format effectors: Controls the layout of printing.

Example:
BS, HT and CR.

2) Information separators: Separates the data into divisions like paragraphs and pages.

Example:
RS and FS.

3) Communication control characters: Used during the transmission of text between remote
terminals.

Example:
RETXS and FS.

Lovely Professional University 225

Computer System Architecture

Notes

13.3 Input-Output Interface
This provides a method for transferring information between internal storage and external I/0
devices. Peripherals connected to a computer need special communication links for interfacing
them with the CPU to resolve the differences that exist between the central computer and each
peripheral. The major differences are:

• A conversion of signal values may be required because of the differences in
devices and its operation.

• A synchronization mechanism may be needed because the data transfer rate is
different.

• Data codes and formats in peripherals differ from the word format in the CPU
and memory.

• The operating modes of peripherals are different from each other.

The solution for these differences can also be found:

• To resolve these differences, computer systems include interfaceunits because they
interface between the processor bus and the peripheral device.

• Each device may have its own controller that supervises the operations of the particular
mechanism in the peripheral.

13.4 I/0 Bus and Interface Modules
It shows a communication link between the processor and several peripherals. The I/O bus consists
of data lines, address lines, and control lines. The magnetic disk, printer, terminal and magnetic
tape are employed.Each peripheral device has associated with it an interface unit. Each peripheral
has its own controller that operates the particular electromechanical device. The I/O bus from the
processor is attached to all peripheral interfaces. To communicate with a particular device, the
processor places a device address on the address lines.When the interface detects its own address, it
activates the path between the bus lines and the device that it controls.All peripherals whose
address does not correspond to the address in the bus are disabled by their interface.

Lovely Professional University226

Unit 13: I/O Subsystems

Notes

13.5 Input-Output command
At the same time that the address is made available in the address lines, the processor
provides a function code in the control lines.The interface selected responds to the
function code and proceeds to execute it. The function code is referred to as an I/O
command and is an instruction that is executed in the interface and its attached peripheral
unit. The interpretation of the command depends on the peripheral that the processor is
addressing.There are four types of commands that an interface may receive. They are
classified as control, status, data output, and data input.

Control command
A control command is issued to activate the peripheral and to inform it what to do. For
example, a magnetic tape unit may be instructed to backspace the tape by one record, to
rewind the tape, or to start the tape moving in the forward direction.

Status Command
A status command is used to test various status conditions in the interface and the
peripheral.For example, the computer may wish to check the status of the peripheral
before a transfer is initiated.

Output data
A data output command causes the interface to respond by transferring data from the bus
into one of its registers.

Input data
The data input command is the opposite of the data output. In this case the interface
receives an item of data from the peripheral and places it in its buffer register.

13.6 I/O versus Memory Bus
In addition to communicating with I/O, the processor must communicate with the
memory unit. Like the I/O bus, the memory bus contains data, address, and read/write

Lovely Professional University 227

Computer System Architecture

Notes

control lines. There are three ways that computer buses can be used to communicate with
memory and I/O:

1) Use two separate buses, one for memory and the other for I/O.

2) Use one common bus for both memory and I/O but have separate control lines for each.

3) Use one common bus for memory and IO with common control lines.

IOP
The computer has independent sets of data, address, and control buses, one for accessing
memory and the other for I/O. The memory communicates with both the CPU and the
IOP through a memory bus. The IOP communicates also with the input and output
devices through a separate I/0 bus with its own address, data and control lines. It
provides an independent pathway for the transfer of information between external devices
and internal memory.

Isolated I/O Method
Many computers use one common bus to transfer information between memory or I/0
and the CPU.The distinction between a memory transfer and I/0 transfer is made through
separate read and write lines.The CPU specifies whether the address on the address lines
is for a memory word or for an interface register by enabling one of two possible read or
write lines.The I/0 read and I/0 write control lines are enabled during an I/0 transfer. The
memory read and memory write control lines are enabled during a memory transfer. This
configuration isolates all I/0 interface addresses from the addresses assigned to memory
and is referred to as the isolated I/O method for assigning addresses in a common bus.

Memory-mapped I/O Method
The other alternative is to use the same address space for memory and I/0. This
configuration is referred to as memory-mapped I/0. The computer treats an interface
register as being part of the memory system. The assigned addresses for interface registers
cannot be used for memory words, which reduce the memory address range available.In a
memory-mapped I/0 organization there are no specific input or output instructions. Each
interface is organized as a set of registers that respond to read and write requests in the
normal address space. Computers with memory-mapped I/0 can use memory-type
instructions to access I/0 data.The advantage is that the load and store instructions used
for reading and writing from memory can be used to input and output data from I/0
registers. Two units, such as a CPU and an I/O interface, are designed independently of
each other. If they share a common clock, then it is known as synchronous transfer of data.
If they share a private clock, then it is known as asynchronous transfer of data.

13.7 Strobe and handshaking
Strobe: A control signal (strobe pulse) for indicating the time at which data is being
transmitted. One of the units indicates to the other unit when the transfer has to occur.

Handshaking: A control signal being transferred accompanying the data item from the
sender’s side. From the receiver’s side, another control signal is sent to acknowledge.

These two methods are not restricted to I/O transfers but they are also used which
requires the transfer of data between two independent units.The better way to specify the
asynchronous transfer by means of a timing diagram that shows the timing relationship
that must exist between the control signals and the data in the buses.

Lovely Professional University228

Unit 13: I/O Subsystems

Notes

13.8 Strobe Control
This method employs a single control line to time each transfer. The strobe pulse may be
activated by either the source or the destination unit. It is a single line that informs the
destination unit when a valid data word is available in the bus.

