
Edited by
Sartaj Singh

Programming Methodology
ECAP172

Edited By:
Sartaj Singh

user
Typewritten text
Programming Methodology

 Unformatted and Formatted I/O

CONTENT

Unit 1: 1

Unit 2: 17

Unit 3: 37

Unit 4: 52

Unit 5: 66

Unit 6: 100

Unit 7: 117

Unit 8: 129

Unit 9: 145

Unit 10:

174Unit 11:

Unit 12: 187

Unit 13: 198

Unit 14: 219

160

Introduction

OperatorsData Types and

 Control Structure

Functions

 Arrays

 Array Application

 Strings

 Storage Classes

 Pointers

 Dynamic Memory Management

 Structures and Unions

 File Structure

Ashwani Kumar, Lovely Professional University

Constant and Variable
Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Ashwani Kumar, Lovely Professional University

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 01: Introduction

CONTENTS

OBJECTIVES

INTRODUCTION

1.1 Programming Language

1.2 Machine Level Language

1.3 Assembly Language

1.4 Higher Level Languages

1.5 Characteristics of a programming Language

1.6 Algorithms

1.7 Flow Charts

1.8 Programming methodology

Summary :

Keywords

Self-Assessment

Review Questions:

Further Readings

Objectives

After studying this unit, you will be able to:

• Introduction to Programming language

• Characteristics of programing

• Different stages in program development

• Algorithms and Flowchart

• Programing methodologies

Introduction

A computer is an electronic machine that operates according to the user's instructions. Since the
machine does not understand natural language, the instructions must be written in a computer-
friendly language. It is understood that such a machine understandable language is known as
Programming language.

A computer programming language is made up of a collection of symbols, characters, sentences, and
grammar rules that allow people to write instructions in a readable format by the computer system

The practise of making a machine do what you want it to do is known as computer programming.
Software programming is the process of creating source code that can be used to customise computer
systems analytically. Computer programmers can specialise in one aspect of the creation, support, or
maintenance of computers for the home or office, or they can operate in a wide range of programming
functions. Programmers are the foundation for the development and continued operation of the
systems that many people rely on for all types of knowledge sharing, both for business and for
entertainment.

1

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1.1 Programming Language

Different programming languages support various programming types. Many factors influence the
terminology used, including company policy, job suitability, availability of third-party packages, and
personal preference. The programming language that is ideally suited for the mission at hand should
be chosen. Finding enough programmers who know the language to form a team, the availability of
compilers for that language, and the efficiency with which programmes written in that language
execute are all trade-offs from this ideal.

Computer programming languages allow us to communicate with computers in a language that they
understand. There are a variety of computer programming languages that programmers can use to
communicate with a computer, just like there are a variety of human-based languages. A "binary" is
the part of a language that a machine can comprehend. Compiling is the process of converting a
programming language into binary. Each programming language, from C to Python, has its own
unique characteristics, but there are many similarities between them.

These languages allow computers to process broad and complex swaths of data quickly and
efficiently. If an individual is given a list of randomised numbers ranging from one to ten thousand
and asked to arrange them in ascending order, it is likely that it will take a long time and contain
errors.

The basic instructions of programming language are:

1. Input: Get data from the keyboard, a file, or some other device.

2. Output: Display data on the screen or send data to a file or other device.

3. Math: Perform basic mathematical operations like addition and multiplication.

4. Conditional execution: Check for certain conditions and execute the appropriate sequence

 of statements.

5. Repetition: Perform some action repeatedly, usually with some variation.

List of computer programming languages

Today, there are hundreds of different programming languages. The following section having the
different programming and scripting languages

ActionScript ALGOL Ada AIML

Altair BASIC Assembly BASIC BCPL

BeanShell C C++ C#

COBOL CSS DarkBASIC Datalog

Dart F# FORTRAN FoxPro

GameMaker Go GW Basic HTML

Java Javs Script JCL Metlab

Pascal Perl PHP Python

Prolog R Ruby SQL

2

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1.2 Machine Level Language

Computer language, also known as machine code, is a low-level programming language made up of
binary digits (ones and zeros). Before a computer can run code written in high-level languages like
Swift and C++, the code must be converted into machine language.

Computers only interpret binary data because they are digital machines. Binary is used to represent
any programme, video, picture, and text character. The CPU processes this binary data, also known
as machine code, as input. The data is visually displayed by the operating system or an application
that receives the output. For example, the ASCII value for the letter "A" in machine code is 01000001,
but this data is displayed on the screen as "A." Each pixel in an image can have thousands or even
millions of binary values that decide its colour.

Different processor architectures use different machine code, which is made up of 1s and 0s. A
PowerPC processor, for example, with its RISC architecture, needs different code than an Intel x86
processor with its CISC architecture. In order for a programme to run correctly, a compiler must
compile high-level source code for the correct processor architecture.

While computers can be programmed to understand a variety of computer languages, there is only
one language that the computer understands without the use of a translation programme; this
language is known as the computer's machine language or machine code. Machine code is a
computer's basic language, and it's usually written as strings of binary 1s and 0s. A computer's
circuitry is wired in such a way that it understands machine language right away and translates it
into the electrical signals required to operate it.

The first part of an instruction written in any language is called a command or procedure, and it tells
the machine what function to perform. Each of a computer's functions has an operation code, or
opcode. The operand is the second part of the instruction, and it tells the machine where to look for
or store the data or other instructions that need to be held. As a result, each instruction tells the CPU's
control unit what to do, and the length and position of the data field play a role in the process.
Reading, adding, subtracting, writing, and so on are common operations.

We already know that all commuters perform operations with binary digits (0s and 1s).

As a result, most computers' machine language is made up of strings of binary numbers, and it is the
only one that the CPU understands explicitly. The symbols that make up the machine language
programme are made up of 1s and 0s while they are stored within the computer.

 A typical program instruction to print out a number on the printer might be.

101100111111010011101100110000111001

The program to add two numbers in memory and print the result look something like the

following:

001000000000001100111001

001111000000111111000111

100111100011101100110101
101100010101010101110000
000000000000000000000000

This is clearly not an easy language to learn, partly because it is difficult to read and understand, and
partly because it is written in a numerical format that we are unfamiliar with. However, it's worth noting
that some of the first programmers, working with the first few machines, wrote their programmes in
binary form, as seen above.

Since most human programmers are more familiar with the decimal number system, they tend to write
machine instructions in decimal and leave the conversion to the input device. In reality, a machine can
be wired so that instead of fusing long numbers, short numbers are fused.With this change, the preceding
program appears as follows:

3

 LOVELY PROFESSIONAL UNIVERSITY

Notes

10001471
14002041
30003456
50773456
00000000

The set of instruction codes, whether in binary or decimal, which can be directly understood by the
CPU of a computer without the help of a translating program, is called a machine code or machine
language. Thus, a machine language program need not necessarily be coded as strings of binary
digits (1s and 0s). it can also be written using decimal digits if the circuitry of the computer being
used permits this.

Advantages and Limitations of Machine Language

Programs written in machine language can be executed very fast by the computer. This is mainly

because machine instructions are directly understood by the CPU writing a program in machine

language has several disadvantages which are discussed below.

1. Machine dependent: Since each type of commuter has a different internal design and requires
different electrical signals to operate, the machine language differs from one device to the next. It is
determined by the LU's actual design or construction, the control unit's size, as well as the memory
unit's word length. As a result, if an organisation wishes to switch to a different computer after being
proficient in the machine code of that computer, the programmer may be forced to learn a new
machine language and rewrite all of the current programmes.

2. Difficult to program: Machine language is difficult to programme since it requires the programmer
to either memorise the thousands of code numbers for the commands in the machine's instruction set
or to continuously refer to keep track of the data and instruction storage locations. A machine
language programmer must also be a professional who understands the computer's hardware
structure.

3. Error code: Since a programmer must remember the opcodes and keep track of the storage location
of data and instructions while writing programmes in machine language, it is difficult for him to
focus entirely on the logic of the problem. As a consequence, programme errors are common. As a
result, it's easy to make mistakes while working with machine code.

4. Difficult to modify: Machine language programmes are difficult to correct or alter.

Checking machine instructions for errors is almost as time-consuming as writing them.

Similarly, changing a machine language programme later is so complicated that many programmers
would rather code the new logic from scratch than make the required changes to the existing
programme.

1.3 Assembly Language

Second generation languages are also known as assembly languages. These languages use alphabetic
symbols instead of machine language's binary codes. To represent memory locations in assembly
language, symbols are used instead of absolute addresses.

For operation code, mnemonics are used, which are single letters or short abbreviations that help
programmers understand what the code represents.

e.g.: MOV AX, DX.

Here mnemonic MOV represents ‘transfer’ operation and AX, DX are used to represent the

Registers. One of the first steps in enhancing the software planning process was to use letter symbols
as mnemonics instead of machine language's numeric operation codes. A mnemonic is a mental trick
that we use to help us remember things. Mnemonics come in a variety of shapes and sizes, each with
its own set of benefits.

Use of Symbols Instead of Numeric of OpCodes

All computers have the power of handling letters as well as numbers. Hence, a computer can be

taught to recognize certain combination of letter or numbers. It can be taught to substitute the

4

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

number 14 every time it sees the symbol ADD, substitute the number 15 every time it sees the

symbol SUB, and so forth. In this way, the computer can be trained to translate a program written

with symbols instead of numbers into the computer’s own machine language. Then we can write

program for the computer using symbols instead of numbers, and have the computer do its own

translating. This makes it easier for the programmer, because he can use letters, symbols, and

mnemonics instead of numbers for writing his programs.

Example: The preceding program that was written in machine language for adding two

numbers and printing out the result could be written in the following way:

CLA A

ADD B

STA C

TYP C

HLT

Which would mean “take A, add B, store the result in C, type C, and halt.” The computer by

means of a translating program, would translate each line of this program into the corresponding

machine language program.

Advantages of Assembly Language

The main advantages of assembly language are:

1. Assembly language is easier to use than machine language.

2. An assembler is useful for detecting programming errors.

3. Programmers do not have to know the absolute addresses of data items.

4. Assembly languages encourage modular programming.

Disadvantages of Assembly Language

The main disadvantages of assembly language are:

1. Assembly language programs are not directly executable.

2. Assembly languages are machine dependent and, therefore, not portable from one machine

to another.

3. Programming in assembly language requires a higher level of programming skill

Assembly Program Execution

A strict set of rules governs the development of an assembly programme. An assembly programme
is entered into the device as a file using an editor or word processor, and then the assembler is used
to convert the programme into machine code.

There are two ways of converting an assembly language program into machine language:

1. Manual assembly

2. By using an assembler.

Manual Assembly: It was an old method that required the programmer to translate each opcode

5

 LOVELY PROFESSIONAL UNIVERSITY

Notes

into its numerical machine language representation by looking up a table of the microprocessor

instructions set, which contains both assembly and machine language instructions. Manual

assembly is acceptable for short programs but becomes very inconvenient for large programs. The

Intel SDK-85 and most of the earlier university kits were programmed using manual assembly.

Using an Assembler: The symbolic instructions that you code in assembly language is known

as - Source program.

An assembler program translates the source program into machine code, which is known as

object program.

The steps required to assemble, link and execute a program are:

1. The assembly step involves translating the source code into object code and generating an

intermediate .OBJ (object file) or module.

The assembler also creates a header immediately in front of the generated .OBJ module;

part of the header contains information about incomplete addresses. The .OBJ module is

not quite in executable form.

2. The link step involves converting the .OBJ module to an .EXE machine code module. The

linker’s tasks include completing any address left open by the assembler and combining

separately assembled programs into one executable module.

The linker:

(a) combines assembled module into one executable program

(b) generates an .EXE module and initializes with special instructions to facilitate its

subsequent loading for execution.

3. The last step is to load the program for execution. Because the loader knows where the

program is going to load in memory, it is now able to resolve any remaining address still

left incomplete in the header. The loader drops the header and creates a program segment

prefix (PSP) immediately before the program is loaded in memory

1.4 Higher Level Languages

We have talked about programming languages as COBOL, FORTRAN and BASIC. They are

called high level programming languages. The program shown below is written in BASIC to

obtain the sum of two numbers.

LET X = 7

LET Y = 10

LET sum = X+Y

PRINT SUM

END

Creating machine and assembly languages took a long time and cost a lot of money. This was the
driving force behind the development of high-level languages.

Since working with low-level languages is challenging, high-level languages were created to make
writing computer programmes easier. Since you can use terms that more clearly explain the task
being done, high level programming languages build computer programmes with instructions that
are much simpler to understand than machine or assembly language code.

6

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Advantages of High-level Programming Language

The various advantages of high-level programming language are:

1. Readability: Programs written in these languages are more readable than assembly and

machine language.

2. Portability: Programs could be run on different machines with little or no change. We can,

therefore, exchange software leading to creation of program libraries.

3. Easy debugging: Errors could easily be removed (debugged).

4. Easy Software development: Software could easily be developed. Commands of

programming language are similar to natural languages (ENGLISH).

Some High Level Languages

Some popular high-level languages are:

1. ADA

2. APL

3. BASIC

4. Pascal

5. FORTRAN

6. COBOL

7. C

8. LISP

9. RPG

ADA

ADA was named after lady Augusta Ada Byron (the first computer programmer). It was

designed by the US Defence Department for its real time applications. It is suitable for parallel

processing.

APL

Developed by Dr Kenneth Aversion at IBM, APL is a convenient, interactive programming

language suitable for expressing complex mathematical expressions in compact formats. It

requires special terminals for use.

BASIC (Beginners All-purpose Symbolic Instruction Code)

BASIC was developed by John Kemeny & Thomas Karthy at Dartmouth College. It is a widely

known and accepted programming language. It is easy to use and is almost coded in real-time

conversational mode. This language provides good error diagnostics but has no self-structuring

or self-documentation.

Pascal

Developed in 1968, Pascal was named after a French inventor Blaise Pascal and was developed

by a Swiss programmer NiKolus Wirth. Pascal was the first structured programming language

and it is used for both scientific and business data processing applications.

7

 LOVELY PROFESSIONAL UNIVERSITY

Notes

FORTRAN (FORmula TRANslation)

Developed by IBM in 1957, it is one of the oldest and most widely used high level languages. It

is widely used by scientists and engineers as this language has huge libraries of engineering and

scientific programs. This language is suitable for expressing formulae, writing equations, and

performing iterative calculations.

Various versions of FORTRAN are:

1. FORTRAN I (1957)

2. FORTRAN II (1958)

3. FORTRAN IV (1962)

4. FORTRAN 77 (1978)

COBOL (COmmon Business Oriented Language)

Cobol is a structured and self documented language. It was developed by a committee of business,

industry, government, and academic representatives called codasyl (conference on data SYstem

Languages) commissioned by US government in 1959. Statements of Cobol language resemble

English language expressions and it makes them easy to understand and use.

C

Developed by Denis Ricthie at the Bell Laboratories in 1970, it is a general purpose programming

language, which features economy of expression, modern control flow and data structures, and

a rich set of operators. Its programs are highly portable (machine independent). C language

supports modular programming through the use of functions, subroutines, and macros.

LISP (List Processor)

Developed in 1960 by Prof. John McGrthy, Lisp and Prolog (programming logic) are the primary

languages used in artificial intelligence research and applications.

RPG (Report Program Generator)

RPG is an important business oriented programming language developed by IBM in late 1960s.

It is primarily used for preparing written reports.

1.5 Characteristics of a programming Language

There are various factors, why the programmers prefer one language over the another. And some of
very good characteristics of a good programming language are:

1) Clarity, Simplicity And Unity: A Programming language provides both a conceptual

framework for Algorithm planning and means of expressing them. It should provide a clear, simple
and unified set of concepts that can be used as primitives in developing algorithms.

It should have

• It has minimum number of different concepts

•- with Rules for their combina-tion being

•-simple and regular.

This attribute is called conceptual integrity.

2) Orthogonality: It is one of the most important feature of PL orthogonality is the property that

means " Changing A does not change B".

If I take Real world example of an orthogonal system Would be a radio, where changing the station
does not change the volume and vice versa.

8

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When the features of a language are orthogonal, language is easier to learn and programs are easier
to write because only few exceptions and special cases to be remembered.

3) Support for Abstraction:- There is always found that a substantial gap remaining between the

abstract data structure and operations that characterize the solution to a problem and their particular
data structure and operations built into a language.

4) Programming Environment: An appropriate programming environment adds an extra utility

and make language to be implemented easily like

The availability of- Reliable- Efficient - Well documentation

Speeding up creation and testing by-special Editors- testing packages

Facility- Maintaining and Modifying- Multi Version of program software product.

5) Reusability: The reusability of program written in a language is always a central concern. A

program is checked by various testing technique like

Formal verification method Desk checking Input output test checking.

We verify the program by many more techniques. A language that makes program verification
difficult maybe far more troublesome to use. Simplicity of semantic and syntactic structure is a
primary aspect that tends to simplify program verification.

6) portability of programs: Programming language should be portable means it should be easy to

transfer a program from which they are developed to the other computer.

1.6 Algorithms

An algorithm is a step-by-step process that specifies a series of instructions that must be carried out
in a specific order to produce the desired result. Algorithms are usually written without regard to
the underlying programming languages; that is, an algorithm may be written in more than one
programming language.

An algorithm is a finite set of steps that must be followed to solve any problem. Algorithms are
usually created before the actual coding takes place. It is written in an English-like language so that
even non-programmers can understand it.

Algorithms are often written in pseudocodes, which are languages that are identical to the
programming language that would be used.

Characteristics of an Algorithm

Clear and Unambiguous: Algorithm should be clear and unambiguous. Each of its steps should be

clear in all aspects and must lead to only one meaning.

Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined inputs.

Well-Defined Outputs: The algorithm must clearly define what output will be yielded and it

should be well-defined as well.

Finite-ness: The algorithm must be finite, i.e. it should not end up in an infinite loops or similar.

Feasible: The algorithm must be simple, generic and practical, such that it can be executed upon will

the available resources. It must not contain some future technology, or anything.

Language Independent: The Algorithm designed must be language-independent, i.e. it must be just

plain instructions that can be implemented in any language, and yet the output will be same, as
expected.

Advantages of Algorithms:

It is easy to understand.

Algorithm is a step-wise representation of a solution to a given problem.

In Algorithm the problem is broken down into smaller pieces or steps hence, it is easier for the
programmer to convert it into an actual program.

9

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Disadvantages of Algorithms:

Writing an algorithm takes a long time so it is time-consuming.

Branching and Looping statements are difficult to show in Algorithms

How to Design an Algorithm

In order to write an algorithm, following things are needed as a pre-requisite:

 1. The problem that is to be solved by this algorithm.

2. The constraints of the problem that must be considered while solving the problem.

3. The input to be taken to solve the problem.

4. The output to be expected when the problem the is solved.

5. The solution to this problem, in the given constraints.

Example Of Algorithms

1. Find the largest number among three different numbers

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: If a > b

 If a > c

 Display a is the largest number.

 Else

 Display c is the largest number.

 Else

 If b > c

 Display b is the largest number.

 Else

 Display c is the greatest number.

Step 5: Stop

1.7 Flow Charts

A flowchart is a diagram that depicts the steps and decisions required to complete a procedure. A
diagram form is used to represent each step in the series. Connecting lines and directional arrows
connect the steps. This helps us to look at the flowchart and follow the process from start to finish.

A flowchart is a representation of an algorithm in diagram form. A flowchart can be useful when
writing programmes as well as illustrating them to others..

Flowchart Symbols

Different flowchart shapes have different conventional meanings. The meanings of some of the more
common shapes are as follows:

Terminator

The terminator symbol represents the starting or ending point of the system.

Process

10

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A box indicates some particular operation.

Document

This represents a printout, such as a document or a report.

Decision

A diamond represents a decision or branching point. Lines coming out from the diamond indicates
different possible situations, leading to different sub-processes.

Data

It represents information entering or leaving the system. An input might be an order from a customer.
Output can be a product to be delivered.

On-Page Reference

This symbol would contain a letter inside. It indicates that the flow continues on a matching symbol
containing the same letter somewhere else on the same page.