Source Initiated Strobe for Data Transfer

Destination Initiated Strobe for Data Transfer

Disadvantages of Strobe Method

There is no way of knowing whether the other unit has actually received/ placed the data.
There is no way of acknowledgement.

13.9 Handshaking
This method gives a second control signal that provides a reply to the unit that initiates
the transfer. The pprinciple for this is:1st control line is in the same direction as the data
flows and 2nd control line is in the other direction from the destination unit to inform the
source whether it can accept data.

Lovely Professional University 229

Computer System Architecture

Notes

Source Initiated Transfer using Handshaking

The two handshaking lines used in the process are data valid and data accepted.

Data valid: The data valid handshaking line is generated by the source unit.

Data accepted: The data accepted handshaking line is generated by the destination unit.

Destination Initiated Transfer using Handshaking
The name of the signal generated by the destination unit is ready for data to reflect its new
meaning. The source unit in this case does not place data on the bus until after it receives
the ready for data signal from the destination unit.

Lovely Professional University230

Unit 13: I/O Subsystems

Notes

Timeout

If one unit is faulty, the data transfer will not be completed. Such an error can be detected
by means of a timeout mechanism.This is implemented by means of an internal clock that
starts counting time when the unit enables one of its handshaking control signals. If the
return handshake signal does not respond within a given time period, the unit assumes
that an error has occurred.

13.10 Asynchronous Serial Transfer
The transfer of data between two units may be done in parallel or serial.

Parallel Data transmission: Each bit of the message has its own path and the total message
is transmitted at the same time.

Serial data transmission: Each bit in the message is sent in sequence one at a time.

Parallel transmission is faster but requires many wires. It is used for short distances and
where speed is important. Serial transmission is slower but is less expensive since it
requires only one pair of conductors.

Lovely Professional University 231

Computer System Architecture

Notes

13.11 Serial Synchronous Transmission
Serial transmission can be synchronous or asynchronous.

Synchronous transmission: In this, a common clock frequency and bits are transmitted
continuously at the rate dictated by the clock pulses. In long distant serial transmission,
each unit is driven by a separate clock of the same frequency.

Asynchronous transmission: In this, the binary information is sent only when it is
available and the line remains idle when there is no information to be transmitted.

13.12 Serial Asynchronous Transmission:
A serial asynchronous data transmission technique employs special bits that are inserted
at both ends of the character code.With this technique, each character consists of three
parts: a start bit (always 0), the character bits, and stop bits (always 1).The transmitter rests
at the 1-state when no characters are transmitted.

A transmitted character can be detected by the receiver from knowledge of the transmission
rules.Using these rules, the receiver can detect the start bit when the line goes from 1 to 0. A clock
in the receiver examines the line at proper bit times. The receiver knows the transfer rate of the bits
and the number of character bits to accept. After the character bits are transmitted, one or two stop
bits are sent. The stop bits are always in the I-state and frame the end of the character to signify the
idle or wait state.This helps in resynchronization

Baud Rate

The baud rate is defined as the rate at which serial information is transmitted and is equivalent to
the data transfer in bits per second.

Asynchronous communication interface

The terminal has a keyboard and a printer. Every time a key is depressed, the terminal sends 11 bits
serially along a wire. To print a character in the printer, an 11-bit message must be received along
another wire. The terminal interface consists of a transmitter and a receiver. Integrated circuits are
available which are specifically designed to provide the interface between computer and similar
interactive terminals. Such a circuit is called an asynchronous communication interface

Lovely Professional University232

Unit 13: I/O Subsystems

Notes

13.13 Modes of Transfer
The memory unit is the essential part when dealing with data transfers. Data transfer between the
central computer and I/0 devices may be handled in a variety of modes. Some modes use the CPU
as an intermediate path; others transfer the data directly to and from the memory unit.

Data transfer to and from peripherals may be handled in one of three possible modes:

• Programmed I/0

• Interrupt-initiated I/0

• Direct memory access(DMA)

Programmed I/O
Each data item transfer is initiated by an instruction in the program. Transferring data under
program control requires constant monitoring of the peripheral by the CPU.Once a data transfer is
initiated, the CPU is required to monitor the interface to see when a transfer can again be made. It is
up to the programmed instructions executed in the CPU to keep close tabs on everything that is
taking place in the interface unit and the I/0device.

Interrupt-Initiated I/O
The problem, i.e., CPU remaining in the same can be avoided by using an interrupt facility.The
interface meanwhile keeps monitoring the device. When the interface determines that the device is
ready for data transfer, it generates an interrupt request to the computer. The CPU stop the
processing and branches to process the I/O transfer.

DMA
In direct memory access (DMA), the interface transfers data into and out of the memory unit
through the memory bus. CPU initiates supplies the interface with the starting address and the
number of words.When the transfer is made, the DMA requests memory cycles through the

Lovely Professional University 233

Computer System Architecture

Notes

memory bus. When the request is granted by the memory controller, the DMA transfers the data
directly into memory.

Summary

 I/O devices provide an efficient mode of communication between the central system and
the outside environment.

 The CPU is an extremely fast device capable of performing operations at very high speed.
 The ASCII code contains 94 characters that can be printed and 34 nonprinting characters

used for various control functions.
 Control characters are used for routing data and arranging the printed text into a

prescribed format.
 Input / Output interface provides a method for transferring information between internal

storage and external I/0 devices.
 There are four types of commands that an interface may receive. They are classified as

control, status, data output, and data input.
 If one unit is faulty, the data transfer will not be completed. Such an error can be detected

by means of a timeout mechanism.
 Parallel transmission is faster but requires many wires. It is used for short distances and

where speed is important. Serial transmission is slower but is less expensive since it
requires only one pair of conductors.

Keywords
Format effectors: Controls the layout of printing. Egs: BS, HT and CR.