Flow

Lines represent the flow of the sequence and direction of a process.

Off-Page Reference

This symbol would contain a letter inside. It indicates that the flow continues on a matching symbol
containing the same letter somewhere else on a different page.

11

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Delay or Bottleneck

Identifies a delay or a bottleneck.

Example: - Flow chart

1.8 Programming methodology

It is method or process to solve complex problem by analyze, planning, design and control using
different programming techniques.

Types of programming methodology

Procedural Programming

Object-oriented Programming

Functional Programming

12

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Procedural Programming

The problem is broken down into procedures, or code blocks, that each perform a single task. The
whole curriculum is made up of all procedures. It is only appropriate for small programmes with a
low degree of complexity.

Object-oriented Programming

Here the solution revolves around entities or objects that are part of problem. The solution deals with
how to store data related to the entities, how the entities behave and how they interact with each
other to give a cohesive solution.

Functional Programming

The problem, or the desired solution, is divided into functional units in this step. Each unit completes
its own job and is self-contained. The full solution is then stitched together from these modules.

Rather than functional units, the problem is broken down into logical units here. Users in a school
management system, for example, have positions such as class instructor, subject teacher, lab
assistant, coordinator, academic in-charge, and so on. As a result, the programme can be divided into
units based on the positions of the users. Each consumer may have a unique gui, permissions, and
other features.

Software developers may use one or a combination of these methodologies to create a piece of
software. The problem must be broken down into smaller units in each of the methodologies
discussed.

Summary :

1. Different programming languages support different styles of programming. The choice of

language used is subject to many considerations, such as company policy.

2. An assembly program is written according to a strict set of rules. An editor or word processor is

used for keying an assembly program into the computer as a file, and then the assembler is used

to translate the program into machine code.

3. Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain
order to get the desired output. Algorithms are generally created independent of underlying
languages, i.e. an algorithm can be implemented in more than one programming language

4. A flowchart is a visual representation of the sequence of steps and decisions needed to perform a
process. Each step in the sequence is noted within a diagram shape. Steps are linked by connecting
lines and directional arrows

5. A programming methodology is nothing but a type of technique to solve some given requirements
using programming languages.

Keywords

Compiler: A compiler is a computer program that transforms source code written in a computer

language into another computer language.

Computer Programming: Computer programming is a field that has to do with the analytical

creation of source code that can be used to configure computer systems.

Debugger: The debugger is a program that allows the user to test and debug the object file.

Loader: Loader is a program which assigns absolute addresses to the program

Programming language

Machine language

High level language

Algorithms

Flowcharts

13

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Self-Assessment

1. Compiler is a…..

A. Source code

B. Object code

C. Translator

D. None of above

2. How many bits in 1 byte?

A. 9

B. 7

C. 6

D. 8

3. What is extension of C language?

A. .x

B. .p

C. .c

D. .d

4. Who developed C language?

A. Dennis M. Ritchie

B. Steve Jobs

C. Steve Smith

D. James Gosling

5. Which of the following language instructions execute very fast?

A. Machine language Instructions

B. Hardwired Instructions

C. Procedural language InstructionsW

D. Assembly language Instructions

6. Program written in ____________ language is difficult to understand.

A. Procedural language

B. Machine Language

C. Assembly Language

D. High Level Language.

7. Which of the following is part of computer system.

A. Hardware

B. Programming

C. Software

D. Hardware & Software

8. ___________ is a computer language.

A. Binary Language

14

Programming Methodology

Unit 01: Introduction

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. Low Level Language

C. High Level Language

D. All of the above

9. Compiling is a process.

A. To convert source code to machine independent code.

B. To make program.

C. To complete coding.

D. All of the above.

10. Which format specifier is used for integer

A. % c

B. % d

C. % f

D. % h

Answer

1 C 2 D 3 C 4 A 5 A

6 B 7 D 8 A 9 d

Review Questions:

1. Describe assembly language in detail. Also explain the advantages of the same.

2. Describe various tools required for assembly language programming.

4. Explain various advantages and limitations of machine language.

5. Distinguish between OPCODE and OPERAND.

7. List various version of FORTRAN language.

8. Write short notes on:

 Input

 Output

Further Readings

Brian Kerrighen and Dennis Ritchie, The C Programming language

D. Bharioke, Fundamentals of IT, Excel Books

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

R.G.Dromey, How to solve it by Computer, 2007, Pearson Education, India

15

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Seymour Lipschutz, Essentials Computer Mathematics, Schaums’ Outlines Series,

2004, Tata McGraw Hill.

Turban Rainer Cotter, Introduction to IT, John Wiley & Sons.

V. Rajaraman, Fundamentals of Computer, Prentice Hall of India.

Yashvant Kanetkar, Let us C

16

Programming Methodology

Unit 02: Constant and Variable Notes

Unit 02: Constant and Variable

CONTENTS

Objectives

Introduction

2.1 Programming Language

2.2 Machine Level Language

2.3 Assembly Language

2.4 Assembly Program Execution

2.5 High Level Languages

2.6 Introduction to C Programming

2.7 Applications of C Language

2.8 Compiler and Interpreter

2.9 Program Development in C

2.10 C Character set

2.11 Identifiers and keywords

2.12 Constants in C

2.13 Variables

Summary

Keywords

Self-Assessment

Answer for Self Assessment

Further Readings

Objectives
After studying this unit, you will be able to:

• Understand Programming language

• Discuss C Programming

• Different stages in program developmentusingcodeblocks IDE

• Programing methodologies

• Character Set, Identifiers and Keywords
• Constants and Variables.

Introduction
Computer is an electronic device which works on the instructions provided by the user. As the
computer does not understand natural language, it is required to provide the instructions in some
computer understandable language. Such a computer understandable language is known as
Programming language.

A computer programming language consists of a set of symbols and characters, words, and
grammar rules that permit people to construct instructions in the format that can be interpreted by
the computer system Computer Programming is the art of making a computer do what you want it
to do. Computer programming is a field that has to do with the analytical creation of source code

LOVELY PROFESSIONAL UNIVERSITY 17

Ashwani Kumar, Lovely Professional University

Notes
that can be used to configure computer systems. Computer programmers may choose to function in
a broad range of programming functions, or specialize in some aspect of development, support, or
maintenance of computers for the home or workplace. Programmers provide the basis for the
creation and ongoing function of the systems that many people rely upon for all sorts of
information exchange, both business related and for entertainment purposes.

2.1 Programming Language
Different programming languages support different styles of programming. The choice of language
used is subject to many considerations, such as company policy, suitability to task, availability of
third-party packages, or individual preference. Ideally, the programming language best suited for
the task at hand will be selected. Trade-offs from this ideal involve finding enough programmers
who know the language to build a team, the availability of compilers for that language, and the
efficiency with which programs written in a given language execute.

The basic instructions of programming language are:

1. Input: Get data from the keyboard, a file, or some other device.

2. Output: Display data on the screen or send data to a file or other device.

3. Math: Perform basic mathematical operations like addition and multiplication.

4. Conditional execution: Check for certain conditions and execute the appropriate sequence of
statements.

5. Repetition: Perform some action repeatedly, usually with some variation.

2.2 Machine Level Language
Computer language, also known as machine code, is a low-level programming language made up
of binary digits (ones and zeros). Before a computer can run code written in high-level languages
like Swift and C++, the code must be converted into machine language.

Since computers are digital devices, they only recognize binary data. Every program, video, image,
and character of text is represented in binary. This binary data, or machine code, is processed as
input by the CPU. The resulting output is sent to the operating system or an application, which
displays the data visually. For example, the ASCII value for the letter "A" is 01000001 in machine
code, but this data is displayed as "A" on the screen. An image may have thousands or even
millions of binary values that determine the color of each pixel.

While computers can be programmed to understand a variety of computer languages, there is only
one language that the computer understands without the use of a translation program; this
language is known as the computer's machine language or machine code.Machine code is the
fundamental language of a computer and is normally written as strings of binary 1s and 0s. The
circuitry of a computer is wired in such a way that it immediately recognizes the machine language
and converts it into the electrical signals needed to run the computer. An instruction prepared in
any language has a two part. The first part is command or operation, and it tells the computer what
function to perform. Every computer has an operation code or op-code for each of its functions. The
second part of the instruction is the operand, and it tells the computer where to find or store the
data or other instructions that are to be maintained. Thus, each instruction tells the control unit of
the CPU what to do and the length and location of the data field are involved in the operation.
Typical operations involve reading, adding, subtracting, writing and so on.

Discuss Example of Machine Level Language

Instruction Format

We already know that all commuters use binary digits (0s and 1s) for performing operations.
Hence, most computers machine language consists of strings of binary numbers and is the only one
the CPU directly understands. When stored inside the computer, the symbols which make up the
machine language program are made up of 1s and 0s.

Notes
that can be used to configure computer systems. Computer programmers may choose to function in
a broad range of programming functions, or specialize in some aspect of development, support, or
maintenance of computers for the home or workplace. Programmers provide the basis for the
creation and ongoing function of the systems that many people rely upon for all sorts of
information exchange, both business related and for entertainment purposes.

2.1 Programming Language
Different programming languages support different styles of programming. The choice of language
used is subject to many considerations, such as company policy, suitability to task, availability of
third-party packages, or individual preference. Ideally, the programming language best suited for
the task at hand will be selected. Trade-offs from this ideal involve finding enough programmers
who know the language to build a team, the availability of compilers for that language, and the
efficiency with which programs written in a given language execute.

The basic instructions of programming language are:

1. Input: Get data from the keyboard, a file, or some other device.

2. Output: Display data on the screen or send data to a file or other device.

3. Math: Perform basic mathematical operations like addition and multiplication.

4. Conditional execution: Check for certain conditions and execute the appropriate sequence of
statements.

5. Repetition: Perform some action repeatedly, usually with some variation.

2.2 Machine Level Language
Computer language, also known as machine code, is a low-level programming language made up
of binary digits (ones and zeros). Before a computer can run code written in high-level languages
like Swift and C++, the code must be converted into machine language.

Since computers are digital devices, they only recognize binary data. Every program, video, image,
and character of text is represented in binary. This binary data, or machine code, is processed as
input by the CPU. The resulting output is sent to the operating system or an application, which
displays the data visually. For example, the ASCII value for the letter "A" is 01000001 in machine
code, but this data is displayed as "A" on the screen. An image may have thousands or even
millions of binary values that determine the color of each pixel.

While computers can be programmed to understand a variety of computer languages, there is only
one language that the computer understands without the use of a translation program; this
language is known as the computer's machine language or machine code.Machine code is the
fundamental language of a computer and is normally written as strings of binary 1s and 0s. The
circuitry of a computer is wired in such a way that it immediately recognizes the machine language
and converts it into the electrical signals needed to run the computer. An instruction prepared in
any language has a two part. The first part is command or operation, and it tells the computer what
function to perform. Every computer has an operation code or op-code for each of its functions. The
second part of the instruction is the operand, and it tells the computer where to find or store the
data or other instructions that are to be maintained. Thus, each instruction tells the control unit of
the CPU what to do and the length and location of the data field are involved in the operation.
Typical operations involve reading, adding, subtracting, writing and so on.

Discuss Example of Machine Level Language

Instruction Format

We already know that all commuters use binary digits (0s and 1s) for performing operations.
Hence, most computers machine language consists of strings of binary numbers and is the only one
the CPU directly understands. When stored inside the computer, the symbols which make up the
machine language program are made up of 1s and 0s.

Notes
that can be used to configure computer systems. Computer programmers may choose to function in
a broad range of programming functions, or specialize in some aspect of development, support, or
maintenance of computers for the home or workplace. Programmers provide the basis for the
creation and ongoing function of the systems that many people rely upon for all sorts of
information exchange, both business related and for entertainment purposes.

2.1 Programming Language
Different programming languages support different styles of programming. The choice of language
used is subject to many considerations, such as company policy, suitability to task, availability of
third-party packages, or individual preference. Ideally, the programming language best suited for
the task at hand will be selected. Trade-offs from this ideal involve finding enough programmers
who know the language to build a team, the availability of compilers for that language, and the
efficiency with which programs written in a given language execute.

The basic instructions of programming language are:

1. Input: Get data from the keyboard, a file, or some other device.

2. Output: Display data on the screen or send data to a file or other device.

3. Math: Perform basic mathematical operations like addition and multiplication.

4. Conditional execution: Check for certain conditions and execute the appropriate sequence of
statements.

5. Repetition: Perform some action repeatedly, usually with some variation.

2.2 Machine Level Language
Computer language, also known as machine code, is a low-level programming language made up
of binary digits (ones and zeros). Before a computer can run code written in high-level languages
like Swift and C++, the code must be converted into machine language.

Since computers are digital devices, they only recognize binary data. Every program, video, image,
and character of text is represented in binary. This binary data, or machine code, is processed as
input by the CPU. The resulting output is sent to the operating system or an application, which
displays the data visually. For example, the ASCII value for the letter "A" is 01000001 in machine
code, but this data is displayed as "A" on the screen. An image may have thousands or even
millions of binary values that determine the color of each pixel.

While computers can be programmed to understand a variety of computer languages, there is only
one language that the computer understands without the use of a translation program; this
language is known as the computer's machine language or machine code.Machine code is the
fundamental language of a computer and is normally written as strings of binary 1s and 0s. The
circuitry of a computer is wired in such a way that it immediately recognizes the machine language
and converts it into the electrical signals needed to run the computer. An instruction prepared in
any language has a two part. The first part is command or operation, and it tells the computer what
function to perform. Every computer has an operation code or op-code for each of its functions. The
second part of the instruction is the operand, and it tells the computer where to find or store the
data or other instructions that are to be maintained. Thus, each instruction tells the control unit of
the CPU what to do and the length and location of the data field are involved in the operation.
Typical operations involve reading, adding, subtracting, writing and so on.

Discuss Example of Machine Level Language

Instruction Format

We already know that all commuters use binary digits (0s and 1s) for performing operations.
Hence, most computers machine language consists of strings of binary numbers and is the only one
the CPU directly understands. When stored inside the computer, the symbols which make up the
machine language program are made up of 1s and 0s.

LOVELY PROFESSIONAL UNIVERSITY18

Programming Methodology

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 3

Notes

Example: A typical program instruction to print out a number on the printer might be.

101100111111010011101100110000111001

The program to add two numbers in memory and print the result look something like the
Following:

001000000000001100111001

001111000000111111000111

100111100011101100110101

101100010101010101110000

000000000000000000000000

This is obviously not a very easy language to learn, partly because it is difficult to read and
understand and partly because it is written in a number system with which we are not familiar. But
it will be surprising to note that some of the first programmers, who worked with the first few
computers, actually wrote their programs in binary form as above. Since human programmers are
more familiar with the decimal number system, most of them preferred to write the computer
instructions in decimal, and leave the input device to convert these to binary. In fact, without too
much effort, a computer can be wired so that instead of using long numbers. With this change, the
preceding program appears as follows:

10001471

14002041

30003456

50773456

00000000

The set of instruction codes, whether in binary or decimal, which can be directly understood by the
CPU of a computer without the help of a translating program, is called a machine code or machine
language. Thus, a machine language program need not necessarily be coded as strings of binary
digits (1s and 0s). It can also be written using decimal digits if the circuitry of the computer being
used permits this.

Advantages and Limitations of Machine Language
Programs written in machine language can be executed very fast by the computer. This is mainly
because machine instructions are directly understood by the CPU writing a program in machine
language has several disadvantages which are discussed below.

1. Machine dependent
Because the internal design of every type of commuter is different from every other type of
computer and needs different electrical signals to operate, the machine language also is different
from computer to computer. It is determined by the actual design or construction of the LU, the
control unit, and the size as well as the word length of the memory unit. Hence, suppose after
becoming proficient in the machine code of a particular computer, a company decides to change to
another computer, the programmer may be required to learn a new machine language and would
have to rewrite all the existing programs.

2. Difficult to program
Although easily used by the computer, machine language is difficult to program, it is necessary for
the programmer either to memorize the dozens of code numbers for the commands in the
machine’s instruction set or to constantly refer to keep track of the storage location of data and
instructions. Moreover, a machine language programmer must be an expert who knows about the
hardware structure of the computer.

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 3

Notes

Example: A typical program instruction to print out a number on the printer might be.

101100111111010011101100110000111001

The program to add two numbers in memory and print the result look something like the
Following:

001000000000001100111001

001111000000111111000111

100111100011101100110101

101100010101010101110000

000000000000000000000000

This is obviously not a very easy language to learn, partly because it is difficult to read and
understand and partly because it is written in a number system with which we are not familiar. But
it will be surprising to note that some of the first programmers, who worked with the first few
computers, actually wrote their programs in binary form as above. Since human programmers are
more familiar with the decimal number system, most of them preferred to write the computer
instructions in decimal, and leave the input device to convert these to binary. In fact, without too
much effort, a computer can be wired so that instead of using long numbers. With this change, the
preceding program appears as follows:

10001471

14002041

30003456

50773456

00000000

The set of instruction codes, whether in binary or decimal, which can be directly understood by the
CPU of a computer without the help of a translating program, is called a machine code or machine
language. Thus, a machine language program need not necessarily be coded as strings of binary
digits (1s and 0s). It can also be written using decimal digits if the circuitry of the computer being
used permits this.

Advantages and Limitations of Machine Language
Programs written in machine language can be executed very fast by the computer. This is mainly
because machine instructions are directly understood by the CPU writing a program in machine
language has several disadvantages which are discussed below.

1. Machine dependent
Because the internal design of every type of commuter is different from every other type of
computer and needs different electrical signals to operate, the machine language also is different
from computer to computer. It is determined by the actual design or construction of the LU, the
control unit, and the size as well as the word length of the memory unit. Hence, suppose after
becoming proficient in the machine code of a particular computer, a company decides to change to
another computer, the programmer may be required to learn a new machine language and would
have to rewrite all the existing programs.

2. Difficult to program
Although easily used by the computer, machine language is difficult to program, it is necessary for
the programmer either to memorize the dozens of code numbers for the commands in the
machine’s instruction set or to constantly refer to keep track of the storage location of data and
instructions. Moreover, a machine language programmer must be an expert who knows about the
hardware structure of the computer.

Unit 02: Constant and Variable Notes

Example: A typical program instruction to print out a number on the printer might be.

101100111111010011101100110000111001

The program to add two numbers in memory and print the result look something like the
Following:

001000000000001100111001

001111000000111111000111

100111100011101100110101

101100010101010101110000

000000000000000000000000

This is obviously not a very easy language to learn, partly because it is difficult to read and
understand and partly because it is written in a number system with which we are not familiar. But
it will be surprising to note that some of the first programmers, who worked with the first few
computers, actually wrote their programs in binary form as above. Since human programmers are
more familiar with the decimal number system, most of them preferred to write the computer
instructions in decimal, and leave the input device to convert these to binary. In fact, without too
much effort, a computer can be wired so that instead of using long numbers. With this change, the
preceding program appears as follows:

10001471

14002041

30003456

50773456

00000000

The set of instruction codes, whether in binary or decimal, which can be directly understood by the
CPU of a computer without the help of a translating program, is called a machine code or machine
language. Thus, a machine language program need not necessarily be coded as strings of binary
digits (1s and 0s). It can also be written using decimal digits if the circuitry of the computer being
used permits this.

Advantages and Limitations of Machine Language
Programs written in machine language can be executed very fast by the computer. This is mainly
because machine instructions are directly understood by the CPU writing a program in machine
language has several disadvantages which are discussed below.

1. Machine dependent
Because the internal design of every type of commuter is different from every other type of
computer and needs different electrical signals to operate, the machine language also is different
from computer to computer. It is determined by the actual design or construction of the LU, the
control unit, and the size as well as the word length of the memory unit. Hence, suppose after
becoming proficient in the machine code of a particular computer, a company decides to change to
another computer, the programmer may be required to learn a new machine language and would
have to rewrite all the existing programs.

2. Difficult to program
Although easily used by the computer, machine language is difficult to program, it is necessary for
the programmer either to memorize the dozens of code numbers for the commands in the
machine’s instruction set or to constantly refer to keep track of the storage location of data and
instructions. Moreover, a machine language programmer must be an expert who knows about the
hardware structure of the computer.

LOVELY PROFESSIONAL UNIVERSITY 19

Programming MethodologiesNotes

3. Error code
For writing programs in machine language, since a programmer has to remember the opcodes and
he must also keep track of the storage location of data and instructions, it becomes very difficult for
him to concentrate fully on the logic of the problem. This frequently results in program errors.
Hence, it is easy to make errors while using machine code.

4. Difficult to modify
It is difficult to correct or modify machine language programs. Checking machine instructions to
locate errors is about as tedious as writing them initially. Similarly, modifying a machine language
program at a later date is so difficult that many programmers would prefer to code the new logic
afresh instead of incorporating the necessary modifications in the old program.

2.3 Assembly Language
Assembly languages are also known as second generation languages. These languages substitute
alphabetic symbols for the binary codes of machine language. In assembly language, symbols are
used in place of absolute addresses to represent memory locations. Mnemonics are used for
operation code, i.e., single letters or short abbreviations that help the programmers to understand
what the code represents.

MOV AX, DX.

Here mnemonic MOV represents ‘transfer’ operation and AX, DX are used to represent the
registers. One of the first steps in improving the program preparation process was to substitute
letter symbols mnemonics for the numeric operation codes of machine language. A mnemonic is
any kind of mental trick we use to help us remember. Mnemonics come in various shapes and sizes,
all of them useful in their own way.

All computers have the power of handling letters as well as numbers. Hence, a computer can be
taught to recognize certain combination of letter or numbers. It can be taught to substitute the
number 14 every time it sees the symbol ADD, substitute the number 15 every time it sees the
symbol SUB, and so forth. In this way, the computer can be trained to translate a program written
with symbols instead of numbers into the computer’s own machine language. Then we can write
program for the computer using symbols instead of numbers, and have the computer do its own
translating. This makes it easier for the programmer, because he can use letters, symbols, and
mnemonics instead of numbers for writing his programs.

Example: The preceding program that was written in machine language for adding two
numbers and printing out the result could be written in the following way:

CLA A

ADD B

STA C

TYP C

Which would mean “take A, add B, store the result in C, type C, and halt.” The computer by means
of a translating program, would translate each line of this program into the corresponding machine
language program.

Advantages of Assembly Language

1. Assembly language is easier to use than machine language.

2. An assembler is useful for detecting programming errors.

Notes

3. Error code
For writing programs in machine language, since a programmer has to remember the opcodes and
he must also keep track of the storage location of data and instructions, it becomes very difficult for
him to concentrate fully on the logic of the problem. This frequently results in program errors.
Hence, it is easy to make errors while using machine code.

4. Difficult to modify
It is difficult to correct or modify machine language programs. Checking machine instructions to
locate errors is about as tedious as writing them initially. Similarly, modifying a machine language
program at a later date is so difficult that many programmers would prefer to code the new logic
afresh instead of incorporating the necessary modifications in the old program.

2.3 Assembly Language
Assembly languages are also known as second generation languages. These languages substitute
alphabetic symbols for the binary codes of machine language. In assembly language, symbols are
used in place of absolute addresses to represent memory locations. Mnemonics are used for
operation code, i.e., single letters or short abbreviations that help the programmers to understand
what the code represents.

MOV AX, DX.

Here mnemonic MOV represents ‘transfer’ operation and AX, DX are used to represent the
registers. One of the first steps in improving the program preparation process was to substitute
letter symbols mnemonics for the numeric operation codes of machine language. A mnemonic is
any kind of mental trick we use to help us remember. Mnemonics come in various shapes and sizes,
all of them useful in their own way.

All computers have the power of handling letters as well as numbers. Hence, a computer can be
taught to recognize certain combination of letter or numbers. It can be taught to substitute the
number 14 every time it sees the symbol ADD, substitute the number 15 every time it sees the
symbol SUB, and so forth. In this way, the computer can be trained to translate a program written
with symbols instead of numbers into the computer’s own machine language. Then we can write
program for the computer using symbols instead of numbers, and have the computer do its own
translating. This makes it easier for the programmer, because he can use letters, symbols, and
mnemonics instead of numbers for writing his programs.

Example: The preceding program that was written in machine language for adding two
numbers and printing out the result could be written in the following way:

CLA A

ADD B

STA C

TYP C

Which would mean “take A, add B, store the result in C, type C, and halt.” The computer by means
of a translating program, would translate each line of this program into the corresponding machine
language program.

Advantages of Assembly Language

1. Assembly language is easier to use than machine language.

2. An assembler is useful for detecting programming errors.

For writing programs in machine language, since a programmer has to remember the opcodes and
he must also keep track of the storage location of data and instructions, it becomes very difficult for
him to concentrate fully on the logic of the problem. This frequently results in program errors.
Hence, it is easy to make errors while using machine code.

4. Difficult to modify
It is difficult to correct or modify machine language programs. Checking machine instructions to
locate errors is about as tedious as writing them initially. Similarly, modifying a machine language
program at a later date is so difficult that many programmers would prefer to code the new logic
afresh instead of incorporating the necessary modifications in the old program.

2.3 Assembly Language
Assembly languages are also known as second generation languages. These languages substitute
alphabetic symbols for the binary codes of machine language. In assembly language, symbols are
used in place of absolute addresses to represent memory locations. Mnemonics are used for
operation code, i.e., single letters or short abbreviations that help the programmers to understand
what the code represents.

MOV AX, DX.

Here mnemonic MOV represents ‘transfer’ operation and AX, DX are used to represent the
registers. One of the first steps in improving the program preparation process was to substitute
letter symbols mnemonics for the numeric operation codes of machine language. A mnemonic is
any kind of mental trick we use to help us remember. Mnemonics come in various shapes and sizes,
all of them useful in their own way.

All computers have the power of handling letters as well as numbers. Hence, a computer can be
taught to recognize certain combination of letter or numbers. It can be taught to substitute the
number 14 every time it sees the symbol ADD, substitute the number 15 every time it sees the
symbol SUB, and so forth. In this way, the computer can be trained to translate a program written
with symbols instead of numbers into the computer’s own machine language. Then we can write
program for the computer using symbols instead of numbers, and have the computer do its own
translating. This makes it easier for the programmer, because he can use letters, symbols, and
mnemonics instead of numbers for writing his programs.

Example: The preceding program that was written in machine language for adding two
numbers and printing out the result could be written in the following way:

CLA A

ADD B

STA C

TYP C

Which would mean “take A, add B, store the result in C, type C, and halt.” The computer by means
of a translating program, would translate each line of this program into the corresponding machine
language program.

Advantages of Assembly Language

1. Assembly language is easier to use than machine language.

2. An assembler is useful for detecting programming errors.

LOVELY PROFESSIONAL UNIVERSITY20

Programming MethodologNotes

3. Error code

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 5

Notes
3. Programmers do not have to know the absolute addresses of data items.

4. Assembly languages encourage modular programming.

Disadvantages of Assembly Language

1. Assembly language programs are not directly executable.

2. Assembly languages are machine dependent and, therefore, not portable from one machine to
another.

3. Programming in assembly language requires a higher level of programming skill.

2.4 Assembly Program Execution
An assembly program is written according to a strict set of rules. An editor or word processor is
used for keying an assembly program into the computer as a file, and then the assembler is used to
translate the program into machine code.

There are two ways of converting an assembly language program into machine language:

1. Manual assembly

2. By using an assembler.

Manual Assembly
It was an old method that required the programmer to translate each opcode into its numerical
machine language representation by looking up a table of the microprocessor instructions set,
which contains both assembly and machine language instructions. Manual assembly is acceptable
for short programs but becomes very inconvenient for large programs. The Intel SDK-85 and most
of the earlier university kits were programmed using manual assembly.

Using an Assembler
The symbolic instructions that you code in assembly language is known as - Source program.

An assembler program translates the source program into machine code, which is known as object
program.

The steps required to assemble, link and execute a program are:

1. The assembly step involves translating the source code into object code and generating an
intermediate .OBJ (object file) or module. The assembler also creates a header immediately in front
of the generated .OBJ module; part of the header contains information about incomplete addresses.
The .OBJ module is not quite in executable form.

2. The link step involves converting the .OBJ module to an .EXE machine code module. The linker’s
tasks include completing any address left open by the assembler and combining separately
assembled programs into one executable module.

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 5

Notes
3. Programmers do not have to know the absolute addresses of data items.

4. Assembly languages encourage modular programming.

Disadvantages of Assembly Language

1. Assembly language programs are not directly executable.

2. Assembly languages are machine dependent and, therefore, not portable from one machine to
another.

3. Programming in assembly language requires a higher level of programming skill.

2.4 Assembly Program Execution
An assembly program is written according to a strict set of rules. An editor or word processor is
used for keying an assembly program into the computer as a file, and then the assembler is used to
translate the program into machine code.

There are two ways of converting an assembly language program into machine language:

1. Manual assembly

2. By using an assembler.

Manual Assembly
It was an old method that required the programmer to translate each opcode into its numerical
machine language representation by looking up a table of the microprocessor instructions set,
which contains both assembly and machine language instructions. Manual assembly is acceptable
for short programs but becomes very inconvenient for large programs. The Intel SDK-85 and most
of the earlier university kits were programmed using manual assembly.

Using an Assembler
The symbolic instructions that you code in assembly language is known as - Source program.

An assembler program translates the source program into machine code, which is known as object
program.

The steps required to assemble, link and execute a program are:

1. The assembly step involves translating the source code into object code and generating an
intermediate .OBJ (object file) or module. The assembler also creates a header immediately in front
of the generated .OBJ module; part of the header contains information about incomplete addresses.
The .OBJ module is not quite in executable form.

2. The link step involves converting the .OBJ module to an .EXE machine code module. The linker’s
tasks include completing any address left open by the assembler and combining separately
assembled programs into one executable module.

Unit 02: Constant and Variable Notes
3. Programmers do not have to know the absolute addresses of data items.

4. Assembly languages encourage modular programming.

Disadvantages of Assembly Language

1. Assembly language programs are not directly executable.

2. Assembly languages are machine dependent and, therefore, not portable from one machine to
another.

3. Programming in assembly language requires a higher level of programming skill.

2.4 Assembly Program Execution
An assembly program is written according to a strict set of rules. An editor or word processor is
used for keying an assembly program into the computer as a file, and then the assembler is used to
translate the program into machine code.

There are two ways of converting an assembly language program into machine language:

1. Manual assembly

2. By using an assembler.

Manual Assembly
It was an old method that required the programmer to translate each opcode into its numerical
machine language representation by looking up a table of the microprocessor instructions set,
which contains both assembly and machine language instructions. Manual assembly is acceptable
for short programs but becomes very inconvenient for large programs. The Intel SDK-85 and most
of the earlier university kits were programmed using manual assembly.

Using an Assembler
The symbolic instructions that you code in assembly language is known as - Source program.

An assembler program translates the source program into machine code, which is known as object
program.

The steps required to assemble, link and execute a program are:

1. The assembly step involves translating the source code into object code and generating an
intermediate .OBJ (object file) or module. The assembler also creates a header immediately in front
of the generated .OBJ module; part of the header contains information about incomplete addresses.
The .OBJ module is not quite in executable form.

2. The link step involves converting the .OBJ module to an .EXE machine code module. The linker’s
tasks include completing any address left open by the assembler and combining separately
assembled programs into one executable module.

LOVELY PROFESSIONAL UNIVERSITY 21

Notes
The linker

(a) Combines assembled module into one executable program

(b) Generates an .EXE module and initializes with special instructions to facilitate its

Subsequent loading for execution.

3. The last step is to load the program for execution. Because the loader knows where the program
is going to load in memory, it is now able to resolve any remaining address still left incomplete in
the header. The loader drops the header and creates a program segment prefix (PSP) immediately
before the program is loaded in memory.

Tools Required for Assembly Language Programming
The tools of the assembly process described may vary in details.

The editor is a program that allows the user to enter, modify, and store a group of instructions or
text under a file name. The editor programs can be classified in two groups.

1. Line editors

2. Full screen editors

Line editors, such as EDIT in MS DOS, work with the manage one line at a time. Full screen editors,
such as Notepad, WordPad etc. manage the full screen or a paragraph at a time. To write text, the
user must call the editor under the control of the operating system. As soon as the editor program is
transferred from the disk to the system memory, the program control is transferred from the
operating system to the editor program. The editor has its own command and the user can enter
and modify text by using those commands. Some editor programs such as WordPerfect are very
easy to use. At the completion of writing a program, the exit command of the editor program will
save the program on the disk under the file name and will transfer the control to the operating
system. If the source file is intended to be a program in the 8086 assembly language the user should
follow the syntax of the assembly language and the rules of the assembler.

Linker
For modularity of your programs, it is better to break your program into several sub routines. It is
even better to put the common routine, like reading a hexadecimal number, writing hexadecimal
number, etc., which could be used by a lot of your other programs into a separate file. These files
are assembled separately. After each file has been successfully assembled, they can be linked
together to form a large file, which constitutes your complete program. The file containing the
common routines can be linked to your other program also. The program that links your program
is called the linker.

Loader
Loader is a program which assigns absolute addresses to the program. These addresses are
generated by adding the address from where the program is loaded into the memory to all the
offsets. Loader comes into action when you want to execute your program. This program is brought
from the secondary memory like disk. The file name extension for loading is .exe or .com, which
after loading can be executed by the CPU.

Differences between Machine-Level language and Assembly language

Machine-level language Assembly language

The machine-level language comes at the
lowest level in the hierarchy, so it has zero
abstraction level from the hardware.

The assembly language comes above the
machine language means that it has less
abstraction level from the hardware.

It cannot be easily understood by humans. It is easy to read, write, and maintain.

The machine-level language is written in The assembly language is written in simple

LOVELY PROFESSIONAL UNIVERSITY22

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 7

Notes
binary digits, i.e., 0 and 1. English language, so it is easily

understandable by the users.

It does not require any translator as the
machine code is directly executed by the
computer.

In assembly language, the assembler is used to
convert the assembly code into machine code.

It is a first-generation programming language. It is a second-generation programming
language.

2.5 High Level Languages
We have talked about programming languages as COBOL, FORTRAN and BASIC. They are called
high level programming languages. The program shown below is written in BASIC to obtain the
sum of two numbers.

LET X = 7

LET Y = 10

LET sum = X+Y

PRINT SUM

END

The time and cost of creating machine and assembly languages was quite high. And this was the
prime motivation for the development of high level languages. Because of the difficulty of working
with low-level languages, high-level languages were developed to make it easier to write computer
programs. High level programming languages create computer programs using instructions that
are much easier to understand than machine or assembly language code because you can use
words that more clearly describe the task being performed.

When writing a program in a high-level language, then the whole attention needs to be
paid to the logic of the problem. A compiler is required to translate a high-level language into a
low-level language.

Example: High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and
JAVA.

Advantages of a high-level language
1. Readability: Programs written in these languages are more readable than assembly andmachine
language.

2. Portability: Programs could be run on different machines with little or no change. We
can,therefore, exchange software leading to creation of program libraries.

3. Easy debugging: Errors could easily be removed (debugged).

4. Easy Software development: Software could easily be developed. Commands ofprogramming
language are similar to natural languages (ENGLISH).

Differences between Low-Level language and High-Level language

Low-level language High-level language

It is a machine-friendly language, i.e., the
computer understands the machine language,
which is represented in 0 or 1.

It is a user-friendly language as this language
is written in simple English words, which can
be easily understood by humans.

The low-level language takes more time to It executes at a faster pace.

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 7

Notes
binary digits, i.e., 0 and 1. English language, so it is easily

understandable by the users.

It does not require any translator as the
machine code is directly executed by the
computer.

In assembly language, the assembler is used to
convert the assembly code into machine code.

It is a first-generation programming language. It is a second-generation programming
language.

2.5 High Level Languages
We have talked about programming languages as COBOL, FORTRAN and BASIC. They are called
high level programming languages. The program shown below is written in BASIC to obtain the
sum of two numbers.

LET X = 7

LET Y = 10

LET sum = X+Y

PRINT SUM

END

The time and cost of creating machine and assembly languages was quite high. And this was the
prime motivation for the development of high level languages. Because of the difficulty of working
with low-level languages, high-level languages were developed to make it easier to write computer
programs. High level programming languages create computer programs using instructions that
are much easier to understand than machine or assembly language code because you can use
words that more clearly describe the task being performed.

When writing a program in a high-level language, then the whole attention needs to be
paid to the logic of the problem. A compiler is required to translate a high-level language into a
low-level language.

Example: High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and
JAVA.

Advantages of a high-level language
1. Readability: Programs written in these languages are more readable than assembly andmachine
language.

2. Portability: Programs could be run on different machines with little or no change. We
can,therefore, exchange software leading to creation of program libraries.

3. Easy debugging: Errors could easily be removed (debugged).

4. Easy Software development: Software could easily be developed. Commands ofprogramming
language are similar to natural languages (ENGLISH).

Differences between Low-Level language and High-Level language

Low-level language High-level language

It is a machine-friendly language, i.e., the
computer understands the machine language,
which is represented in 0 or 1.

It is a user-friendly language as this language
is written in simple English words, which can
be easily understood by humans.

The low-level language takes more time to It executes at a faster pace.

Unit 02: Constant and Variable Notes
binary digits, i.e., 0 and 1. English language, so it is easily

understandable by the users.

It does not require any translator as the
machine code is directly executed by the
computer.

In assembly language, the assembler is used to
convert the assembly code into machine code.

It is a first-generation programming language. It is a second-generation programming
language.

2.5 High Level Languages
We have talked about programming languages as COBOL, FORTRAN and BASIC. They are called
high level programming languages. The program shown below is written in BASIC to obtain the
sum of two numbers.

LET X = 7

LET Y = 10

LET sum = X+Y

PRINT SUM

END

The time and cost of creating machine and assembly languages was quite high. And this was the
prime motivation for the development of high level languages. Because of the difficulty of working
with low-level languages, high-level languages were developed to make it easier to write computer
programs. High level programming languages create computer programs using instructions that
are much easier to understand than machine or assembly language code because you can use
words that more clearly describe the task being performed.

When writing a program in a high-level language, then the whole attention needs to be
paid to the logic of the problem. A compiler is required to translate a high-level language into a
low-level language.

Example: High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and
JAVA.

Advantages of a high-level language
1. Readability: Programs written in these languages are more readable than assembly andmachine
language.

2. Portability: Programs could be run on different machines with little or no change. We
can,therefore, exchange software leading to creation of program libraries.

3. Easy debugging: Errors could easily be removed (debugged).

4. Easy Software development: Software could easily be developed. Commands ofprogramming
language are similar to natural languages (ENGLISH).

Differences between Low-Level language and High-Level language

Low-level language High-level language

It is a machine-friendly language, i.e., the
computer understands the machine language,
which is represented in 0 or 1.

It is a user-friendly language as this language
is written in simple English words, which can
be easily understood by humans.

The low-level language takes more time to It executes at a faster pace.

LOVELY PROFESSIONAL UNIVERSITY 23

Notes
execute.

It requires the assembler to convert the
assembly code into machine code.

It requires the compiler to convert the high-
level language instructions into machine code.

The machine code cannot run on all machines,
so it is not a portable language.

The high-level code can run all the platforms,
so it is a portable language.

It is memory efficient. It is less memory efficient.

Debugging and maintenance are not easier in a
low-level language.

Debugging and maintenance are easier in a
high-level language.

2.6 Introduction to C Programming
The programming language C was originally developed by Dennis Ritchie of Bell Laboratories and
was designed to run on a PDP-11 with a UNIX operating system. Although it was originally
intended to run under UNIX, there has been a great interest in running it under the MS-DOS
operating system on the IBM PC and compatibles. It is an excellent language for this environment
because of the simplicity of expression, the compactness of the code, and the wide range of
applicability. Also, due to the simplicity and ease of writing a C compiler, it is usually the first high
level language available on any new computer, including microcomputers, minicomputers,and
mainframes. It allows the programmer a wide range of operations from high level down to a very
low level, approaching the level of assembly language. There seems to be no limit to the flexibility
available.