Information separators: Separates the data into divisions like paragraphs and pages. Egs: RS and
FS.

Communication control characters: Used during the transmission of text between remote
terminals. Egs: ETX.

Control command: A control command is issued to activate the peripheral and to inform it what to
do.

Status command: A status command is used to test various status conditions in the interface and
the peripheral.

Strobe: A control signal (strobe pulse) for indicating the time at which data is being transmitted.
One of the units indicates to the other unit when the transfer has to occur.

Handshaking: A control signal being transferred accompanying the data item from the sender’s
side. From the receiver’s side, another control signal is sent to acknowledge.

Baud rate: The baud rate is defined as the rate at which serial information is transmitted and is
equivalent to the data transfer in bits per second.

Self Assessment

1. In serial asynchronous transmission, the start bit is ____ and stop bit is ______.
A. 1,1
B. 0,0
C. 0,1
D. 1,0

Lovely Professional University234

Unit 13: I/O Subsystems

Notes

2. When interface receives an item of data from the peripheral and places it in its buffer
register. Then what kind of command is issued?

A. Control
B. Status
C. Data input
D. Data output

3. Which of these is requires many wires for connection and is usually faster?
A. Parallel transmission
B. Serial transmission
C. Equal transmission
D. None of the above

4. A ______________ command causes the interface to respond by transferring data from the
bus into one of its registers.

A. Control
B. Status
C. Data input
D. Data output

5. The line data valid in source initiated data transfer using handshaking is generated by
_________ unit.

A. Source
B. Destination
C. Either source or destination
D. Both source and destination

6. Which of the following command is issued to activate the peripheral?
A. Control
B. Status
C. Data input
D. Data output

7. Which of the method provides a reply in the form of control signal to the unit that initiates
the transfer?

A. Strobe method
B. Handshaking method
C. Both strobe and handshaking methods
D. None of the above

8. Which of the following commands can be received by an interface?
A. Control
B. Status

Lovely Professional University 235

Computer System Architecture

Notes

C. Data input and output
D. All control, status, data input and output
9. In which method of data transfer, there is no way of knowing whether the other unit has

actually placed or received the data?
A. Strobe method
B. Handshaking method
C. Both strobe and handshaking methods
D. None of the above

10. ASCII is a _____ bit code.
A. 6
B. 7
C. 8
D. 9

11. If two units, such as CPU and I/O interface which are designed independently of each
other and they share a common clock, then what mode of transfer is this?

A. Synchronous mode
B. Asynchronous mode
C. Many-synchronous mode
D. None of the above

12. Which of the following control characters are used during the transmission of text between
remote terminals?

A. Format effectors
B. Information separators
C. Communication control characters
D. None of the above

13. If two units, such as CPU and I/O interface which are designed independently of each
other and they share a private clock, then what mode of transfer is this?

A. Synchronous mode
B. Asynchronous mode
C. Many-synchronous mode
D. None of the above

14. Which of the following control characters control the layout of printing?
A. Format effectors
B. Information separators
C. Communication control characters
D. None of the above

Lovely Professional University236

Unit 13: I/O Subsystems

Notes

15. Which of the following control characters separates the data into divisions like pages and
paragraphs?

A. Format effectors
B. Information separators
C. Communication control characters
D. None of the above

Answers for Self Assessment

1. C 2. C 3. A 4. D 5. A

6. A 7. B 8. D 9. A 10. B

11. A 12. C 13. B 14. A 15. B

Review Questions

1. What are peripheral devices? Explain few examples of it.
2. What are control characters? Explain its types.
3. Explain input-output interface.
4. What is an Input-output bus and interface module?
5. What are the different ways that computer buses can be used to communicate with

memory and I/O? Explain in detail.
6. What is strobe control? Explain the source initiated strobe for data transfer.
7. Explain destination initiated strobe for data transfer. What are the disadvantages of it?
8. Explain the process of handshaking? How the transfer is made when it is initiated by

destination?
9. What are the modes of transfer? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://byjus.com/govt-exams/input-output-devices/

Unit 13: I/O Subsystems

Notes

15. Which of the following control characters separates the data into divisions like pages and
paragraphs?

A. Format effectors
B. Information separators
C. Communication control characters
D. None of the above

Answers for Self Assessment

1. C 2. C 3. A 4. D 5. A

6. A 7. B 8. D 9. A 10. B

11. A 12. C 13. B 14. A 15. B

Review Questions

1. What are peripheral devices? Explain few examples of it.
2. What are control characters? Explain its types.
3. Explain input-output interface.
4. What is an Input-output bus and interface module?
5. What are the different ways that computer buses can be used to communicate with

memory and I/O? Explain in detail.
6. What is strobe control? Explain the source initiated strobe for data transfer.
7. Explain destination initiated strobe for data transfer. What are the disadvantages of it?
8. Explain the process of handshaking? How the transfer is made when it is initiated by

destination?
9. What are the modes of transfer? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://byjus.com/govt-exams/input-output-devices/

Unit 13: I/O Subsystems

Notes

15. Which of the following control characters separates the data into divisions like pages and
paragraphs?

A. Format effectors
B. Information separators
C. Communication control characters
D. None of the above

Answers for Self Assessment

1. C 2. C 3. A 4. D 5. A

6. A 7. B 8. D 9. A 10. B

11. A 12. C 13. B 14. A 15. B

Review Questions

1. What are peripheral devices? Explain few examples of it.
2. What are control characters? Explain its types.
3. Explain input-output interface.
4. What is an Input-output bus and interface module?
5. What are the different ways that computer buses can be used to communicate with

memory and I/O? Explain in detail.
6. What is strobe control? Explain the source initiated strobe for data transfer.
7. Explain destination initiated strobe for data transfer. What are the disadvantages of it?
8. Explain the process of handshaking? How the transfer is made when it is initiated by

destination?
9. What are the modes of transfer? Explain in detail.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education, Asia, 2002.