Origin and Development of C Language
C is a general-purpose, structured programming language. Structured Languages have a
characteristic program structure and associated set of static scope rules. C was originated in Bell
Telephone Laboratories presently known as AT & T Bell Laboratories by Dennis Ritchie in 1970.
The Kernighan and Ritchie description is commonly referred to as “K&R C”. Following the
publication of the K & R description, computer professionals, impressed with C’s many desirable
features, began to promote the use of the language. Since 1980’s, the popularity of C has become
widespread. The American National Standards Institute (ANSI) proposed a standardized definition
of the C language (ANSI committee X3J11). Most commercial C compilers and interpreters are
expected to adopt the ANSI standard.

C has the feature of high level programming language as well as the low-level programming. It
works as a bridging gap between machine language and the more conventional high-level
languages. This feature of C Language made it most popular for system programming as well as
application programming.

2.7 Applications of C Language
Mainly C Language is used for Develop Desktop application and system software. Some
application of C language are given below.

 C programming language can be used to design the system software like operating system
and Compiler.

 To develop application software like database and spread sheets.
 For Develop Graphical related application like computer and mobile games.
 To evaluate any kind of mathematical equation use c language.
 C programming language can be used to design the compilers.
 UNIX Kernel is completely developed in C Language.
 For Creating Compilers of different Languages which can take input from other language

and convert it into lower level machine dependent language.
 C programming language can be used to design Operating System.
 C programming language can be used to design Network Devices.
 To design GUI Applications. Adobe Photoshop, one of the most popularly used photo

editors since olden times, was created with the help of C.

LOVELY PROFESSIONAL UNIVERSITY24

Programming Methodology

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 9

Notes

Evolution of C
By the late fifties, there were many computer languages into existence. However, none of them
were general purpose. They served better in a particular type of programming application more
than others. Thus, while FORTRAN was more suited for engineering programming, COBOL was
better for business programming. At this stage people started thinking that instead of learning so
many languages for different programming purposes, why not have a single computer language
that can be used for programming any type of application.

In 1960, to this end, an international committee was constituted which came out with a language
named ALGOL-60. This language could not become popular because it was too general and highly
abstract.

In 1963, a modified ALGOL-60 by reducing its generality and abstractness, a new language, CPL
(Combined Programming Language) was developed at Cambridge University. CPL, too turned out
to be very big and difficult to learn.

In 1967, Martin Richards, at Cambridge University, stripped down some of the complexities from
CPL retaining useful features and created BCPL (Basic CPL). Very soon it was realized that BCPL
was too specific and much too less powerful.

In 1970, Ken Thompson, at AT&T labs. Developed a language known by the name B as another
simplification to CPL. B, too, like its predecessors, turned out to be very specific and limited in
application.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

2.8 Compiler and Interpreter
Note that the only language a digital computer understands is binary coded instructions. Even the
above implementation will not execute on a computer without further translation into binary
(machine) code. This translation is not done manually, however. There are programs available to do
this job. These translation programs are called compilers and interpreters.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

A number of different compilers are available these days for C language. GCC, ANSI, Borland C,
Turbo C, etc. are only few of the popular C compilers. As a matter of fact, these software tools are
little more than just compiler. They provide a complete environment for C program development.
They include, among others, an editor to allow Program writing, a Compiler for compilation of the
same, a debugger for debugging/testing the program, and so forth. Such tools are referred to as
IDE (Integrated Development Environment) or SDK (Software Development Kit).

Code blocks is an IDE for running C and C++ programs on different operating systems like
Windows, Linux and Mac OS.

Give two examples of high level languages.

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 9

Notes

Evolution of C
By the late fifties, there were many computer languages into existence. However, none of them
were general purpose. They served better in a particular type of programming application more
than others. Thus, while FORTRAN was more suited for engineering programming, COBOL was
better for business programming. At this stage people started thinking that instead of learning so
many languages for different programming purposes, why not have a single computer language
that can be used for programming any type of application.

In 1960, to this end, an international committee was constituted which came out with a language
named ALGOL-60. This language could not become popular because it was too general and highly
abstract.

In 1963, a modified ALGOL-60 by reducing its generality and abstractness, a new language, CPL
(Combined Programming Language) was developed at Cambridge University. CPL, too turned out
to be very big and difficult to learn.

In 1967, Martin Richards, at Cambridge University, stripped down some of the complexities from
CPL retaining useful features and created BCPL (Basic CPL). Very soon it was realized that BCPL
was too specific and much too less powerful.

In 1970, Ken Thompson, at AT&T labs. Developed a language known by the name B as another
simplification to CPL. B, too, like its predecessors, turned out to be very specific and limited in
application.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

2.8 Compiler and Interpreter
Note that the only language a digital computer understands is binary coded instructions. Even the
above implementation will not execute on a computer without further translation into binary
(machine) code. This translation is not done manually, however. There are programs available to do
this job. These translation programs are called compilers and interpreters.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

A number of different compilers are available these days for C language. GCC, ANSI, Borland C,
Turbo C, etc. are only few of the popular C compilers. As a matter of fact, these software tools are
little more than just compiler. They provide a complete environment for C program development.
They include, among others, an editor to allow Program writing, a Compiler for compilation of the
same, a debugger for debugging/testing the program, and so forth. Such tools are referred to as
IDE (Integrated Development Environment) or SDK (Software Development Kit).

Code blocks is an IDE for running C and C++ programs on different operating systems like
Windows, Linux and Mac OS.

Give two examples of high level languages.

Unit 02: Constant and Variable Notes

Evolution of C
By the late fifties, there were many computer languages into existence. However, none of them
were general purpose. They served better in a particular type of programming application more
than others. Thus, while FORTRAN was more suited for engineering programming, COBOL was
better for business programming. At this stage people started thinking that instead of learning so
many languages for different programming purposes, why not have a single computer language
that can be used for programming any type of application.

In 1960, to this end, an international committee was constituted which came out with a language
named ALGOL-60. This language could not become popular because it was too general and highly
abstract.

In 1963, a modified ALGOL-60 by reducing its generality and abstractness, a new language, CPL
(Combined Programming Language) was developed at Cambridge University. CPL, too turned out
to be very big and difficult to learn.

In 1967, Martin Richards, at Cambridge University, stripped down some of the complexities from
CPL retaining useful features and created BCPL (Basic CPL). Very soon it was realized that BCPL
was too specific and much too less powerful.

In 1970, Ken Thompson, at AT&T labs. Developed a language known by the name B as another
simplification to CPL. B, too, like its predecessors, turned out to be very specific and limited in
application.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

In 1972, Ritchie, at AT&T, took the best of the two BCPL and B, and developed the language C. C
was truly a general purpose language, easy to learn and very powerful.

2.8 Compiler and Interpreter
Note that the only language a digital computer understands is binary coded instructions. Even the
above implementation will not execute on a computer without further translation into binary
(machine) code. This translation is not done manually, however. There are programs available to do
this job. These translation programs are called compilers and interpreters.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

Compilers and interpreters are programs that take a program written in a language as input and
translate it into machine language. Thus a program that translates a C program into machine code
is called C compiler; BASIC program into machine code is called a BASIC compiler and so on.

A number of different compilers are available these days for C language. GCC, ANSI, Borland C,
Turbo C, etc. are only few of the popular C compilers. As a matter of fact, these software tools are
little more than just compiler. They provide a complete environment for C program development.
They include, among others, an editor to allow Program writing, a Compiler for compilation of the
same, a debugger for debugging/testing the program, and so forth. Such tools are referred to as
IDE (Integrated Development Environment) or SDK (Software Development Kit).

Code blocks is an IDE for running C and C++ programs on different operating systems like
Windows, Linux and Mac OS.

Give two examples of high level languages.

LOVELY PROFESSIONAL UNIVERSITY 25

Notes

2.9 Program Development in C
The development of a "C" program involves the use of the following programs in the order of their
usage.

Editor
This program is used for writing the Source Code, the first thing that any programmer writing a
program in any language would be doing.

Debugger
This program helps us identify syntax errors in the source code.

Pre Processor
There are certain special instructions within the source code identified by the # symbol that are
carried on by a special program called a preprocessor.

Compiler
The process of converting the C source code to machine code and is done by a program called
Compiler.

Linker
The machine code relating to the source code you have written is combined with some other
machine code to derive the complete program in an executable file. This is done by a program
called the linker.

Writing a C Program
The following rules are applicable to all C-statements:

1. Blank spaces may be inserted between two words to improve the readability of the statement.
However, no blank space is allowed within a word.

2. Most of the C-compilers are case-sensitive, and hence statements are entered in small case letters.

3. C has no specific rules about the position at which different parts of a statements be written. Not
only can a C statement be written anywhere in a line, it can also be split over multiple lines. That is
why it is called free-format language.

4. A C-statement ends with a semi-colon (;)

5. Every C program contains one main() function.

C Program Code

#include<stdio.h>
main(){
printf(“Hello World”);
}

Creating and Compiling a C Program
Creating a compiling a C program on operating system use compiler and an integrated
development environment. Code blocks is used for create and execute program of C language. File
name is hello.c and save in windows operating system using code blocks IDE.

LOVELY PROFESSIONAL UNIVERSITY26

Programming Methodology

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 11

Notes

Click on empty file link and save that file with name hello.c and write code.

After write code in code blocks,

Gcc compiler is used for compiling code using code blocks

For compile press CTRL+F9 or click on build option and click on build

To run C program in code blocks after write code press first compile program than run
(CTRL+F10).

Output will be

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 11

Notes

Click on empty file link and save that file with name hello.c and write code.

After write code in code blocks,

Gcc compiler is used for compiling code using code blocks

For compile press CTRL+F9 or click on build option and click on build

To run C program in code blocks after write code press first compile program than run
(CTRL+F10).

Output will be

Unit 02: Constant and Variable Notes

Click on empty file link and save that file with name hello.c and write code.

After write code in code blocks,

Gcc compiler is used for compiling code using code blocks

For compile press CTRL+F9 or click on build option and click on build

To run C program in code blocks after write code press first compile program than run
(CTRL+F10).

Output will be

LOVELY PROFESSIONAL UNIVERSITY 27

LOVELY PROFESSIONAL UNIVERSITY

Notes

2.10 C Character set
Like each other language, 'C' additionally has its own character set. A program is a bunch of
directions that, when executed, produce a yield. The information that is prepared by a program
comprises of different characters and images. The yield produced is additionally a mix of characters
and images.

A character set in 'C' is divided into
• Letters

• Numbers

• Special characters

• White spaces (blank spaces)

Letters
• Uppercase characters (A-Z)

• Lowercase characters (a-z)

Numbers

 All the digits from 0 to 9

White spaces

• Blank space

• New line

• Carriage return

• Horizontal tab

Special characters
• Special characters in 'C' are shown in the given table,

Notes

2.10 C Character set
Like each other language, 'C' additionally has its own character set. A program is a bunch of
directions that, when executed, produce a yield. The information that is prepared by a program
comprises of different characters and images. The yield produced is additionally a mix of characters
and images.

A character set in 'C' is divided into
• Letters

• Numbers

• Special characters

• White spaces (blank spaces)

Letters
• Uppercase characters (A-Z)

• Lowercase characters (a-z)

Numbers

 All the digits from 0 to 9

White spaces

• Blank space

• New line

• Carriage return

• Horizontal tab

Special characters
• Special characters in 'C' are shown in the given table,

Programming MethodologiesNotes

2.10 C Character set
Like each other language, 'C' additionally has its own character set. A program is a bunch of
directions that, when executed, produce a yield. The information that is prepared by a program
comprises of different characters and images. The yield produced is additionally a mix of characters
and images.

A character set in 'C' is divided into
• Letters

• Numbers

• Special characters

• White spaces (blank spaces)

Letters
• Uppercase characters (A-Z)

• Lowercase characters (a-z)

Numbers

 All the digits from 0 to 9

White spaces

• Blank space

• New line

• Carriage return

• Horizontal tab

Special characters
• Special characters in 'C' are shown in the given table,

LOVELY PROFESSIONAL UNIVERSITY28

Programming Methodology

Unit 02: Constant and Variable Notes

, (comma) { (opening curly bracket)

. (period) } (closing curly bracket)

; (semi-colon) [(left bracket)

: (colon)] (right bracket)

? (question mark) ((opening left parenthesis)

' (apostrophe)) (closing right parenthesis)

" (double quotation mark) & (ampersand)

! (exclamation mark) ^ (caret)

|(vertical bar) + (addition)

/ (forward slash) - (subtraction)

\ (backward slash) * (multiplication)

~ (tilde) / (division)

_ (underscore) > (greater than or closing angle bracket)

$ (dollar sign) < (less than or opening angle bracket)

% (percentage sign) # (hash sign)

, (comma) { (opening curly bracket)

2.11 Identifiers and keywords
Keywords have fixed meanings, and the meaning cannot be changed. They act as a building block
of a 'C' program. There are a total of 32 keywords in 'C'. Keywords are written in lowercase letters.

LOVELY PROFESSIONAL UNIVERSITY 29

LOVELY PROFESSIONAL UNIVERSITY

Notes

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

An identifier is nothing but a name assigned to an element in a program. Example, name of a
variable, function, etc.

2.12 Constants in C
A constant is a non-changing token with a fixed value. It can be stored in a place in the computer's
memory and accessed using that memory address. In C, constants are divided into four categories:
integer constants, floating-point constants, character constants, and string constants. Constants can
be present in composite forms.

Integer and floating-point constants represent numbers. They are often referred to collectively as
numeric-type constants.

C imposes the following rules while creating a numeric constant type data item:

1. Commas and blank spaces cannot be included within the constants.

2. The constant can be preceded by a minus (-) sign if desired.

3. Value of a constant cannot exceed specified maximum and minimum bounds. For each
type of constant, these bounds will vary from one C-compiler to another.

Constants are the fixed values that remain unchanged during the execution of a program and are
used in assignment statements. Constants can also be stored in variables.

The declaration for a constant in C language takes the following form:

<Data type ><variable_name> = <value>

Example: float pi = 3.14

This declaration defines a constant named pi whose value remains 22/7 throughout the program in
which it is defined.

C language facilitates five different types of constants.

1. Character

2. Integer

3. Real

4. String

5. Logical

Notes

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

An identifier is nothing but a name assigned to an element in a program. Example, name of a
variable, function, etc.

2.12 Constants in C
A constant is a non-changing token with a fixed value. It can be stored in a place in the computer's
memory and accessed using that memory address. In C, constants are divided into four categories:
integer constants, floating-point constants, character constants, and string constants. Constants can
be present in composite forms.

Integer and floating-point constants represent numbers. They are often referred to collectively as
numeric-type constants.

C imposes the following rules while creating a numeric constant type data item:

1. Commas and blank spaces cannot be included within the constants.

2. The constant can be preceded by a minus (-) sign if desired.

3. Value of a constant cannot exceed specified maximum and minimum bounds. For each
type of constant, these bounds will vary from one C-compiler to another.

Constants are the fixed values that remain unchanged during the execution of a program and are
used in assignment statements. Constants can also be stored in variables.

The declaration for a constant in C language takes the following form:

<Data type ><variable_name> = <value>

Example: float pi = 3.14

This declaration defines a constant named pi whose value remains 22/7 throughout the program in
which it is defined.

C language facilitates five different types of constants.

1. Character

2. Integer

3. Real

4. String

5. Logical

Notes

auto double int struct

break else long switch

case enum register typedef

char extern return union

const short float unsigned

continue for signed void

An identifier is nothing but a name assigned to an element in a program. Example, name of a
variable, function, etc.

2.12 Constants in C
A constant is a non-changing token with a fixed value. It can be stored in a place in the computer's
memory and accessed using that memory address. In C, constants are divided into four categories:
integer constants, floating-point constants, character constants, and string constants. Constants can
be present in composite forms.

Integer and floating-point constants represent numbers. They are often referred to collectively as
numeric-type constants.

C imposes the following rules while creating a numeric constant type data item:

1. Commas and blank spaces cannot be included within the constants.

2. The constant can be preceded by a minus (-) sign if desired.

3. Value of a constant cannot exceed specified maximum and minimum bounds. For each
type of constant, these bounds will vary from one C-compiler to another.

Constants are the fixed values that remain unchanged during the execution of a program and are
used in assignment statements. Constants can also be stored in variables.

The declaration for a constant in C language takes the following form:

<Data type ><variable_name> = <value>

Example: float pi = 3.14

This declaration defines a constant named pi whose value remains 22/7 throughout the program in
which it is defined.

C language facilitates five different types of constants.

1. Character

2. Integer

3. Real

4. String

5. Logical

LOVELY PROFESSIONAL UNIVERSITY30

Programming Methodology

Unit 02: Constant and Variable Notes
Character Constants
A character constant consists of a single character, single digit, or a single special symbol enclosed
with in a pair of single inverted commas. The maximum length of a character constant is one
character.

Example: ‘a’ is a character constant

Example: ‘d’ is a character constant

Example: ‘P’ is a character constant

Example: ‘7’ is a character constant

Example: ‘*’ is a character constant

Integer Constants
An integer constant refers to a sequence of digits and has a numeric value. There are three types of
integers in C language: decimal, octal and hexadecimal.

Decimal integers 1, 56, 7657, -34 etc.

Octal integers 076, -076, 05 etc. (preceded by zero, 0)

Hexadecimal integers 0x56, -0x5D etc. (preceded by zero, 0x)

No commas or blanks are allowed in integer constants.

String Constants
A string constant is a sequence of one or more characters enclosed within a pair of double quotes
(““). If a single character is enclosed within a pair of double quotes, it will also be interpreted as a
string constant and not a character constant.

1. “ Hello World”

2. ”A”

Actually, a string is an array of characters terminated by a NULL character. Thus, “a” is a string
consisting of two characters, viz. ‘a’ and NULL(‘\0’).

Logical Constants
The value of a logical constant may be true or false. In C, a non-zero value is considered true, while
0 is considered false.

2.13 Variables
A variable is an object whose value can change while a programme is running. A variable is a
symbolic representation of the address in memory space where values can be stored, accessed, and
updated. Each variable has a memory location or address assigned to it, and the value of that
variable is stored there.

Each variable has its own name, data type, size, and value. All variables must have a type so that
the compiler can record all necessary information about them, generate the appropriate code
during translation, and allocate the necessary memory space.

Every programming language has its own set of rules that must be observed while writing the
names of variables. If the rules are not followed, the compiler reports compilation error. Rules for
Constructing Variable Name in C language are listed below:

1. Variable name may be a combination of alphabets, digits or underscores. Sometimes, an
additional constraint on the number of characters in the name is imposed by compilers in which
case its length should not exceed 8 characters.

2. First character must be an alphabet or an underscore (_).

LOVELY PROFESSIONAL UNIVERSITY 31

LOVELY PROFESSIONAL UNIVERSITY

Notes
3. No commas or blank spaces are allowed in a variable name.

4. Among the special symbols, only underscore can be used in a variable name. E.g.: emp_age,
item_4, etc.

5. No word, having a reserved meaning in C can be used for variable name

Declaration of Variables
C language is strongly typed language, meaning that all the variables must be declared before their
use. Declaration does two things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold

In C language, a variable declaration has the form:

<Type-specifier><comma-separated-list-of-variables>;

Here <type-specifier> is one of the valid data types (e.g. int, float, char, etc.). List-of-variables is a
comma-separated list of identifiers representing the program variables.

inti, j, k; //creates integer variables i,j and K

Once variable has been declared in the above manner, the compiler creates a space in the memory
and attaches the given name to this space. This variable can now be used in the program.

A value is stored in a variable using assignment operation. Assignment is of the form:

<Variable-name> = <value>;

Obviously, before assignment, the variable must be declared.

C also allows assignment of a value to a variable at the time of declaration. It takes the following
form:

<Type-specifier><variable_name> = <value>;

e.g. :int I = 5;

Let us consider some of programming examples to illustrate the matter further.

/* Example of assignments */

/* declaration */

int a1, b1;

/* declaration & assignment */

intvar = 5;

int a, b = 6, c;

/* declaration & multiple assignment */

int p, q, r, s;

p = q = r = s = 5;

}

values stored in various variables are:

var = 5

a = 0, b = 6

c = garbage value

p = 5, q = 5, r = 5, s = 5

Write a program in C to show the variable declaration.

Notes
3. No commas or blank spaces are allowed in a variable name.

4. Among the special symbols, only underscore can be used in a variable name. E.g.: emp_age,
item_4, etc.

5. No word, having a reserved meaning in C can be used for variable name

Declaration of Variables
C language is strongly typed language, meaning that all the variables must be declared before their
use. Declaration does two things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold

In C language, a variable declaration has the form:

<Type-specifier><comma-separated-list-of-variables>;

Here <type-specifier> is one of the valid data types (e.g. int, float, char, etc.). List-of-variables is a
comma-separated list of identifiers representing the program variables.

inti, j, k; //creates integer variables i,j and K

Once variable has been declared in the above manner, the compiler creates a space in the memory
and attaches the given name to this space. This variable can now be used in the program.

A value is stored in a variable using assignment operation. Assignment is of the form:

<Variable-name> = <value>;

Obviously, before assignment, the variable must be declared.

C also allows assignment of a value to a variable at the time of declaration. It takes the following
form:

<Type-specifier><variable_name> = <value>;

e.g. :int I = 5;

Let us consider some of programming examples to illustrate the matter further.

/* Example of assignments */

/* declaration */

int a1, b1;

/* declaration & assignment */

intvar = 5;

int a, b = 6, c;

/* declaration & multiple assignment */

int p, q, r, s;

p = q = r = s = 5;

}

values stored in various variables are:

var = 5

a = 0, b = 6

c = garbage value

p = 5, q = 5, r = 5, s = 5

Write a program in C to show the variable declaration.

Notes
3. No commas or blank spaces are allowed in a variable name.

4. Among the special symbols, only underscore can be used in a variable name. E.g.: emp_age,
item_4, etc.

5. No word, having a reserved meaning in C can be used for variable name

Declaration of Variables
C language is strongly typed language, meaning that all the variables must be declared before their
use. Declaration does two things:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold

In C language, a variable declaration has the form:

<Type-specifier><comma-separated-list-of-variables>;

Here <type-specifier> is one of the valid data types (e.g. int, float, char, etc.). List-of-variables is a
comma-separated list of identifiers representing the program variables.

inti, j, k; //creates integer variables i,j and K

Once variable has been declared in the above manner, the compiler creates a space in the memory
and attaches the given name to this space. This variable can now be used in the program.

A value is stored in a variable using assignment operation. Assignment is of the form:

<Variable-name> = <value>;

Obviously, before assignment, the variable must be declared.

C also allows assignment of a value to a variable at the time of declaration. It takes the following
form:

<Type-specifier><variable_name> = <value>;

e.g. :int I = 5;

Let us consider some of programming examples to illustrate the matter further.

/* Example of assignments */

/* declaration */

int a1, b1;

/* declaration & assignment */

intvar = 5;

int a, b = 6, c;

/* declaration & multiple assignment */

int p, q, r, s;

p = q = r = s = 5;

}

values stored in various variables are:

var = 5

a = 0, b = 6

c = garbage value

p = 5, q = 5, r = 5, s = 5

Write a program in C to show the variable declaration.

LOVELY PROFESSIONAL UNIVERSITY32

Programming Methodology

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 17

Notes

Write a program to find sum of two numbers.

Solution : - #include<stdio.h>

int main(){

int num1,num2,sum;

num1=100;

num2=300;

sum=num1+num2;

printf("Sum of %d and %d is = %d",num1,num2,sum);

return 0;

}

Output:-

Summary

 A computer programming language consists of a set of symbols and characters, words,
and grammar rules that permit people to construct instructions in the format that can be
interpreted by the computer system Computer Programming is the art of making a
computer do what you want it to do.

 Machine language, or machine code, is a low-level language comprised of binary digits
(ones and zeros).

 Assembly languages are also known as second generation languages. These languages
substitute alphabetic symbols for the binary codes of machine language.

 High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and JAVA.
 C is a general-purpose, structured programming language. Structured Languages have a

characteristic program structure and associated set of static scope rules. C was originated
in Bell Telephone Laboratories presently known as AT & T Bell Laboratories by Dennis
Ritchie in 1970.

 To develop application software like database and spread sheets.
 For Develop Graphical related application like computer and mobile games.
 Keywords have fixed meanings, and the meaning cannot be changed. They act as a

building block of a 'C' program. There are a total of 32 keywords in 'C'
 Code blocks is an IDE for running C and C++ programs on different operating systems

like Windows, Linux and Mac OS.

Unit 02: Constant and Variable

LOVELY PROFESSIONAL UNIVERSITY 17

Notes

Write a program to find sum of two numbers.

Solution : - #include<stdio.h>

int main(){

int num1,num2,sum;

num1=100;

num2=300;

sum=num1+num2;

printf("Sum of %d and %d is = %d",num1,num2,sum);

return 0;

}

Output:-

Summary

 A computer programming language consists of a set of symbols and characters, words,
and grammar rules that permit people to construct instructions in the format that can be
interpreted by the computer system Computer Programming is the art of making a
computer do what you want it to do.

 Machine language, or machine code, is a low-level language comprised of binary digits
(ones and zeros).

 Assembly languages are also known as second generation languages. These languages
substitute alphabetic symbols for the binary codes of machine language.

 High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and JAVA.
 C is a general-purpose, structured programming language. Structured Languages have a

characteristic program structure and associated set of static scope rules. C was originated
in Bell Telephone Laboratories presently known as AT & T Bell Laboratories by Dennis
Ritchie in 1970.

 To develop application software like database and spread sheets.
 For Develop Graphical related application like computer and mobile games.
 Keywords have fixed meanings, and the meaning cannot be changed. They act as a

building block of a 'C' program. There are a total of 32 keywords in 'C'
 Code blocks is an IDE for running C and C++ programs on different operating systems

like Windows, Linux and Mac OS.

Unit 02: Constant and Variable Notes

Write a program to find sum of two numbers.

Solution : - #include<stdio.h>

int main(){

int num1,num2,sum;

num1=100;

num2=300;

sum=num1+num2;

printf("Sum of %d and %d is = %d",num1,num2,sum);

return 0;

}

Output:-

Summary

 A computer programming language consists of a set of symbols and characters, words,
and grammar rules that permit people to construct instructions in the format that can be
interpreted by the computer system Computer Programming is the art of making a
computer do what you want it to do.

 Machine language, or machine code, is a low-level language comprised of binary digits
(ones and zeros).

 Assembly languages are also known as second generation languages. These languages
substitute alphabetic symbols for the binary codes of machine language.

 High-level languages include FORTRAN, COBOL, BASIC, PASCAL, C, C++ and JAVA.
 C is a general-purpose, structured programming language. Structured Languages have a

characteristic program structure and associated set of static scope rules. C was originated
in Bell Telephone Laboratories presently known as AT & T Bell Laboratories by Dennis
Ritchie in 1970.

 To develop application software like database and spread sheets.
 For Develop Graphical related application like computer and mobile games.
 Keywords have fixed meanings, and the meaning cannot be changed. They act as a

building block of a 'C' program. There are a total of 32 keywords in 'C'
 Code blocks is an IDE for running C and C++ programs on different operating systems

like Windows, Linux and Mac OS.

LOVELY PROFESSIONAL UNIVERSITY 33

Notes

 An identifier is nothing but a name assigned to an element in a program. Example, name
of a variable, function, etc.

 A constant is a value that doesn't change throughout the execution of a program.
 A variable is an identifier which is used to store a value.
 A variable is an entity whose value can change during program execution. A variable can

be thought of as a symbolic representation of address of the memory space where values
can be stored, accessed and changed.

Keywords
Programming:Computer programming is the process of designing and building an executable
computer program to accomplish a specific computing result or to perform a specific task.

Machine Level Language:Machine language, or machine code, is a low-level language comprised
of binary digits (ones and zeros).

Assembly Level Language:Assembly language is a low-level programming language.

High Level Language:high-level programming language is a programming language with strong
abstraction from the details of the computer.

Constant: A named data item whose value does not change throughout the execution of the
Program

Variable: A named location in the memory that can store a value of specified type.

Self-Assessment

1. A computer program is?
A. a sequence of English language statements.
B. a sequence of images to create a picture.
C. a sequence of instructions to perform an specific task
D. none of above

2. A program that can converts high-level language programs into machine understandable
form is known as…..

A. Compiler
B. Sensor
C. Translation
D. None of these

3. An error is also known as
A. Bug
B. Insect
C. Worm
D. virus

4. A high-level language is a
A. Human understandable language with proper syntax to write programs
B. Machine understandable language that can be processed on a machine
C. Both (a) and (b) statements defines it
D. None of these

5. A low-level language is a
A. Human understandable language with proper syntax to write programs
B. Machine understandable language that can be processed on a machine

LOVELY PROFESSIONAL UNIVERSITY34

Programming Methodology

Unit 02: Constant and Variable Notes

C. Both (a) and (b) statements defines it
D. None of these

6. Which of the following is type of variable in C language?
A. Local Variable
B. Global Variable
C. All of the above
D. None of the above

7. Which is the only function all C programs must contain?
A. start()
B. system()
C. main()
D. printf()

8. Which of the following is true for variable names in C?
A. Variable can be of any length
B. They can contain alphanumeric characters as well as special characters
C. Reserved Word can be used as variable name
D. Variable names cannot start with a digit

9. What are the entities whose values can be changed called?
A. Constants
B. Variables
C. Modules
D. Tokens

10. Which of the following is not a constant type in C language?
A. Real
B. Integer
C. Main
D. Character

11. Which is not a valid C variable name?
A. int number;
B. float rate;
C. intvariable_count;
D. int $reg_no;

12. The format identifier ‘%d’ is used for _____ data type?
A. Char
B. Int
C. Double
D. Float

Answer for Self Assessment

1. C 2. A 3. A 4. A 5. B

6. C 7. C 8. D 9. B 10 C

11. D 12. B

LOVELY PROFESSIONAL UNIVERSITY 35

Programming Methodologies

LOVELY PROFESSIONAL UNIVERSITY

Notes

Further Readings

Ashok N. Kamthane, "Programming with ANCI & Turbo C", Pearson Education,

Year of Publication, 2008.

B.W. Kernighan and D.M. Ritchie, "The Programming Language", Prentice Hall of

India, New Delhi.

Byron Gottfried, "Programming with C", Tata McGraw Hill Publishing Company

Limited, New Delhi.

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

Yashvant Kanetkar, Let us C

https://www.tutorialspoint.com/index.htm

www.webopedia.com

www.web-source.net

Notes

Further Readings

Ashok N. Kamthane, "Programming with ANCI & Turbo C", Pearson Education,

Year of Publication, 2008.

B.W. Kernighan and D.M. Ritchie, "The Programming Language", Prentice Hall of

India, New Delhi.

Byron Gottfried, "Programming with C", Tata McGraw Hill Publishing Company

Limited, New Delhi.

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

Yashvant Kanetkar, Let us C

https://www.tutorialspoint.com/index.htm

www.webopedia.com

www.web-source.net

Notes

Further Readings

Ashok N. Kamthane, "Programming with ANCI & Turbo C", Pearson Education,

Year of Publication, 2008.

B.W. Kernighan and D.M. Ritchie, "The Programming Language", Prentice Hall of

India, New Delhi.

Byron Gottfried, "Programming with C", Tata McGraw Hill Publishing Company

Limited, New Delhi.

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

Yashvant Kanetkar, Let us C

https://www.tutorialspoint.com/index.htm

www.webopedia.com

www.web-source.net

LOVELY PROFESSIONAL UNIVERSITY36

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 03: Unformatted and Formatted I/O

CONTENTS

OBJECTIVES

INTRODUCTION

3.1 Input/output Function

3.2 Formatted Input/Formatted Output

3.3 printf()

3.4 Escape Sequences

3.5 scanf()

3.6 sign (*)

3.7 Reading and Writing a Character

3.8 gets() and puts() Functions

Summary

Keywords

Self Assessment

Review Questions

Answers: Self-Assessment

Further Readings

OBJECTIVES

After studying this unit, you will be able to:

• Describe formatted input/output

• Explain the input/output function

• Know how to read and write a character

INTRODUCTION

If a user is unable to communicate with a computer programme, it is unlikely that the programme
would be useful. The software must read input values from the user console and generate the
expected useful output to the user in most programming assignments.

C is unique in that, unlike other high-level languages, it does not have any built-in I/O statements in
its syntax. We'll look at how C handles different I/O operations in this unit. We'll also hear about the
standard library functions in C, as well as the header files that go with them.. This unit is not intended
to be a complete treatment of these topics, but it provides enough information so that you can start
writing real programs.

3.1 Input/output Function

Data is transferred to peripheral devices such as a computer, keyboard, printer, or secondary storage
through I/O operations. Since C has no built-in support for receiving data from input devices (such
as a keyboard) or sending data to output devices (such as a monitor), all I/O operations must depend
on library functions like printf (). A library is a set of predefined functions contained in one or more
files. The creators of the C compiler created a library named "C standard library" that contains many
standard I/O functions.

37

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Depending on the compiler and necessary functions, various methods may be used to access these
library functions from the standard library. Some compilers scan libraries for named functions
automatically. Most of the time, the programmer must specifically state the library file name during
the linking process, resulting in the executable programme only containing the necessary functions.

These functions are stored in a special file with the extension.h (such as stdio.h), which is referred to
as a header file. The #include compiler directive can be used to insert a header file into a C
programme file, as shown below.

#include<stdio.h>

The #include directive tells the compiler to read the stdio.h (standard input output header file) file
and substitute this line with the contents of that file. Similarly, in order to use other predefined
functions, their respective header files must be included in a programme such that the function
declaration can be accessed by the programme.

C has a rich set of standard I/O library functions. However, these I/O functions are not the part of
C’s formal definition. C’s standard library function for I/O can be broadly divided in to the following
categories:

1. Port I/O functions

2. Disk I/O function

3. Console I/O function

The Port I/O function handles various I/O operators on various ports, such as a mouse port or a
printer port. The scope of this text does not include a thorough examination of the port I/O functions.
The disc I/O functions are used to manipulate files on secondary storage devices such as a floppy
disc or a hard disc. Since files are stored in secondary storage, such as discs, disc I/O functions are
nothing more than file handling functions.

The term "console" refers to the regular input and output devices in its broadest sense. These basic
input or output devices, which are also known as the keyboard and display by default, are dealt with
by console I/O functions. These functions take keyboard input and display the results on the
computer.

C takes all input and output as stream of characters. A stream is nothing,

but a series of bytes. C language treats all streams equally i.e., whether a program gets input from
the keyboard, a disk file or a modem, it consider it as only a stream of characters.

Different steams are used to represent different kinds of data flow. In C, there are three streams
associated with console I/O operations.

1. stdin: A stream that supplies data to the program i.e., standard input, usually from the keyboard.

2. stdout: A stream that receives data from the program i.e., standard output; usually to the monitor.

3. stderr: A stream used to keep error messages separate from program’s output i.e., standard error;

usually points to your terminal screen.

For conducting console I/O operations, C offers a number of functions. These functions allow
information to be transferred between the computer's standard input and output devices (i.e.,
keyboard and monitor). Only a few of them allow you to format input and output operations. Some
of them, on the other hand, do not allow you to monitor the format of I/O operations.

From this aspect, console I/O operations can be further categories as:

1. Unformatted console I/O functions

2. Formatted console I/O functions

It is important to include the standard I/O library header file in order to use these functions. The
declarations for these functions can be found in the stdio.h header file. As a result, before using these
console I/O features, always include the header file stdio.h in your C programme.

3.2 Formatted Input/Formatted Output

In this category, we have functions that allow input and output operations to be performed in a

fixed format. Formatting of I/O operators deals with some of the following issues like:

38

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

1. How much field width is required to display the various values on the monitor?

2. How many decimal places are required to display the fractional part of a real number?

3. Should data values be left aligned or right aligned, and how much?

4. How much space between two data values is to be given?

5. How various type of data i.e. integer, character, and string can be used together I/O

operators, etc.

Printf() and scanf() are the two most commonly used functions for formatted I/O. (). The printf()
function is used to view formatted data items on a standard output device, such as a monitor, while
the scanf() function is used to read formatted data input from a standard input device, such as a
keyboard. However, due to their greater complexity, both functions are slower than the previous
classes of functions. These functions are specified in the stdio.h header file and return EOF if an error
or the end of the file occurs. Let's take a closer look at each of these functions one by one.

3.3 printf()

The printf() in one of the most important and useful functions to display data on monitor. We have
seen the use of printf() for printing messages in the various example given previously in this book.
For example, the statement

printf(“ this section will discuss printf() in detail”);

will simple print this message on the monitor. Beside these text messages, a program frequently
required numeric values and the value of other variables to be displayed on the screen.

Example: In order to print the sum of two numbers say a and b, in a new line along with some
identifying text, the printf() will take the following form:

printf(“\n the sum of %d and %d is %d.”, a, b, c);

If the value of a and b is 5 and 6 respectively, then the output would be as follows:

The sum of 5 and 6 is 11.

Undoubtedly, a little more complicated then printing a simple message. Before getting the detail of
the various section of this printf(), Let’s discuss the general format of a printf(), shown below:

printf(“Format string”, arg1, arg2,...., argn);

Where format string refers to a string in enclosed in double quotes that contain formatting
information and arg1, arg2,, argn are arguments (may be constants, variable, or other complex
expressions) whose values are formatted and printed according to the specification of the format
string.

The format string in a printf() contains the format specifies that defines how the output is formatted.
Following are the three possible components of a format string:

1. Literal text that is simply printed as entered in the format string.

2. An escape sequence that begins with a \ (backslash) sign, provides special formatting

control.

3. A conversion specifier that begins with a % sign and followed by a single character, that

tells printf() how to interpret the arguments being used. To understand the various sections

of previously used printf() statement,

39

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The output of given statement if the value of a and b is 5 and 6 respectively, would be as:

The sum of 5 and 6 is 11

Let’s see how this output is evaluated:

The printf() function reads the format string from left to right and sends the characters that follow to
the standard output unit. It takes action as soon as it encounters the (backslash) (that is, the signal of
the existence of an escape sequence). When it comes across the percent (conversion specifier) symbol,
it grabs the corresponding argument and prints its value in the format defined. When the closing pair
of double quotes is encountered, the process comes to an end.

In our case, the first character after the opening pair of double quote is \ , followed by a character n,
so the effect of \n will take place i.e., output of the coming characters will start from the starting of
the next line. Output up to this stage appears as:

The sum of

Then comes the character % followed by character d (that is, the indication to treat the corresponding
variable as assigned decimal integer), so it picks up the variable a and will print

its value on the screen. At this stage the output will be looking like as:

The sum of 5

In the same manner, this process will go on until there comes an end point of format string. The final
output would be appears as:

The sum of 5 and 6 is 11

The following program will help you to understand the concept more closely as it uses the printf()
statement to print the result of the calculations.

Write a program to print the sum of two numbers.

Program:

#include<stdio.h>

void main()

{

int a, b, c;

a = 5;

b = 6;

c = a + b;

40

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

printf(“\n sum = %d”, C); /* will print the desired */

/* result on the monitor */

}

Output:

Sum = 11

Format Specifiers

%d -- displays a decimal (base 10) integer

%i -- used with other specifiers to indicate a "long"

%e -- displays a floating point value in exponential notation

%f -- displays a floating point value

%c -- displays a single character

%s -- displays a string of characters

Example: Formatted Output with printf ()

Int a;

Float b;

scanf(“%d %f”, &a, &b);

printf(“the value of a= %d and b= %f \n”, a, b);

3.4 Escape Sequences

Escape sequences, as previously mentioned, are used to control the position of output by shifting the
monitor's cursor. Any character preceded by a backslash is meant to be treated as an escape sequence.
The backslash informs the compiler that this is a special character constant of different significance
than printf ().

Program shows the usage by some of the frequently used escape sequences

#include<stdio.h>

void main()

{

printf(“\n 1..\t2..\t3....\n”);

printf(“The question is, \” said Humpty Dumpty,\”which is to be masterthat\’s all.\””);

}

Output:

1.. 2.. 3....