Web Links
https://byjus.com/govt-exams/input-output-devices/

Lovely Professional University 237

Unit 14: Hardware Description Logic
Notes

Unit 14: Hardware Description Logic

CONTENTS

Objectives

Introduction

14.1 Characteristics of Verilog

14.2 Program Structure in Verilog

14.3 Declaration of Input and Output & Comments

14.4 Arithmetic Operators

14.5 Logical Operators

14.6 Bitwise Operators

14.7 Reduction Operators

14.8 Relational Operators

14.9 Equity Operator

14.10 Conditional Operator

14.11 Verilog code for Inverter

14.12 Verilog code for OR gate

14.13 Verilog code for AND gate

14.14 Verilog Code for NOR gate

14.15 Verilog code for NAND gate

14.16 Verilog code for XOR gate

14.17 Verilog code for XNOR gate

14.18 Verilog code for half adder

14.19 Verilog code for full adder

14.20 Verilog code for 2-to-1 multiplexer

14.21 Verilog code for 4-to-1 multiplexer

14.22 Verilog code for 1-to-4 Demultiplexer

14.23 Verilog code for 8-to-3 encoder

14.24 Verilog code for 3-to-8 decoder

Summary:

Keywords:

Self Assessment:

Answers for Self assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

 Understand the hardware description language
 Know various kinds of HDLs

Lovely Professional University238

Dr. Divya, Lovely Professional University

Computer Organization and Architecture
Notes

 Know how to write the Verilog codes for various logic gates
 Know how to write the Verilog codes for Boolean functions and combinational circuits

Introduction
The hardware description logics (HDLs) are shorthand for describing the digital hardware. Begin
the designing process by planning, on paper or in your mind, the hardware you want. Then write
the HDL code that implies that hardware to a synthesis tool. There are two types of HDLs which
are widely used: Verilog and VHDL.

Verilog
Verilog stands for Verify Logic. It provides a concept of module. It is a basic building block of
hardware with inputs and outputs is called a module. It is a thing between the keywords module
and endmodule.

AND gate, a multiplexer, and a priority circuit.

14.1 Characteristics of Verilog
Case sensitive

Vendor independent

Supports simulation

Supports synthesis

14.2 Program Structure in Verilog
module <module_name> (input, output);

…………………..

………………….

<logic of program>

………………………

Endmodule

14.3 Declaration of Input and Output & Comments
The inputs can be declared by using the keyword input.

input a, b. This representation is for two inputs each of one bit.

input [3:0]a, b. This representation is for four bit inputs.

The comments are used for helping the reader for better understanding. // are used for comments
in a single line, whereas /*…………………………………..*/ are used for multiple lines.

Computer Organization and Architecture
Notes

 Know how to write the Verilog codes for various logic gates
 Know how to write the Verilog codes for Boolean functions and combinational circuits

Introduction
The hardware description logics (HDLs) are shorthand for describing the digital hardware. Begin
the designing process by planning, on paper or in your mind, the hardware you want. Then write
the HDL code that implies that hardware to a synthesis tool. There are two types of HDLs which
are widely used: Verilog and VHDL.

Verilog
Verilog stands for Verify Logic. It provides a concept of module. It is a basic building block of
hardware with inputs and outputs is called a module. It is a thing between the keywords module
and endmodule.

AND gate, a multiplexer, and a priority circuit.

14.1 Characteristics of Verilog
Case sensitive

Vendor independent

Supports simulation

Supports synthesis

14.2 Program Structure in Verilog
module <module_name> (input, output);

…………………..

………………….

<logic of program>

………………………

Endmodule

14.3 Declaration of Input and Output & Comments
The inputs can be declared by using the keyword input.

input a, b. This representation is for two inputs each of one bit.

input [3:0]a, b. This representation is for four bit inputs.

The comments are used for helping the reader for better understanding. // are used for comments
in a single line, whereas /*…………………………………..*/ are used for multiple lines.

Computer Organization and Architecture
Notes

 Know how to write the Verilog codes for various logic gates
 Know how to write the Verilog codes for Boolean functions and combinational circuits

Introduction
The hardware description logics (HDLs) are shorthand for describing the digital hardware. Begin
the designing process by planning, on paper or in your mind, the hardware you want. Then write
the HDL code that implies that hardware to a synthesis tool. There are two types of HDLs which
are widely used: Verilog and VHDL.

Verilog
Verilog stands for Verify Logic. It provides a concept of module. It is a basic building block of
hardware with inputs and outputs is called a module. It is a thing between the keywords module
and endmodule.

AND gate, a multiplexer, and a priority circuit.

14.1 Characteristics of Verilog
Case sensitive

Vendor independent

Supports simulation

Supports synthesis

14.2 Program Structure in Verilog
module <module_name> (input, output);

…………………..

………………….

<logic of program>

………………………

Endmodule

14.3 Declaration of Input and Output & Comments
The inputs can be declared by using the keyword input.

input a, b. This representation is for two inputs each of one bit.

input [3:0]a, b. This representation is for four bit inputs.

The comments are used for helping the reader for better understanding. // are used for comments
in a single line, whereas /*…………………………………..*/ are used for multiple lines.

Lovely Professional University 239

Unit 14: Hardware Description Logic
Notes

Operators in Verilog
An operator, in many ways, is similar to a simple mathematical operator.