“The questions is, “said Humpty Dumpty,” which is to be master-that’s all”.

41

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3.5 scanf()

As previously stated, in order to write an interactive application, certain statements in the
programme must be able to collect data from the user. We provided a few functions in this sense,
such as getchar(), gets(), and getch(), among others. A programmer, on the other hand, needs more
flexibility in terms of:

1. Read the data from keyboard according to a specified format

2. Instruct the compiler to receive the particular type of value from the keyboard. For instance, integer
value or floating point value.

Instruct the compiler to read the specified number of digits of a given number. Reading mixed data
types from the keyboard using single function.

But the use of above mentioned functions is restrict with the character values only. There is a need of
more flexible and general function that could address the problems mentioned above.

scanf(), the complement of the printf(), can actually be used to read the different type of data from
the keyboard in a specified format. Due to what, it is referred to as formatted input functions.

Like printf(), scanf() also uses a format string to describe the format of the input, but with some little
variations as given below:

1. It doesn’t allow escape sequences in the format string.

2. It requires a special operator & called as “address of” to be prefix with the variable

identifiers.

So, a scanf() takes the following from:

scanf(“ format string”, arg1, arg2,.......argn);`

Where format string contains the formatting information by using which the data is to be entered
and arg1, arg2,...., argn are the arguments (normally variables preceded by an ampersand &) specify
the address of location where the data is stored. Both the section i.e., format string and arguments
(within itself also) must be separated by commas.

The format string in a scanf() describe the format of the input and it may contain:

1. Conversion specifiers as in the printf() functions.

2. White space characters i.e., tabs, blanks, and newlines.

3. Other characters than white spaces, that are matching characters and asteric

3.6 sign (*)

To have a better understanding of the concept, consider the following statement:

In layman's terms, the preceding statement is an instruction to the compiler to obtain an integer value

from the keyboard and store it in a variable called a. Where an is an integer variable that was

previously declared. Following this argument, the value stored in the variable can be used anywhere

for any reason. Let's take a closer look at the different components of this sentence.

Conversion Specifier in scanf()

42

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

As mentioned earlier, a conversion specifier instruct the scanf() to convert the input stream of binary
data coming from the keyboard in to the data type specified by the conversion character.

For instance, integer in case of %d as it utilizes the same conversion specifiers as the printf() except
one i.e., [...]. More than one conversion specifier can be used in a single scanf() to read more than one
value.

In such a case, corresponding variables each preceded by & must include in the same statement.

Example: The statement.

scanf(“ %d %d”, &a, &b);

Will read two integer values from the keyboard, first value will be assign to a and second to b.

White Spaces in scanf()

When several variables are entered in a single scanf(), the white space character may be used to
distinguish them (i.e., blank space, tabs or new line character). White spaces in the format specifier
are not taken into account. As a result, they will be read in the input data but ignored. Example:
Consider the following statement once again:

As white spaces are required is input stream, they just can be used to identify the end of each input
value.

For real time experience, consider the following program which demonstrate the usage of scanf() to
read integer values from the keyboard. This program will accept two numbers from the user and will
print their sum on the monitor

Program: input function

#include<stdio.h>

43

 LOVELY PROFESSIONAL UNIVERSITY

Notes

int main()

{

int var1;

printf(“Enter value of var1”);

scanf(“%d”,&var1);

printf(“Value of Var1 is = %d”,var1);

return 0;

}

Program: To find radius of circle

#include<stdio.h>

void main()

{

float r, a, c;

const float pi = 3.14;

printf(“\n Enter the radius of a circle:”);

scanf(“ %f”, & r);

a = pi * r *r ; /* as r power 2 = r * r */

c = 2 * pi * r;

printf(“\n Area = % f”, a);

Printf(“\n circumference = %f”, c);

}

Program : lower Case to upper case

#include<stdio.h>

void main()

{

char ch;

printf(“\n Enter any character in lower case:”);

scanf(“%c’, & ch);

printf(“ \n The typed character in upper case is %c”, ch);

}

Output:

Enter any character in lower case: h

The typed character in upper case is: H

 If execution is not provided with the proper input, result may be unexpected

44

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3.7 Reading and Writing a Character

Unformatted console I/O functions don’t allow input and output to be formatted as per the user
requirements. In this category, we have:

1. Character I/O functions

2. String I/O functions

Character I/O functions are functions that programme input/output of one character at a time. Since
they deal with individual character values, these are the most basic I/O functions. To enter a
character from the keyboard, use the following functions:

1. getchar()

2. getch()

3. getche()

Where as the output of a character as the monitor, the following functions can be used:

1. putchar()

2. putch()

Beside these, getc() and putc() can also be used for one same purpose.

Let us see the working of above mentioned console I/O functions with the help of programs.

getchar() and putchar()

getchar() function is used for reading a character from the keyboard. The syntax for the getchar()

function is:

Character_variable = getchar(void);

Where character_variable is any valid C variable name. The word void indicates that no argument is
needed for calling the function. Following statement reads a character and stores it in variable

ch, that is of type char obviously.

ch = getchar();

The getchar() waits for the character input until a character in typed at the keyboard. The typed
character is echoed to the monitor and before assigning this value to the character variable appeared
on the left side, it requires a carriage return (enter key) to be type by the user. getchar() function
returns a value called EOF (End of File) if an error occurs.

Typically, the value of EOF is 1, though this may vary from compiler to compiler.

The putchar() is complementary function of getchar(). It is used to display a character on the monitor.
The syntax for the putchar() function is:

putchar(character_variable);

Where character_variable refers to some previously declared character variable. The following
statement displays a character value on the monitor whatever is stored inside ch at the current cursor
position.

putchar(ch);

We can also use putchar() with character value directly, as shown below.

putchar(‘V’);

This statement will display the character V as the monitor, whereas the statement

putchar(‘\n’);

would cause the cursor on the screen to move to the beginning of the next line.

This function also returns EOF if there occurs an error.

The following program illustrates the working of these functions. This program will accept a
character from the keyboard and will print it on the monitor screen

45

 LOVELY PROFESSIONAL UNIVERSITY

Notes

#include <stdio.h>

void main()

{

 int c;

 printf("Enter a character");

 c = getchar();

 putchar(c);

}

3.8 gets() and puts() Functions

Character I/O functions have a drawback in that they can only handle one character at a time. Strings,
on the other hand, are commonly used in real-world programmes. A string is nothing more than a
set of characters. String I/O functions are functions that make it easier to move strings between a
computer and regular I/O devices. Following function can be used for handling strings I/O:

1. gets()

2. puts()

gets() function is used to accept a string from the keyboard whereas puts() function is used to print a
string on the monitor. Besides these I/O functions, C’s standard library also provides several
functions for various string handing operations. Let’s first discuss gets() and puts() in this section.

The gets() function receives a sequence of characters i.e., a string entered at the keyboard and store
them in a variable (essentially as Array of type char) mentioned with it.

gets() function

The gets() function allows the user to type a string of characters and then press the enter key. A

character list is used to store all of the characters entered by the user. To render the array a string, the

null character is inserted. The user will enter space-separated strings using the gets() method. It

returns the string that the user typed in. The gets() function is problematic to use because it doesn't

search for array bounds and keeps reading characters until the new line (enter) is encountered.

Decleration

char[] gets(char[]);

Program for gets ()

#include<stdio.h>

void main ()

{

 char s[25];

 printf("Enter the string? ");

 gets(s);

 printf("You entered %s",s);

}

puts() function

The puts() function looks a lot like the printf() function. The puts() function is used to print the string

that was previously read using the gets() or scanf() functions on the console. The integer value

returned by the puts() function represents the number of characters printed on the console. Since it

46

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

prints an extra newline character with the string, which transfers the cursor to a new line on the

console, the integer value returned by puts() will always be the number of characters in the string

plus 1.

Declaration

int puts(char[])

#include<stdio.h>

#include <string.h>

int main(){

char name[30];

printf("Enter your name: ");

gets(name); //reads string from user

printf("Your name is: ");

puts(name); //displays string

return 0;

}

Program For gets() and puts()

#include <stdio.h>

void main()

{

char name[10];

printf(“Enter Name”);

gets(name);

printf("Entered name is");

puts(name);

return 0;

}

Difference between Formatted and Unformatted Functions

• Formatted input and output functions contain format specifier in their syntax.

• Unformatted input and output functions do not contain format specifier in their syntax.

• printf() and scanf() are examples for formatted input and output functions.

• getchar(), gets(), puts(), putchar() etc. are examples of unformatted input output functions.

47

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Program

#include<stdio.h>

void main()

{

char str [11]; /* declar a character array str of size 11 */

printf(“\n enter a string (Maximum 10 characters):”);

gets(str); /* will read a string from the keyboard*/

printf(“\n the entered string \n:”);

puts(str); /* will print the under of str on the monitor and */

print(“ /* and advances the cursor to the*/ thank you”);

}

Output:

Enter a string (maximum 10 characters): GoodDay

The entered string is: GoodDay

Thank you

Summary

• I/O operations deal with the transfer of data to peripheral devices such as monitor, key

board, printer or secondary storage etc.

• A library is nothing more than one or more files that contain a group of predefined

functions. In its most general form the word ‘console’ refers to the standard input and

output devices.

• Unformatted console I/O functions doesn’t allow input and output to be formatted as per

the user requirements. getchar() function is used for reading a character from the keyboard.

• The putchar() is complementary function of getchar(). It is used to display a character on the

monitor.

• The another possible use of getch() is to temporarily halt the execution of a program

intentionally. gets() function is used to accept a string from the keyboard whereas puts()

function is used to print a string on the monitor.

• Formatted I/O Functions allows input and output operations to be performed in a fixed

format.

• The printf() in one of the most important and useful functions to display data on monitor.

48

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

• Except for double quotes, escape sequences and conversions specifiers, all characters with

in a pair of double quotes will be treated as literal text (string context) and will be display

as it is a on the monitor.

• Any character that is prefix with a backslash is suppose to be treated as an escape sequence.

• A conversions specifiers always begin with the percent sign (%) and immediately followed

by one or more conversions characters

Keywords

printf() scanf()

getchar() putchar()

gets() puts()

Header files: A text file that contains prototype of functions, definitions of constants etc. and which

can be included in a C program file to access those functions and constants.

#include compiler directive: This compiler directive instructs the compiler to insert the contents
of the specified file in place of this line.

Standard library: A group of in-built functions stored in a single file as a unit

Self Assessment

1. Which format specifier is used for integer

A. % c

B. % d

C. % f

D. % h

2. Which is correct file pointer for standard input

A. Stdout

B. Stdin

C. Stderr

D. Stdab

3. Which function is used for output on screen

A. Main ()

B. Scanf ()

C. Printf ()

D. Get ()

4. What is extension of header file?

A. .c

B. .b

C. .e

D. .h

5. main () is a

A. Keyword

B. Function

C. Integer

D. Pointer

6. Which format specifier is used for float?

A. % c

B. % d

49

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. % h

D. % f

7. Input is taken using function….

A. Printf ()

B. Fprintf ()

C. Scanf ()

D. Main ()

8. Putchat() is used for..

A. As input function for string

B. display exactly one character as output.

C. Display one string on screen

D. Input from user

9. Getchar() having similarities with..

A. Puts ()

B. Gets ()

C. Main ()

D. Putchar ()

Review Questions

1. Define stdin, stdout, and stderr.

2. Differentiate the followings:

(a) printf() and puts()

(b) getche() and getch()

(c) scanf() and gets()

3. How format string is associated with printf()? Discuss the various possible components of a format
string in detail.

4. What happens if one uses variables in scanf() without using the address of operator (&)?

Discuss.

5. An amount of rupees, say R, is deposited in a bank for Y years, which pays simple interest at the
rate of ‘rt’ annually. Write a C program that prints the amount after Y years

6. Write down two functions xgets() and xputs() which work similar to the standard library functions
gets() and puts().

7. What is the differences between getchar(), fgetchar(), getch() and getche()? With the help of
suitable example.

8. Write down two functions xgets() and xputs() which work similar to the standard library functions
gets() and puts().

9. Write down a function getint(), which would receive a numeric string from the keyboard, convert
it to an integer number and return the integer to the calling function. A sample usage of getint() is
shown below:

main()

{

int a ;

a = getint() ;

printf (“you entered %d”, a)

}

10. What is the differences between getchar(), fgetchar(), getch() and getche()?

50

Programming Methodology

Unit 03: Unformatted and Formatted I/O

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Answers: Self-Assessment

1. B 2. B 3. C 4. D 5. B

6. D 7. C 8. B 9. B

Further Readings

Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education, Year of
Publication: 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company
Limited, New Delhi

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

Greg W Scragg, Genesco Suny, Problem Solving with Co mputers, Jones and Bartlett,
1997.

51

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 04: Data Types and Operators

CONTENTS

Objectives

Introduction

4.1 Data Types

4.2 Additional Data Types

4.3 Operators

Relational Operators

4.4 Operator Precedence and Associativity

Summary

Keywords

Self-Assessment

Answers: Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Various Data types

• Explain arithmetic operators

• Describe conditional, logical and relational operators

• Describe arithmetic expression

Introduction

The term "data types" refers to a comprehensive framework for defining variables and functions of
various types. The type of a variable decides how much storage space it takes up and how the stored
bit pattern is interpreted. A value's data form identifies a set of properties that it shares.

An expression is a set of constants, variables, and operators that follow the grammatical rules of the
language C and evaluate to a valid value. Activity refers to the impact that operators have on their
operands.

Valid or well-formed expression refers to an expression that follows the grammar rules of the C
programming language. An expression that is true or well evaluates to a single value of a valid C
data form. C expression can be of the following types:

1. Numerical expressions always evaluates to a numeric value on which arithmetic operations can be
performed. They can be further divided into the following two categories:

(a) Integer expression: those evaluating to integer value

(b) Real expression: those evaluating to a real (floating point) value

Thus, 3 + 5 is an integral expression and 3.8 – 6.97 is a real expression.

2. Logical or conditional expressions always result into either of the two values – true or false.

Thus 3 > 5 and x <= 7 are conditional expressions.

52

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4.1 Data Types

One of the factors that determines the strength of a programming language is the number of different
types of data that it can handle. In this regard, the C programming language is extremely strong. In
a C program, almost every form of data can be interpreted and manipulated.

At the most basic level of a digital computer, all data and instructions are processed using only binary
digits (0 and 1). As a result, the binary equivalent of the decimal number 65 is 0100 0001. Also stored
is the character "A" as the binary equivalent of 65 (ASCII): 0100 0001. Both stored values are identical,
but they represent different types of data.

Even if the value is only 0100 0001 as long as it is stored on the secondary storage unit, the meaning
of a stored value is dependent on the type of variable in which the value is stored. If 0100 0001 is
stored in an integer type variable, it will be interpreted as 65, while if it is stored in a character type
variable, it will be interpreted as "A."

As a result, the data form refers to how a value stored in a variable is interpreted. In other words, a
variable's data type refers to the type of data it may hold.

Every programming language supports a different set of data types. Furthermore, the size of data
types (the number of bytes used to store a value) varies by language. Furthermore, it is hardware
platform based.

C has a rich set of data types that is capable of catering to all the programming requirements of an
application. The C-data types may be classified into two categories: Primary and Composite data
types as shown in figure.

C has two distinct categories of data types – primary, and composite. Primary data types are the ones
that are in-built with C language while composite data types allow the programmers to create their
own data types.

There are five primary data types in C language.

1. char: stores a single character belonging to the defined character set of C language.

 char a;

2. int: stores signed integers. e.g., positive or negative integers.

 int b;

3. float: stores real numbers with single precision (precision of six digits after decimal points).

53

Programming Methodology

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 float c;

4. double: stores real numbers with double precision, i.e., twice the storage space required by

float.

 double d;

5. void: specify no values.

The following table shows the meaning and storage spaces required by various primary data types.

4.2 Additional Data Types

Primary C data types are available in a number of sizes, allowing for the storage of a broad range of
values. A keyword (data type qualifier) is appended before the data type in a program to imply this.

For the int basic sort, data type qualifiers include short, long, signed, and unsigned. In C, you can
specify an integer data type as a short int, int, unsigned int, or long int. The set of values and size of
these qualifying data-types are determined by implementation. In contrast, short is smaller or equal
to int, which is smaller than long. An unsigned int has a wider variety than a signed int because it
does not store negative integers..

Also known as derived data types, composite data types are derived from the basic data types. They
are five in number.

1. Array: Sequence of objects, all of which are of same types and have same name.

Example: int num [5];

Reserves a sequence of five locations of 2 bytes, each, for storing integers num[0], num[1],

num[2], num[3] and num[4].

2. Pointer: Used to store the address of any memory location.

Example: int *ptr.

54

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 Note: - Asterisk (*) symbol is used to declare pointer variable.

3. Structure: Collection of variables of different types.

 Example: A structure of employee’s data, i.e., name, age and salary.

4. Union: Collection of variables of different types sharing common memory space.

5. Enumerated: Its members are the constants that are written as identifiers though data type
 they have signed integer values. These constants represent values that can be assigned to
 corresponding enumeration variables.

Enumeration may be defined as:

enum tag { member1, member2 …. member n};

E.g.: enum colors {red, green, blue, cyan};

colors foreground, background;

4.3 Operators

An operator is a symbol that instructs the machine to perform mathematical or logical operations on
data held in variables. Data items (variables and constants) can be manipulated arithmetically in a C
program using operators.

C operators can be classified into a number of categories.

• Unary operator

• Binary operator

• Arithmetic operators

• Relational operators

• Logical operators

• Conditional operators

• Assignment operators

• Bitwise operators

• Increment and decrement operators

• Special operators

Unary operator

Unary operators are operators that act upon a single operand to produce a new value.

There are following types unary operators in C

55

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Binary operator

Binary operators are those that operate on two operands. For example, a + b—the addition operator
(+) surrounded by two operands—is a popular binary expression. Arithmetic, relational, logical, and
assignment operators are all subsets of binary operators.

The binary operators are categorized as follow:

• Multiplicative operators: multiplication (*), remainder (%), and division (/)

• Additive operators: addition (+) and subtraction (-)

• Shift operators: left shift (<<) and right shift (>>)

• Relational operators: less than (<), less than or equal to (<=), greater than (>), and greater
than or equal to (>=)

• Equality operators: equality (==) and inequality (!=)

• Bitwise operators: AND (&), OR (|), and XOR (^)

• Logical operators: AND (&&) and OR (||)

Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations include addition, subtraction,
multiplication and division on one or more operands.

It is used to performed operations on numeric data types like int, float and double Arithmetic
operators work on numeric type of operands. C provides all the basic arithmetic operators. There are
five arithmetic operators in C.

56

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The division operator (/) requires the second operand to be non-zero, though the operands need
not be integers. When an integer is divided by another integer, the result is also an integer. In
such instances the division is termed as integer division. Consider the following:

int x;

x = 10;

What do you expect the value of x/4 to be? If you guessed 2.5, you are wrong.
The result is of course 2.5 however, since it is integer division (division operation in which both
the operands are integers), the result 2.5 will be truncated to 2 to make the result an integer. In
case you wish to get the correct value you make this division a float type as x/4.0.
The % operator is known as modulus operator. It produces the remainder after the division of
two operands. The second operand must be non-zero.
Rest all the other operators work in their normal arithmetic way. Normal BODMAS rules are also
applicable to these arithmetic operators.

Relational Operators

The relational operator compares two operands to see if they are equivalent, unequal, or if one is
greater or inferior than the other.

The consequence is always a numeric value equal to true or false, regardless of whether the
operands are variables, constants, or expressions. As previously stated, a non-zero result indicates
fact, while a zero result indicates false. Six relational operators are available in the C programming
language.