Arithmetic operator

Logical operator

Bitwise operator

Reduction operator

Relational operator

Equity operator

Conditional operator

14.4 Arithmetic Operators

Expression Operator Operation

a + b + Add

a – b - Subtract

a * b * Multiply

a / b / Divide

a % b % Modulus

a ** b ** Power

14.5 Logical Operators

Expression Operator Operation

a && b && Logical AND

a || b || Logical OR

!a ! Logical Negation

14.6 Bitwise Operators

Expression Operator Operation

~a ~ Negation

a & b & Bitwise AND

a | b | Bitwise OR

a ^ b ^ Bitwise XOR

Lovely Professional University240

Computer Organization and Architecture
Notes

a ^~ b ^~ Bitwise XNOR

14.7 Reduction Operators

Expression Operator Operation

&A & Performs bitwise AND
operation on A

|A | Performs bitwise OR operation
on A

^A ^ Performs bitwise XOR
operation on A

14.8 Relational Operators

Expression Operator Operation

a>b > Greater than

a<b < Less than

a<=b <= Greater than or equal to

a>=b >= Less than or equal to

14.9 Equity Operator

Expression Operator Operation

a==b == Equal to

a!=b != Not equal to

14.10 Conditional Operator
condition? true_expression : false_expression

Verilog Code for various gates

14.11 Verilog code for Inverter
The truth table for Not gate or Inverter is

A (Input) B (Output)

0 1

1 0

Lovely Professional University 241

Unit 14: Hardware Description Logic
Notes

The logic symbol is

module not_gate (input a, output c);

assign c=~a;

endmodule

14.12 Verilog code for OR gate

The truth table for OR gate is

A (Input) B (Input) C (Output)

0 0 0

0 1 1

1 0 1

1 1 1

The logic symbol is

module and_gate (input a, input b, output c);

assign c=a & b;

endmodule

14.13 Verilog code for AND gate
The truth table for AND gate is

A (Input) B (Input) C (Output)

0 0 0

0 1 0

Lovely Professional University242

Computer Organization and Architecture
Notes

1 0 0

1 1 1

The logic symbol is

module and_gate (input a, input b, output c);

assign c=a & b;

endmodule

14.14 Verilog Code for NOR gate

The truth table for NOR gate is

A (Input) B (Input) C (Output)

0 0 1

0 1 0

1 0 0

1 1 0

The logic symbol is

module nor_gate (input a, input b, output c);

assign c=~(a | b);

endmodule

14.15 Verilog code for NAND gate

The truth table for NAND gate is

A (Input) B (Input) C (Output)

Lovely Professional University 243

Unit 14: Hardware Description Logic
Notes

0 0 1

0 1 1

1 0 1

1 1 0

The logic symbol is

module nand_gate (input a, input b, output c);

assign c=~(a & b);

endmodule

14.16 Verilog code for XOR gate

The truth table for XOR gate is

A (Input) B (Input) C (Output)

0 0 0

0 1 1

1 0 1

1 1 0

The logic symbol is

module xor_gate (input a, input b, output c);

assign c=a ^ b;

endmodule

Lovely Professional University244

Computer Organization and Architecture
Notes

14.17 Verilog code for XNOR gate

The truth table for XNOR gate

A (Input) B (Input) C (Output)

0 0 1

0 1 0

1 0 0

1 1 1

The logic symbol is

module xnor_gate (input a, input b, output c);

assign c=~(a ^ b);

endmodule

Y=A’B’C’+AB’C’+AB’C,

module evaluate (input logic a, b, c, output logic y);

assign y = ~a & ~b & ~c |a & ~b & ~c |a & ~b & c;

endmodule

Verilog codes for combinational circuits

14.18 Verilog code for half adder
The truth table for half adder is

a b Sum Carry

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Computer Organization and Architecture
Notes

14.17 Verilog code for XNOR gate

The truth table for XNOR gate

A (Input) B (Input) C (Output)

0 0 1

0 1 0

1 0 0

1 1 1

The logic symbol is

module xnor_gate (input a, input b, output c);

assign c=~(a ^ b);

endmodule

Y=A’B’C’+AB’C’+AB’C,

module evaluate (input logic a, b, c, output logic y);

assign y = ~a & ~b & ~c |a & ~b & ~c |a & ~b & c;

endmodule

Verilog codes for combinational circuits

14.18 Verilog code for half adder
The truth table for half adder is

a b Sum Carry

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Computer Organization and Architecture
Notes

14.17 Verilog code for XNOR gate

The truth table for XNOR gate

A (Input) B (Input) C (Output)

0 0 1

0 1 0

1 0 0

1 1 1

The logic symbol is

module xnor_gate (input a, input b, output c);

assign c=~(a ^ b);

endmodule

Y=A’B’C’+AB’C’+AB’C,

module evaluate (input logic a, b, c, output logic y);

assign y = ~a & ~b & ~c |a & ~b & ~c |a & ~b & c;

endmodule

Verilog codes for combinational circuits

14.18 Verilog code for half adder
The truth table for half adder is

a b Sum Carry

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Lovely Professional University 245

Unit 14: Hardware Description Logic
Notes

The circuit for half adder is

The expressions for sum and carry are

Sum=a’b + ab’

Carry=ab

module test_halfadder(input logic a,b, output logic sum,carry);

assign sum=a^b, carry=a&b;

endmodule;

14.19 Verilog code for full adder

The truth table for full adder is

a b Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The circuit for full adder is

Lovely Professional University246

Computer Organization and Architecture
Notes

The expressions for sum and carry are:

S=a’b’Cin+a’bCin’+ab’Cin’+abCin

C=ab+aCin+bCin

module fullAdder (input logic a, b, Cin, output logic S, Cout);

assign S = (a ^ b) ^ Cin ,

Cout = (a & b) | (b & Cin) | (Cin& a);

Endmodule

14.20 Verilog code for 2-to-1 multiplexer

The truth table for 2-to-1 multiplexer

S Z

0 I0

1 I1

The circuit for 2-to-1 multiplexer is

Computer Organization and Architecture
Notes

The expressions for sum and carry are:

S=a’b’Cin+a’bCin’+ab’Cin’+abCin

C=ab+aCin+bCin

module fullAdder (input logic a, b, Cin, output logic S, Cout);

assign S = (a ^ b) ^ Cin ,

Cout = (a & b) | (b & Cin) | (Cin& a);

Endmodule

14.20 Verilog code for 2-to-1 multiplexer

The truth table for 2-to-1 multiplexer

S Z

0 I0

1 I1

The circuit for 2-to-1 multiplexer is

Computer Organization and Architecture
Notes

The expressions for sum and carry are:

S=a’b’Cin+a’bCin’+ab’Cin’+abCin

C=ab+aCin+bCin

module fullAdder (input logic a, b, Cin, output logic S, Cout);

assign S = (a ^ b) ^ Cin ,

Cout = (a & b) | (b & Cin) | (Cin& a);

Endmodule

14.20 Verilog code for 2-to-1 multiplexer

The truth table for 2-to-1 multiplexer

S Z

0 I0

1 I1

The circuit for 2-to-1 multiplexer is

Lovely Professional University 247

Unit 14: Hardware Description Logic
Notes

The expressions for 2-to-1 multiplexer is

Output=i0 when S=0, Y=i0.S’

Output=i1 when S=1, Y=i1.S.

Z=i0.S’+i1.S

module Mux_2_To_1(input logic S, i0, i1, output logic Z);

assign Z = S ? i0 : i1;

endmodule

14.21 Verilog code for 4-to-1 multiplexer

The truth table for 4-to-1 multiplexer is:

S0 S1 Z

0 0 I0

0 1 I1

1 0 I2

1 1 i3

The expression for 4-to-1 multiplexer is

O/P is i0 only if S0=0 and S1=0, Z=i0*s0’*s1’

Unit 14: Hardware Description Logic
Notes

The expressions for 2-to-1 multiplexer is

Output=i0 when S=0, Y=i0.S’

Output=i1 when S=1, Y=i1.S.

Z=i0.S’+i1.S

module Mux_2_To_1(input logic S, i0, i1, output logic Z);

assign Z = S ? i0 : i1;

endmodule

14.21 Verilog code for 4-to-1 multiplexer

The truth table for 4-to-1 multiplexer is:

S0 S1 Z

0 0 I0

0 1 I1

1 0 I2

1 1 i3

The expression for 4-to-1 multiplexer is

O/P is i0 only if S0=0 and S1=0, Z=i0*s0’*s1’

Unit 14: Hardware Description Logic
Notes

The expressions for 2-to-1 multiplexer is

Output=i0 when S=0, Y=i0.S’

Output=i1 when S=1, Y=i1.S.

Z=i0.S’+i1.S

module Mux_2_To_1(input logic S, i0, i1, output logic Z);

assign Z = S ? i0 : i1;

endmodule

14.21 Verilog code for 4-to-1 multiplexer

The truth table for 4-to-1 multiplexer is:

S0 S1 Z

0 0 I0

0 1 I1

1 0 I2

1 1 i3

The expression for 4-to-1 multiplexer is

O/P is i0 only if S0=0 and S1=0, Z=i0*s0’*s1’

Lovely Professional University248

Computer Organization and Architecture
Notes

O/P is i1 only if S0=0 and S1=1, Z=i1*s0’*s1

O/P is i2 only if S0=1 and S1=0, Z=i2*s0*s1’

O/P is i3 only if S0=1 and S1=1, Z=i3*s0*s1

Z=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s

The circuit for 4-to-1 multiplexer is

module mux_4x1 (output logic Z, input logic i0, i1, i2, i3, s0, s1);
assign out = (~s0 & ~s1 & i0)|(s0 & ~s1 & i1)|(~s0 & s1 & i2)|(s0 & s1 & i0);
endmodule

14.22 Verilog code for 1-to-4 Demultiplexer

The truth table for 1-to-4 demultiplexer is

Data Inputs Select inputs Outputs

D S1 S2 Y3 Y2 Y1 Y0

D 0 0 0 0 0 D

D 0 1 0 0 D 0

Computer Organization and Architecture
Notes

O/P is i1 only if S0=0 and S1=1, Z=i1*s0’*s1

O/P is i2 only if S0=1 and S1=0, Z=i2*s0*s1’

O/P is i3 only if S0=1 and S1=1, Z=i3*s0*s1

Z=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s

The circuit for 4-to-1 multiplexer is

module mux_4x1 (output logic Z, input logic i0, i1, i2, i3, s0, s1);
assign out = (~s0 & ~s1 & i0)|(s0 & ~s1 & i1)|(~s0 & s1 & i2)|(s0 & s1 & i0);
endmodule

14.22 Verilog code for 1-to-4 Demultiplexer

The truth table for 1-to-4 demultiplexer is

Data Inputs Select inputs Outputs

D S1 S2 Y3 Y2 Y1 Y0

D 0 0 0 0 0 D

D 0 1 0 0 D 0

Computer Organization and Architecture
Notes

O/P is i1 only if S0=0 and S1=1, Z=i1*s0’*s1

O/P is i2 only if S0=1 and S1=0, Z=i2*s0*s1’

O/P is i3 only if S0=1 and S1=1, Z=i3*s0*s1

Z=i0*s0’*s1’ + i1*s0’*s1 + i2*s0*s1’ + i3*s0*s

The circuit for 4-to-1 multiplexer is

module mux_4x1 (output logic Z, input logic i0, i1, i2, i3, s0, s1);
assign out = (~s0 & ~s1 & i0)|(s0 & ~s1 & i1)|(~s0 & s1 & i2)|(s0 & s1 & i0);
endmodule

14.22 Verilog code for 1-to-4 Demultiplexer

The truth table for 1-to-4 demultiplexer is

Data Inputs Select inputs Outputs

D S1 S2 Y3 Y2 Y1 Y0

D 0 0 0 0 0 D

D 0 1 0 0 D 0

Lovely Professional University 249

Unit 14: Hardware Description Logic
Notes

D 1 0 0 D 0 0

D 1 1 D 0 0 0

The expressions for 1-to-4 demultiplexer are:

Y0=S1’S2’D

Y1=S1’S2D

Y2=S1S2’D

Y3=S1S2D

The logic circuit for 1-to-4 demultiplexer is

module demultiplexer(input logic d,s1,s2,output logic y0,y1,y2,y3);

assign y0=(d & ~s2 & ~s1),
y1=(d & s2 & ~s1),
y2=(d & ~s2 & s1),
y3=(d & s2 & s1);

endmodule

14.23 Verilog code for 8-to-3 encoder

The truth table for 8-to-3 encoder is

Unit 14: Hardware Description Logic
Notes

D 1 0 0 D 0 0

D 1 1 D 0 0 0

The expressions for 1-to-4 demultiplexer are:

Y0=S1’S2’D

Y1=S1’S2D

Y2=S1S2’D

Y3=S1S2D

The logic circuit for 1-to-4 demultiplexer is

module demultiplexer(input logic d,s1,s2,output logic y0,y1,y2,y3);

assign y0=(d & ~s2 & ~s1),
y1=(d & s2 & ~s1),
y2=(d & ~s2 & s1),
y3=(d & s2 & s1);

endmodule

14.23 Verilog code for 8-to-3 encoder

The truth table for 8-to-3 encoder is

Unit 14: Hardware Description Logic
Notes

D 1 0 0 D 0 0

D 1 1 D 0 0 0

The expressions for 1-to-4 demultiplexer are:

Y0=S1’S2’D

Y1=S1’S2D

Y2=S1S2’D

Y3=S1S2D

The logic circuit for 1-to-4 demultiplexer is

module demultiplexer(input logic d,s1,s2,output logic y0,y1,y2,y3);

assign y0=(d & ~s2 & ~s1),
y1=(d & s2 & ~s1),
y2=(d & ~s2 & s1),
y3=(d & s2 & s1);

endmodule

14.23 Verilog code for 8-to-3 encoder

The truth table for 8-to-3 encoder is

Lovely Professional University250

Computer Organization and Architecture
Notes

The expressions for 8-to-3 encoder is

X= D4+D5+D6+D7

Y= D2+D3+D6+D7

Z= D1+ D3+ D5 +D7

The circuit is

module Encoder(input logic d0,d1,d2,d3,d4,d5,d6,d7, output logic x,y,z);

assign x=(d4 | d5 | d6 | d7),

y=(d2 | d3 | d6 | d7),
z=(d1 | d3 | d5 | d7);

endmodule

14.24 Verilog code for 3-to-8 decoder

The truth table for 3-to-8 decoder is

Computer Organization and Architecture
Notes

The expressions for 8-to-3 encoder is

X= D4+D5+D6+D7

Y= D2+D3+D6+D7

Z= D1+ D3+ D5 +D7

The circuit is

module Encoder(input logic d0,d1,d2,d3,d4,d5,d6,d7, output logic x,y,z);

assign x=(d4 | d5 | d6 | d7),

y=(d2 | d3 | d6 | d7),
z=(d1 | d3 | d5 | d7);

endmodule

14.24 Verilog code for 3-to-8 decoder

The truth table for 3-to-8 decoder is

Computer Organization and Architecture
Notes

The expressions for 8-to-3 encoder is

X= D4+D5+D6+D7

Y= D2+D3+D6+D7

Z= D1+ D3+ D5 +D7

The circuit is

module Encoder(input logic d0,d1,d2,d3,d4,d5,d6,d7, output logic x,y,z);

assign x=(d4 | d5 | d6 | d7),

y=(d2 | d3 | d6 | d7),
z=(d1 | d3 | d5 | d7);

endmodule

14.24 Verilog code for 3-to-8 decoder

The truth table for 3-to-8 decoder is

Lovely Professional University 251

Unit 14: Hardware Description Logic
Notes

The expressions for 3-to-8 decoder are

D0=x’y’z’

D1=x’y’z

D2=x’yz’

D3=x’yz

D4=xy’z’

D5=xy’z

D6=xyz’

D7=xyz

The circuit is

module Decoder(input logic x,y,z, output logic d0,d1,d2,d3,d4,d5,d6,d7);

assign d0=(~x&~y&~z), d1=(~x&~y&z), d2=(~x&y&~z),d3=(~x&y&z), d4=(x&~y&~z),
d5=(x&~y&z), d6=(x&y&~z),d7=(x&y&z);

endmodule

Lovely Professional University252

Computer Organization and Architecture
Notes

VHDL
VHDL stands for VHSIC hardware description language. VHSIC stands for very high speed
integrated circuit. It is languages which can replica the behavior and organization of systems at
multiple intensity of generalization; it can be from level of simple basic gates to the level of systems,
for the purpose of verification and documentation.

Summary:

 HDL is used as shorthand for describing the digital hardware.
 Two HDLs are widely used: VHDL and Verilog.
 The HDLs are used to meet the decided hardware to synthesis tool.
 We can write the Verilog code for various logic gates.
 We can write the Verilog codes for Boolean functions.
 We can write the Verilog codes for combinational circuits.

Keywords:
Module: The Verilog provides the concept of module.

Verilog: The Verilog is a case sensitive and vendor independent language. It supports simulation
and synthesis.

VHDL:It stands for VHSIC hardware description logic.