= = equal to

! = not equal to

< less than

< = less than or equal to

> greater than

> = greater than or equal to

A simple relation contains only one relational expression and takes the following form:
<ae-1> <relational operator> <ae-2>
<ae-1> and <ae-2> are arithmetic expressions, which may be constants, variables or combination
of these. The value of the relational operator is either 1 or 0. If the relation is true, result is 1
otherwise it is 0.
Example:

Expressions Result

6.3 < = 15 True

2.5 < -2 False

-10 > = 0 False

10 < 8+3 True

Logical Operators

Using logical operators, several relational expressions may be combined to create a single compound
relational expression. To combine two or more relational statements, logical operators are used. Three
logical operators are available in C. A compound relation behaves in the same way as a single
relation generating a real or false value

57

Programming Methodology

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Operator Meaning Result

&& Logical AND True if both the operands are true

¦¦ Logical or True if both the operands are true

! Logical not True if the operand is false and vice versa

1. (age > 50 && weight < 80) will evaluate to true if age is more than 50 and also weight is less than
 80. Otherwise it will evaluate to false.

2. (a < 0 ¦ ch = = ‘a’) will evaluate to true if a is less than 0 while ch is equal to ‘a’, false otherwise.

3. (!(a < 0)) will evaluate to true if a is greater than or equal to 0, false otherwise.

Assignment Operators

Assignment operators are used to store the result of an expression to a variable. The most
commonly used assignment operator is (=). Be careful not to mistake assignment operator (=) for
mathematical equality operator which is indicated by the same symbol.
An expression with assignment operator is of the following form:
<identifier> = <expression>;
When this statement is executed, <expression> is evaluated and the value is stored in the
<identifier>.
Let us consider the following usage of assignment operator in C language.

int i;
i = 5;
i = i + 10;
The value now stored in the variable “i” will be 15. In this program, the current value stored in
variable i is 5. Thus, while executing i = i+10, the right hand side will be evaluated to give a value
15. This value will then be assigned to the left hand side. As a result, the current value of I after
execution of this statement will become 15.
C language provides a short cut to write arithmetic assignment expressions which takes the
following form:
<Variable> op = <expression>;

This statement is identical to:

<Variable> = <Variable> op <expression>;

Thus, i=i+3 can be written as i+=3

Sum=sum-2 can be written as sum-=2

i=i*5 can be written as i*=5

The advantages of using this form of assignment operators are:

1. The statement is more efficient and easier to read.

2. What appears on the L.H.S need not to be repeated and therefore it becomes easier to write
for long variable names. Consider the following C code that illustrates this point.

int averylongvariablename;

averylongvariablename = 2;

while (averylongvariablename < 20)

{

averylongvariablename*= averylongvariablename;

58

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

Increment and Decrement Operators

C has two very useful operators ++ and -- called increment and decrement operators respectively.

These are generally not found in other languages. These operators are unary operators as they
require only one operand. The operands must be a variable name and not a constant.

The increment operator (++) adds one to the current value of the operand and stores the result back
into the operand, while the decrement operator (--) subtracts one from the operand and stores the
decremented value back into the operand.

There are two different forms of increment and decrement operators. When they are used before
the operand, it is termed as prefix, while when used after the operand, they are termed as postfix
operators.

Example:

int i = 5;

i++;

++i;

––i;

i––;

When used in an isolated C statement, both prefix and postfix operators have the same effect, but
when they are used in expressions, each of them has a different effect.

In expressions, postfix operator uses the current value and then increments/decrements while

in the prefix form the value is incremented/decremented first and then used in the expression.
Consider the following examples:

E.g.: b = a ++;

this is postfix increment expression. This statement is equivalent to:

{b = a;

a = a+1;}

E.g. b = - - a;

this is prefix decrement expression. This statement is equivalent to:

{ a= a-1;

b = a; }

Consider the following C code that illustrates the usage of postfix and prefix increment

operators.

int a = 10; b = 0; //a = 10 and b = 0

a++; //a = 11 and b = 0

b = ++a; //a = 12 and b = 12

b = a++; //a = 13 and b = 12

Conditional Operators

C provides a ternary operator called the conditional operator which is represented

by :?. The syntax of this operator is given below.

A?B:C

Where “A” is a conditional expression resulting in either of the two values – true or false. The

value generated by this operator in the expression depends on the value of the conditional

59

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

expression “A”. If the value of “A” is true then the expression evaluates to “B” otherwise it

results in “C”.

Bitwise Operators

You're aware that a numeric value is stored in binary form in a variable. Data is manipulated at the
bit level using bitwise operators. These operators are used to measure bits or to move them left or
right. Only integer data types are supported by bitwise operators. The following is a list of the
various bit wise operators available in the C language, along with their corresponding meanings.

| (Bit-wise OR): Binary operator takes two operands of int type and performs bit-wise OR
operation. With assumption that int size is 8-bits:

int a = 5; [binary : 0000 0101]

int b = 9; [binary : 0000 1001]

a | b yields [binary : 0000 1101]

& (Bit-wise AND): Binary operator takes two operands of int type and performs bit-wise AND
operation. With same assumption on int size as above:

int a = 5; [binary : 0000 0101]

int b = 9; [binary : 0000 1001]

a & b yields [binary : 0000 0001]

^ (Bit-wise Logical XOR): XOR gives 1 if only one of the operand is 1 else 0. With same assumption
on int size as above:

int a = 5; [binary : 0000 0101]

int b = 9; [binary : 0000 1001]

a ^ b yields [binary : 0000 1100]

<< (Shift left): This operator shifts the bits towards left padding the space with 0 by given integer
times.

int a = 5; [binary : 0000 0101]

a << 3 yields [binary : 0010 1000]

>> (Shift right): This operator shifts the bits towards right padding the space with 0.

int a = 5; [binary : 0000 0101]

a >> 3 yields [binary : 0000 0000]

~ (one’s complement operator): It is a unary operator that causes the bits of its operand to be
inverted so that 1 becomes 0 and vice-versa. The operator must always precede the operand and
must be integer type of all sizes. Assuming that int type is of 1 byte size:

inr a = 5; [binary: 0000 0101]

~a; [binary: 1111 1010]

60

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Special Operators

The C programming language also includes a variety of special operators that are not
found in other languages. The comma operator, sizeof operator, pointer operators (& and
*), and member selection operators (. and ->) are among these operators. When we
introduce pointers, we'll talk about pointer operators, and when we talk about structures
and unions, we'll talk about member selection operators.

We will discuss comma operator and sizeof operator in this section.

Comma Operator

This operator is used to link the related expressions together.

Example: int x, y, z;

z = (x = 10, y=20, x+y);

Here, the first statement will create three integer type variables – x, y and z. In the second
statement, right-hand side will be evaluated first. Consequently, 10 will be stored in
variable x, then 20 will be stored in variable y, and then values in x and y will be
multiplied result of which will be stored in variable z. Thus, the value stored in the
variable z will be 200 at the end

of execution.

Sizeof Operator

The sizeof operator works on variables, constants and even on data types. It returns the
number

of bytes the operand occupies in the memory.

Consider the following C code for illustration.

sizeof(int); //Gives number of bytes occupied by an

//integer type variable

sizeof(float); //Gives number of bytes occupied by a

//float type variable

The output of this code will be 2, 4. Don’t get disheartened if you get different result. This
is only because the machine on which this program was run allotted 2 bytes for int type
and 4 bytes for float type. The result that you get depends on the number of bytes
allocated to these types on your machine. Nevertheless in all cases sizeof operator returns
the number of bytes occupied by its operand on that particular machine.

4.4 Operator Precedence and Associativity

More than one operator can be used in a single sentence. The order in which operators are executed
is determined by their precedence. When evaluating expressions involving multiple operators,
precedence specifies the order in which operators should be added to the operands.

Depending on the level, operators of the same precedence are evaluated from left to right or right to
left. This is referred to as an operator's associativity property. The following is a full list of operator
precedence in the C language.

61

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Summary

Precedence defines the sequence in which operators are to be applied on the operands, while
evaluating the expressions involving more than one operator.

62

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keywords

Expression: A combination of identifiers and operators according to some rule that yields a value

Operator Proceeding: The precedents of an operator determine the order in which expression will
be evaluated

Operator: A symbol that works on one or more values to yield another value

The Size of Operator: The size of operator which is used to measure the date sizes. It a unary

compile type operator that is to return the length of the variable or parenthesized type specifiers.

Self-Assessment

1. Which one is not assignment operator?

A. +=

B. *=

C. &

D. >>=

2. (&=) operator is used for…..

A. Bitwise exclusive OR and assignment operator

B. Bitwise inclusive OR and assignment operator.

C. Bitwise AND assignment operator

D. None of these

3. Which one is Modulus AND assignment operator

A. <<=

B. %=

C. /=

D. None of these

4. In c which operators having highest priority

A. Logical operator

B. Relational operator

C. Arithmetic operator

D. Conditional operator

5. Conditional operator in c is also called

A. Relational operator

B. Logical operator

C. Ternary operator

D. None of these

6. Which are the data types

A. Basic

B. Derived

C. Void

D. Above all

7. Which is not Derived Data Type

A. Array

B. Pointer

C. Union

63

Unit 04: Data Types and Operators

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. Char

8. Which is correct basic data type

A. Int

B. Char

C. double

D. Above all

9. Find wrong statements

A. int a, b;

B. float rate;

C. int =2.5;

D. char = ‘B’;

10. Which is not unary operator

A. ++

B. --

C. &

D. +

11. Relational operator is used with

A. 1 operand.

B. 2 operands

C. Both 1 and 2

D. none of above

12. Which among the following is NOT a logical operator

A. &&

B. ||

C. !

D. @

Answers: Self Assessment

1. c 2. c 3. b 4. c 5. c

6. d 7. d 8. d 9. c 10. d

11. b 12. d

Review Questions

1. What are the different classes of operators available in C language?

2. Define the term “Expression”. Explain the various types of expression in C.

3. What are the various logical and relational operators supported by C. Explain them with
proper examples.

4. Draw a table that will provide a complete list of operators, their precedence level and
their rules of association.

5. List down the advantages and limitations of using conditional operator in a C program.

6. Write short notes on:

64

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Notes

(a) Shorthand assignment operators

(b) Bitwise operators

7. Write in detail about the various data type available in C.

Further Readings

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company
Limited, New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,
1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

65

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 05: Control Structure

CONTENTS

Objectives

Introduction

5.1 Designing Structured Programs in C

5.2 Top Down Design

5.3 Type Conversion in C

5.4 Type Modifiers

5.5 Decision-making Control Statement

5.6 nested if statement

5.7 Looping

5.8 Jump and Break Statement

5.9 goto Statement

Summary

Keywords

Self-Assessment

Review Questions

Answers: -Self Assessment

Further Readings

Objectives

• After studying this unit, you will be able to:

• Explain decision making in C

• Explain branching

• Describe if, if-else statement in C

• Explain switch statement

• Explain looping concept in C

• Describe do-while loop

• Describe goto statement

Introduction

To write a realistic programme, don't think of it as a collection of statements put in a specific order.
It takes a lot more than that. Take a look at a real-life example. Life does not always go as planned:

1. There are some situations when you have to take decisions like whether to purchase this book or
not.

2. There are also some situations where you have to perform the particular action again and again
like for better understanding read this unit 5 times continuously.

In the same way, it's rare that we write a computer programme that doesn't run into similar issues.
Depending on the circumstances, most programmes require a statement or combination of
statements to be executed numerous times or not at all.

66

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The C programming language offers a number of programme control statements that allow you to
influence the order in which your programmes are executed. This unit looks at different iteration-
based programme control statements and how to use them in a programme. The break and continue
jump statements in C are also discussed in this section.

5.1 Designing Structured Programs in C

A C program is divided into different sections. There are six main sections to a basic c program.

• Documentation

• Link

• Definition

• Global Declarations

• Main functions

• Subprograms

Documentation Section

The documentation area of the programme is where the programmer provides information about the
programme. He normally offers the program's name, author information, and other facts such as
coding time and description. It provides a high-level overview of the code to anyone reading it.

**

* File Name: Helloworld.c

* Author: Name

* date: DD/MM/YYYY

* description: a program to display hello world

* no input needed

*/

Link Section

This part of the code is used to declare all the header files that will be used in the program. This leads
to the compiler being told to link the header files to the system libraries.

 #include<stdio.h>

Definition Section

In this section, we define different constants. The keyword define is used in this part.

 #define PI=3.14

67

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Global Declaration Section

The declaration of global variables takes place in this section of the code. This section declares all of
the global variables that are used. In this section of the code, the user-defined functions are also
declared.

 float area(float r);

 int a=5;

Main Function Section

In all C programmes, the principal role is necessary. Each major role is divided into two sections.
This has two parts: a declaration section and an execution section. The declaration section contains
all of the variables. Curly brackets are used to begin the execution and curly close brackets are used
to finish it. Both the declaration and execution parts are contained within the curly braces.

int main(void)

{

int a=500;

printf(" %d", a);

return 0;

}

Sub Program Section

This section of the software defines all user-defined functions.

int add(int a, int b)

{

return a+b;

}

5.2 Top Down Design

In this strategy, a huge project is broken down into smaller projects known as modules. The C
programming language facilitates this technique of project creation. It's often a good idea to break
down a solution into modules in a hierarchical approach. The main aim of a top-down method is to
break down the problem into tasks, which are then broken down into smaller sub-tasks, and so on.
The primary module is built initially, followed by the next level modules in this manner. This
procedure is done until all of the modules are complete.

Advantages of top-down approach:

1. In this approach, first, we develop and test most important module.

2. This approach is easy to see the progress of the project by developer or customer.

3. Using this approach, we can utilize computer resources in a proper manner according to the
project.

4. Testing and debugging is easier and efficient.

5. In this approach, project implementation is smoother and shorter.

6. This approach is good for detecting and correcting time delays.

68

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5.3 Type Conversion in C

Converting one type of data type to other to perform some operations. Conversion is done on those
data types where conversion is possible.

Implicit Type Conversion

This type of conversion is done by compiler whenever necessary automatically without any
commands by user. This conversion is performed by compiler when a particular expression contains
more than one data type.

 int a = 10;

 double b = 50.5,sum;

 sum=a + b;

 #include<stdio.h>

int main(){

int a=10;

double b=9.34,sum;

69

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

sum=a+b;

printf("%lf",sum);

return 0;

}

Explicit Type Conversion

Without the use of compiler when one data type is changed to another data type, user explicitly
defines within the program the data type of the operands in the expression.

double a = 4.5,b=3.5;

 //explicitly defined by user

 int sum=(int)a+(int)b;

#include<stdio.h>

int main(){

double a = 10.5,b=5.5;

//explicitly defined by user

int sum=(int)a+(int)b;

printf("%d",sum);

return 0;

}

5.4 Type Modifiers

In c language Data Type Modifiers are keywords used to change the current properties of data type.

Long

This can be used to increased size of the current data.it is applied on int or double data type.

70

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 long double a;

#include<stdio.h>

int main(){

long double a ;

printf("%d",sizeof(a));

return 0;

}

Short

In general int data type occupies different memory spaces for a different operating system; to allocate
fixed memory space short keyword can be used.

 short int a;

#include<stdio.h>

int main(){

short int a ;

printf("%d",sizeof(a));

return 0;

}

Unsigned

This keyword can be used to make the accepting values of a data type is positive data type.

unsigned int a=10; //right

 unsigned int a= -50; //wrong

#include<stdio.h>

int main(){

unsigned int a=-10 ;

printf("%u", a);

return 0;

}

71

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Signed

This keyword accepts both positive and negative value.

 unsigned int a=10; //right

 unsigned int a= -50; //right

#include<stdio.h>

int main(){

signed int a=-10 ;

printf("%d", a);

return 0;

}

5.5 Decision-making Control Statement

Control flow statement or programme control statement is a statement that allows us to control the
flow of a program's execution. Sequentially, selectively, or iteratively, programme statements can be
performed. The C programming language includes constructs for sequence, selection, and iteration.
The program's flow is explained by a mix of one or more of the following structures.

1. Sequence

2. Selection

3. Iteration

Sequence

In the sequence construct, as the name implies, statements are executed sequentially i.e. one after the
other. In this, neither the statement are repeated nor in the order of execution changed as shown in
Figure.

72

 LOVELY PROFESSIONAL UNIVERSITY

Notes

You probably noticed in the previous unit that a C programme is executed top down, that is,
execution begins with the beginning of the main() function and continues, statement by statement,
until the end of the main (). In a C programme, the following programme illustrates the sequential
execution of statements.

#include<stdio.h>

main(){

printf("\n First statement");

printf("\n Second statement");

printf("\n Third statement");

printf("\n Second last statement");

printf("\n Last statement");

}

Output : -

 Other complex statement may be used in a sequence to demonstrate the concept.

Selection

Only appropriate statements are often performed instead of all of them, depending on the input and
the circumstance. A condition test is used to execute statements in the selection construct. You advise
the computer to do one course of action if the test returns true; otherwise, you advise the programme
to take an other course of action. The selection construct contains two or more sets of statements, but
only one of them is executed, as shown in the Figure.

73

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The selection construct can be implemented by means of the if construct. The if construct makes

use of relational and logical operators for decision making, as shown in the pseudo code given

below:

#include<stdio.h>

main(){

int marks=50;

if(marks>40)

 printf("Pass");

else

 printf("Fail");

}

Output: -

Iteration

The iteration constructs are an efficient method of handling a series of statements that must be
repeated a variable number of times. Sometimes the required number of repetitions is known in
advance and sometimes the statements repeats over and over until certain specified conditions on
met, as shown in the Figure.

74

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The iteration construct is also called as loop. The statements that are to be executed is called

as body of the loop and the condition on which a loop terminates is called as exit condition as
demonstrated by the program given below:

#include<stdio.h>

main(){

int i=0;

while(i<=20){

 printf("\n %d ",i);

 i++;

}

}

Output: -

75

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Simple if Statement

In its basic form, the if statement evaluates a test condition (i.e., nothing but an expression) and direct
program execution depending on the result of that evaluation. The general form of a simple if
statement is as shown below:

if (expression)

statement;

Where a statement may consist of a single statement, a compound statement or nothing as an empty
statement. The expression also referred so as test condition must be enclosed in parentheses, which
causes the expression to be evaluated first. If it evaluate to true (i.e., a non-zero value), then the
statement associated with it will be executed otherwise ignored and the control will pass to the next
statement.

 Consider the following statement:

:

if (marks > 9)

printf (“\n Pass”);

:

:

The above code fragment will printf “Pass” on the monitor if the value of marks is greater than 9.If
the value of marks is not grater than 9, the control simple ignore this statement and will pass to the
next statement. The follow program shows the use of simple if as it accepts the marks of a student
and printfs his/her result.

#include<stdio.h>

void main

{

int marks;

printf(“\n enter your marks”);

scanf(“%d”, marks);

if (marks>9) /* if construct with test condition */

printf (“ \n Pass”); /* statement associated with if */

printf(“ Thank you”); //next statement

}

output: run 1-> run 2->

Enter your marks : 77 ↵ Enter your marks : 9 ↵

Pass Thank you

Thank you

76

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 “Pass” has been displayed only if the expression evaluated to true otherwise if it evaluated
to false, the control ignores the associated statement and executed the next statement i.e., “Thank
you”.

As mentioned earlier, an if statement can control the execution of multiple statements, called as
compound statement or a block. Where a block is a group of two or more statements enclosed in
braces. So if these multiple statements are to be executed than they must be placed with in a pair of
braces, as illustrated by the following program.

Program:

include<stdio.h>

void main()

{

int marks;

printf (“\n Enter your marks: “);

scanf (“ %d “, &marks) ;

if (marks > 39)

{

printf(“\n Pass”);

printf (“ \n Congratulation …”);

}

if (marks <40)

{

printf (“\n Fail”);

printf (“\n sorry. Good luck next time …”);

}

printf (“\n Thank you”);

}

Output: run 1-> run 2->

Enter your marks: 77↵ Enter your marks : 20↵

Pass Fail

Congratulations… Sorry. Good luck next time….

Thank you Thank You

 Default an if construct when evaluates to true executes only the first statement associated
with it. If multiple statements are not enclosed with in parentheses, results may be unexpected.

77

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 Write a program if candidate got more than 50% in year exam screen show “Pass” otherwise
“Fail”.

if-else statement

When the specified expression evaluates to true, the basic if statement runs a single statement or a
collection of statements, as you may have noticed in the previous section (i.e. non-zero value). When
the expression evaluates to false (i.e. a zero value), it does nothing and proceeds to the next step in
the programme.