Self Assessment:
Q 1: In verify logic, we have keywords.

A. module

B. endmodule

C. Both module and endmodule

D. None of the above

Q 2: In verilog, how do we provide four bits input?

A. input [3:0] a;

B. input [0:3] a;

C. input [0-3] a;

D. input [3-0] a;

Q 3: && represents

A. Logical OR

B. Logical AND

C. Logical AND

D. None of the above

Q 4: X ^ Y represents

A. Bitwise AND

B. Bitwise OR

C. Bitwise XOR

Lovely Professional University 253

Unit 14: Hardware Description Logic
Notes

D. Bitwise XNOR

Q 5: The conditional operator is defined by

A. ?:

B. :?

C. ?@

D. @?

Q 6: Which of the following is an HDL?

A. Verilog

B. VHDL

C. Both Verilog and VHDL

D. None of the above

Q 7: The modulus operation is performed using

A. +

B. -

C. %

D. *

Q 8: Out=~X, if X=0, then what will be the value of Out?

A. 0

B. 1

C. 2

D. None of the above

Q 9: module abc (input a, output c);

assign c=~a;

endmodule

A. NOT gate

B. AND gate

C. OR gate

D. XOR gate

Q 10: module abc_gate (input a, input b, output c);

assign c=~(a | b);

endmodule

A. NOR gate

B. AND gate

C. OR gate

D. XOR gate

Lovely Professional University254

Computer Organization and Architecture
Notes

Q 11: module abc_gate (input a, input b, output c);

assign c=~(a & b);

endmodule

A. NAND gate

B. AND gate

C. OR gate

D. XOR gate

Q 12: module abc_gate (input a, input b, output c);

assign c=~(a ^ b);

endmodule

A. NAND gate

B. AND gate

C. XNOR gate

D. XOR gate

Q 13: module xyz(input logic a, b, output logic sum, carry);

assign sum =a^b, carry =a&b’

endmodule

A. Half adder

B. Full adder

C. Half Subtractor

D. Full Subtractor

Q 14: module xyz (input logic S, i0, i1, output logic Z);

assign Z=S?i0:i1

endmodule

A. Half adder

B. Full adder

C. Multiplexer

D. De-multiplexer

Q 15: Which of these defines the capabilities of Verilog?

A. Case sensitive

B. Vendor independence

C. Both case sensitivity and independence from vendor

D. None of the above

Lovely Professional University 255

Unit 14: Hardware Description Logic
Notes

Answers for Self assessment

1. C 2. A 3. B 4. C 5. A

6. C 7. C 8. B 9. A 10. A

11. A 12. C 13. A 14. C 15. C

Review Questions
Q 1: What is an HDL? Write the Verilog code for fundamental gates.

Q 2: Write the Verilog code for Boolean function F = A’BC + AB’C + ABC’ + ABC.

Q 3: Write the Verilog code for Boolean function F = X’Y’Z’ + X’Y’Z + X’YZ + X’YZ’ + XY’Z’ + XYZ’.

Q 4: Explain two types of HDLs, i.e., Verilog and VHDL.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-
language-hdl/

https://www.sciencedirect.com/topics/computer-science/hardware-description-
languages

Unit 14: Hardware Description Logic
Notes

Answers for Self assessment

1. C 2. A 3. B 4. C 5. A

6. C 7. C 8. B 9. A 10. A

11. A 12. C 13. A 14. C 15. C

Review Questions
Q 1: What is an HDL? Write the Verilog code for fundamental gates.

Q 2: Write the Verilog code for Boolean function F = A’BC + AB’C + ABC’ + ABC.

Q 3: Write the Verilog code for Boolean function F = X’Y’Z’ + X’Y’Z + X’YZ + X’YZ’ + XY’Z’ + XYZ’.

Q 4: Explain two types of HDLs, i.e., Verilog and VHDL.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-
language-hdl/

https://www.sciencedirect.com/topics/computer-science/hardware-description-
languages

Unit 14: Hardware Description Logic
Notes

Answers for Self assessment

1. C 2. A 3. B 4. C 5. A

6. C 7. C 8. B 9. A 10. A

11. A 12. C 13. A 14. C 15. C

Review Questions
Q 1: What is an HDL? Write the Verilog code for fundamental gates.

Q 2: Write the Verilog code for Boolean function F = A’BC + AB’C + ABC’ + ABC.

Q 3: Write the Verilog code for Boolean function F = X’Y’Z’ + X’Y’Z + X’YZ + X’YZ’ + XY’Z’ + XYZ’.

Q 4: Explain two types of HDLs, i.e., Verilog and VHDL.

Further Readings
M. Morris Mano, Digital Design, Third Edition, Pearson Education Asia, 2002.

Web Links

https://www.allaboutcircuits.com/technical-articles/what-is-a-hardware-description-
language-hdl/

https://www.sciencedirect.com/topics/computer-science/hardware-description-
languages

Lovely Professional University256

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP268 - U01 - B - Formatted.pdf
	ECAP268 - U02 - B - Formatted.pdf
	ECAP268 - U03 - B - Formatted.pdf
	ECAP268 - U04 - B- Formatted.pdf
	ECAP268 - U05 - B - Formatted.pdf
	ECAP268 - U06 - B - Formatted.pdf
	ECAP268 - U07 - B - Formatted.pdf
	ECAP268 - U08 - B - Formatted.pdf
	ECAP268 - U09 - B - Formatted.pdf
	ECAP268 - U10 - B - Formatted.pdf
	ECAP268 - U11 - B - Formatted.pdf
	ECAP268 - U12 - B - Formatted.pdf
	ECAP268 - U13 - B - Formatted.pdf
	ECAP268 - U14 - B - Formatted.pdf