If you want a statement or a set of statements to be performed, however. Only when an expression
evaluates to false can it be mentioned in the else part, as demonstrated below in the if else statement's
standard structure.

if (expression)

statement1;

else

statement 2;

If expression evaluates to true, statement 1 is executed. If expression evaluates to false, statement 2 is
executed, but never both. Both statement 1 and statement 2, as mentioned earlier, may be single
statement, a compound statement, or an empty statement.

 Actually, the simple if statement described in previous section is a simplification of its parent
statement i.e. if else statement, where the else section in optional. Without it, however, an if-else
construct look like a simple if construct.

if-else construct is particularly useful when you have the statements to be executed in both the cases
i.e. when the expression evaluates to true or false.

Consider the following statements:

:

if (marks > = 40)

printf (“\n Pass”);

else

printf (“\n Fail”);

:

The code segment will display “Pass” on the monitor if the value of marks is greater than or equals
to 40. If the marks are less than 40 (obviously the else case), then the statement in the else section will
be executed and will printf “Fail” on the monitor. Let’s write the Program by using an if-else
construct.

#include<stdio.h>

void main ()

{

int marks;

78

 LOVELY PROFESSIONAL UNIVERSITY

Notes

printf (“\n Enter your marks:”);

scanf (“% d”, & marks”);

if (marks >=40)

{

printf (“\n Pass”);

printf (“\n congratulations….”);

}

Else

{

printf (“\n Fail”);

printf (“\n Sorry. Good luck next time …”);

} }

Output: run1 → run2 →

Enter your marks: 77→ Enter your marks : 30→

Pass Fail

Congratulations…. Sorry. Good luck next time…

 else section required their own pair of braces as more than one statement is to be executed
when the expression evaluates to false.

5.6 nested if statement

The executions of the inner if depends upon its location in the outer construct and upon the value of
expression of the outer construct. For instance, consider the following:

:

if (expression 1)

{

if (expression 2)

statement 1;

else

statement 2;

} :

In the above segment of code, the inner if executes only if the expression1 evaluates to true. The other
possible combination of nested if may take one of the following form:

· if (expression1)

{

if (expression2)

statement1;

}

· if (expression1)

79

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

if (expression 2)

statement1;

else

statement 2;

}

· if(expression1)

{

statement1;

}

else

{

if(exp2)

statement 2;

}

· if (exp 1)

{

statement1;

}

else

{

if (exp2)

statement 2;

else

statement3;

}

if(exp 1)

{

if (exp 2)

statement1;

else

statement 2;

}

else

{

if (exp3)

statement3;

else

statement4;

}

80

 LOVELY PROFESSIONAL UNIVERSITY

Notes

if (exp1)

{

if (exp2)

statement1;

}

else

{

if (exp3)

statement 2;

}

Let’s write a couple of programs to explore the various combination of nested if. The following
program not only print the request after accepting marks from the students but also print his/her
grade.

Program
#include<stdio.h>
void main ()

{

int marks;

printf (“\n Enter your marks:”);

scanf (“% d”,&marks”);

if (marks >=40)

{

printf (“\n Pass”);

if (marks > = 80)

printf (“ with distinction”);

}

else

printf (“\n Fail”);

}

Output: run 1 ->

Enter your marks : 77↵

Pass

Run 2->

Enter your marks : 88↵

Pass with distinction

Run 3->

Enter your marks : 38↵

Fail

81

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 The execution of the inner if only be there if first expression evaluates to true and the
message “with distinction” will printf only if both the expressions evaluates to true.

Nested else-if statement

Imagine a situation where you have to test number of conditions to get the desired results. These
types of particular situations requires nestedness of if-else statements up to a deeper level and it may
looks like as:

if (expression 1)

statement 1;

else

if (expression 2)

statement 2;

else

if(expression 3)

statement 3;

else

:

statement n;

The following program demonstrates the use of nested if-else statement up to a deeper level. This
program will accept the marks of a student and will display the grade accordingly.

Program:

include<stdio.h>

void main ()

{

int marks;

char grade;

printf (“\n Enter your marks:”);

scanf (“% d”, & marks”);

if (marks > = 90)

grade = ‘0’;

else

if (marks > = 80)

grade = ‘D’;

else

if(marks > =75)

grade = ‘M’;

else

if (marks > = 60)

grade = ‘I’;

82

 LOVELY PROFESSIONAL UNIVERSITY

Notes

else

if (marks > =50)

grade = ‘II’;

else

if (marks > 40)

grade = ‘III’;

else

grade = ‘F’;

printf(“\n Your grade is : % c”, grade),

}

Output: run 1 →

Enter your marks: 77 ↵

Your grade is: M

Run 2 →

Enter your marks: 39 ↵

Your grade is: F

 This whole section of code is actually one statement that is comprised of six hierarchically
nested is else constructs, so there is no need to put them in the braces. At any time during the
general top to bottom execution of these expressions, if an expression evaluates to true, then the
associated statement will be executed and control flow will pass to the statement immediately
following the entire nested chain.

Switch statement

The switch statement is another useful C feature for dealing with scenarios where numerous
decisions must be made based on an expression with multiple values. The switch is a multiple branch
statement that compares the value of an expression to a list of case values and, if a match is found,
executes the statement associated with that case. A switch-case statement can take the following
general form:

switch (expression)

{

case value1: statement1;

case value2: statement2;

case value3: statement3;

:

case valuen: statementn;

[default: statement x ;]

}

statement;

Where switch is a keyword and the expression is any expression that evaluates to an integer value,
may be of type int, or char, or long. The case is a keyword followed by value 1, value 2, value n.
where value 1, value 2, .. value n may be an integer or character constant, normally referred to as case

83

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

labels. And the statement1, statement2, .. statementn may be single statement or set of statements, or
may be an empty statement.

The switch statement evaluates the expression first and then compare the return value against the
values value1, value2,.. valuen, and then one of the following happens:

1. If a case is found whose value matches with the value of the expression then the statement
associated with that case is executed.

2. If no match is found then the statement followed by the keyword default is executed.

3. If no match is found and there is no default label as it is an optional case, then no action takes place
and control passes to the statement next which is a statement immediately followed the switch
statements closing braces.

Consider the following program, which gives you an example of using the switch statement. This
program will receive a number between 1 to 5 and will display it’s English counterpart.

Program:

#include<stdio.h>

void main ()

{

int num;

printf (“\n Enter any number between 1 to 5 : “);

scanf (“ % d”, &num) ;

switch (num)

{

case 1 : printf(“\n One”);

case 2 : printf (“\n Two”);

case 3 : printf (“\n Three”);

case 4 : printf (“\n Four”);

case 5 : printf (“\n Five”);

default : printf (“\n Wrong input”);

}

printf (“\n Thank You”);

}

Output: run 1 → run 2 →

Enter any number between 1 to 5: 2↵ Enter any number between

1 to 5: 4↵

Two Four

Three Five

Four Wrong input

Five Thank you

Wrong input

Thank you

84

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Run 3->

Enter any number between 1 to 5 = 9↵

Wrong input

Thank you

 There is no need to put braces with the individual case labels as they each contains single
statement, although a pair is required to group the entire case section.

5.7 Looping

Iteration statements are also known as loops or looping statements because the program execution
typically loops through the statement more than once. In this category, C provide the following
statement or you call loops.

1. for loop

2. while loop

3. do-while loop

Looping must not continue indefinitely as an analogy to real life you would not like to crack the same
joke again and again, so a mechanism is required to break out the loop and to allow the executives of
the next set of statements.

As a result, a general structure for implementing a loop expression has been designed. Which can be
better understood by grasping the following elements/parts/components of a loop that regulates the
amount of repetitions:

1. Initial Expression(s): Initial expression(s) is usually an assignment expression(s) which initializes
the control variable(s) of a loop, as they must be initialized before entering in a loop. The initial
expression(s) is executed only once, in the beginning of the loop. But if this expression(s) occurs in
the loop body, control variable(s) would be reassigned to initial values with every loop pass, and the
condition expression would never fail.

2. Condition Expression: Conditional expression is typically a relational expression that is set up to
terminate the execution of a loop. If the condition expression evaluates, to true i.e. 1, the loop body
gets executed, otherwise the loop is terminated. A condition expression may be evaluated before
entering in to a loop or before exiting from the loop called as entry-controlled loop and exit controlled
loop respectively. In C, the for loop and while loop are entry-controlled loops whereas do while loop
is exit-controlled loop.

3. Update Expression(s): The update expression(s) is essentially an increment expression or
decrement expression that changes the value(s) of loop variable(s), so that they could come to the
boundary values. The update expression(s) normally execute at the end of the loop body. It may
appear in the body of loop as it is updating expressions that assign the variable a new updated value
every time the loop passes.

4. The Loop Body: The loop body consists of statement(s) that is supposed to be executed again and
again as long as the condition expression evaluator to true i.e. 1. In an entry-controlled loop, the
condition expression evaluated first and if it evaluates to true, the loop-body is executed and if it
evaluate to false, the loop-body is terminated. Whereas, in exit controlled loop, the loop body
executed first and then the condition expression are evaluated. It is evaluate to false i.e. o, the loop is
terminated, otherwise repeated.

The above mentioned components are the essential component of a statement to be called as a loop
statement. Messing any of them may change the basic meaning of a perfect loop. The for, while and
do-while statements of C, comprises of all these essential components, hence referred to as loop
statements.

85

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

for loop

The for loop in C is the simplest, fixed and entry controlled loop. It is simplest as the structure of for
loop is divided into two segments i.e. control statement and the body of the loop. All its loop control
elements are placed together in the control statement where as body of the loop consists of statements
to be executed repeatedly.

 It is fixed as number of repetitions is known is advance and can be useful in a situation when you
want to do something a fixed number of times. It is an entry controlled loop as the control statement
placed before the loop body i.e. condition expression will be evaluated first. The general form of the
for loop is:

 for(initial expression(s) ; condition expression ; update expression(s)) loop-body;

 Consider the following statement:

for (i =1 ; i<= 10; ++i)

printf(“ \n Hello World!”);

where i is an integer variable declared already.

i=1; is an initial expression.

i < = 10; is a conditional expression.

++i; is an update expression.

And the statement

printf(“\n Hello World!”) ;

is the body of the loop.

When the above statement is encountered during program execution, the following events occur:

1. Initial expression is evaluated first and i will be assigned an initial value 1 i.e. i =1.

2. Then the condition expression is evaluated i.e. i < =10 and the result will be true as 1 < = 10 is true.

3. Since the condition expression is true, the statement in the loop body is executed i.e. printf(“\n
Hello World!”); which prints the message Hello World! on the screen.

4. After the execution of the loop body, the update expression i.e. ++i is executed which increment
the value of i by 1. In this way after the first execution of the loop the value of I becomes 2 as initially
it was 1.

5. After the execution of the update expression the condition expression is again evaluated. If it
evaluates to true the sequence is repeated from step no. 3, otherwise the loop terminates.

Also note that the loop body never executes if condition expression is evaluated to false in its first
execution. Figure shows the operation of a for loop.

86

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Program :

#include<stdio.h>

int main(){

int i,n;

printf("Enter Number");

scanf("%d",&n);

for(i=1;i<=10;i++)

{

 printf("%d*%d=%d\n",i,n,i*n);

}

return 0;

}

Output : -

While loop

The while loop, the second type of loop, is an entry controlled loop because it tests the conditions
first and only the control enters the loop body if the condition is true.

When the loop's iterations are complete, the control returns to the while statement, which repeats the
condition test. If the condition is false the first time, the loop does not iterate and control is passed to
the statement after the loop statement. Because we don't know the precise amount of iterations, it's a
kind of variable loop. The statements keep repeating themselves until specific conditions are met.

The while loop has the following form:

while (condition expression)

loop body;

Where the loop-body may contains a single statement, a compound statement or an empty statement.
The while loop iterates the loop body as long as the specified condition expression evaluates to true.

87

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The while loop doesn’t explicitly contains the initialization expression and update expressions of the
loop. These two expressions are normally provided by the programmers as the initialization
expression(s) should be placed before the loop begins and updation expression(s) should be inside
the loop body. By using all these expressions the general farm of while loop may looks like as:

:

initialization expression(s);

while (conditional expression)

{ :

: Loop Body

updation expression;

}

Consider the following segment of code:

i = 1 ;

while (i < = 10)

{

printf(“\n Hello World!”);

+ + i;

}

where i is an integer variable declared already

i = 1; is an initial expression

i < = 10; is a conditional expression

++i ; is an update expression.

And the statements between the { and } forms the body of the loop. But the braces can be discarded,
if there is only one statement in the loop body

When the program execution readers a while statement, the following events occur:

1. First of all the conditional expression is evaluated i.e. i < 10.

2. The conditional expression is evaluated to true as i was 1 initially and 1 < 10 is true. But if it evaluate
to false, the loop will be terminated and the control moves to the first statement following loop body.

3. Since the condition expression is true, the loop body will be executed i.e. the printf statement and
the updation expression.

4. With the closing braces (}), it is assumed that the loop is finished and the control moves back to
the while statement, which repeats the test again and proceeds accordingly.

88

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Program : -

#include<stdio.h>

 int main()

{

int n, reverse=0, rem;

printf("Enter a number: ");

 scanf("%d", &n);

 while(n!=0)

 {

 rem=n%10;

 reverse=reverse*10+rem;

 n/=10;

 }

 printf("Reversed Number: %d",reverse);

return 0;

}

Output : -

89

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

do-while loop

C’s third loop statement is the do-while loop, is an exit controlled loop i.e. it tests the conditions after
having executed the statement with in loop body. This means unlike the for and while loops, a do
while loop always executes at least once. The statement of the do-while loop is as follows:

do

{

loop-boody ;

}while (conditional expression) ;

The braces { } can be discarded when the loop-boody contains a single statement. The do-while loop
iterates the loop body as long as the specified condition is true while testing the condition at the end
of the loop each time, rather than at the beginning, as is done by the for and the while loop.

Like while loop, do-while loop also doesn’t contain the initialization and updation expression as part
of loop statement. However, these expressions can be associated with do-while loop by the
programmer according to required logic. Then the new form of do-while loop may looks like as:

Initialization expression(s);

do

{

Loop body;

Updating expression;

}while (conditional expression(s));

 Consider the following segment of code :

i=1;

do

{

printf(“\n Hello World!”);

++i;

} while (i<=10);

where i is an integer variable declared already

i=1; is an initial expression.

i < = 10; is a conditional expression.

++i; is an update expression.

When the program control reaches at a ‘do while’ loop, the following events occur:

1. The loop body will be executed i.e. the print statement and the updation statement.

2. The conditional expression will be evaluated i.e. i <=10.

3. The conditional expression will evaluates to true as the value as i is 2 this time (initially=1).

4. Since the condition expression is true, the control will move back to execute the loop-body once
again.

The output of the above code may looks likes as:

90

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Hello World !

Hello World !

:

Hello World ! (10 times)

Figure demonstrate working of do-while loop

Program to print series of number after enter first number

Program :-

 #include<stdio.h>

int main(){

int number;

printf("Enter a number:");

scanf("%d",&number);

do{

 printf("Value of number is= %d\n",number);

 ++number;

}while(number<=20);

return 0;

91

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

Output:-

5.8 Jump and Break Statement

What if you need to get out of a loop statement before the test condition fails? The break statement
can be used. Break is a statement that is used to end loops or exit from a switch (discussed later).
When a break occurs within a C loop, the loop is immediately terminated without verifying the loop
condition, and control is passed to the first statement following the loop. It can be used in a while
loop, a do-while loop, a for loop, or a switch loop. The break statement is simply written break;

The break statement does not have any operand.

Following C code snippets illustrate use of break statement to exit from various C loops. In each
situation, the loop will continue to execute as long as the current value for the integer variable x does
not exceed 10. However, the computation will break out of the loop if a negative value for x is
detected.

While loop

scanf (“%d”, &x);

while (x <= 10)

{

if (x < 0)

{

printf (“Negative value entered!!\n”);

break;

}

scanf (“%d”, &x);

}

do-while loop

do

{

scanf (“%d”, &x);

92

 LOVELY PROFESSIONAL UNIVERSITY

Notes

if (x < 0)

{

printf (“Negative value entered”);

break;

}

} while (x < = 10);

for loop

for (i = 1; x < = 10; ++i)

{

scanf (“%f”, &x);

if (x < 0)

{

printf (“Negative value entered!!”);

break;

}

}

When break is used in nested while, do-while, for or switch statements, it will cause a transfer of
control out of the immediate enclosing statement, but not out of the outer surrounding statements.

Consider the following code snippet in which a while loop is nested within a for loop.

for (i = 0; i < = n; ++i)

{

while ((c = getchar())! = ‘\n’)

{

if (c = ‘*’) break;

}

}

5.9 goto Statement

In early programming languages, goto was a common looping idiom for unconditionally branching
to one statement from another. For looping immediately, no condition is verified. The usage of goto
branching is often discouraged due to the inherent complications connected with it.

C enables the goto statement to branch unconditionally from one point in the programme to another
for backward compatibility. After a goto is encountered, a goto statement utilises an identifier called
label to specify the statement to which branching will begin. Any valid identifier name must be
followed by a colon in a label.A label is placed immediately before the statement where the control
is to be transferred.

The general forms of goto and label statements are shown below:

goto label;

…..

…..

93

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

label: statements;

.

statement;

Program to demonstrate working of goto statement*/

#include<stdio.h>

int main(){

int i;

for(i=0;i<=10;i++)

{

 if(i==5)

 {

 goto STATUS;

 }

 printf("%d\n",i);

}

STATUS:

 printf("Value of i is = 5 than goto working");

return 0;

}

Output :-

94

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Summary

• Most of the programs require a statement or set of statements to be executed multiple times
or not to execute at all, depending on the circumstances.

• The statement by which we can control the flow of the program execution is called as control
flow statement or program control statement.

• In the sequence construct, as the name implies, statements are executed sequentially i.e. one
after the other.

• In selection construct, the execution of statements depends upon a condition test.

• The iteration constructs are an efficient method of handling a series of statements that must
be repeated a variable number of times.

• If multiple statements are to be executed than they must be placed with in a pair of braces.

• A simple if or if else construct may be placed with in another if or if-else construct.

• The switch statement is another convenient tool provided by C to handle the situations in
which multiple decisions to be made based on an expression that can have multiple values.

• The for loop in C is the simplest, fixed and entry controlled loop. An infinite for loop can be
created by skipping the conditional expression.

• A conditional expression cannot have multiple expression like initialization and updation
expression, but it may contain several conditions linked together using logical operators.

• The second type of loop, the while loop is an entry controlled loop as it tests the conditions
first and if the condition is true, then only the control will enter into the loop body. An empty
loop can also be configured using while statement and could used as a time delay loop.

• C’s third loop statement is the do while loop, is an exit controlled loop i.e. it tests the
conditions after having executed the statement with in loop body. Unlike the for and while
loops, a do while loop always executes at least once.

• The break statement is used in a program to skip the particular part of program code. The
jump statement continue is the compliment of the break statement.

Keywords

Conditional statement: A statement that evaluates to either true or false.

Continue statement: The statement that ignores execution of further statements and forces the loop
to evaluate the loop condition once again.

Default statement: An optional statement in a switch that is executed if none of the conditions
evaluates to true.

Switch statement: A multi-selection statement that branches to that statement whose specified
condition evaluates to true.

Control Statements: The statements that allow programmers to alter the sequential flow of execution
of the program and control the flow are called control statements.

For Loop: A for loop allows execution of a statement (or a block of statements) repeatedly a number
of times.

While Loop: In case the number of times a statement is to be executed is not known in advance, while
loop is used.

goto statement : The goto statement is known as jump statement in C.

Self-Assessment

1. What are the components of design structure of C?

A. Documentation

B. Link Section

95

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. Definition Section

D. Above all

2. Every C program must have ___________ function.

A. Printf ()

B. Scanf ()

C. main ()

D. none of above

3. What are the Advantages of Top-Down Design?

A. Important modules are designed first

B. Testing and debugging is easier and fast

C. Project implementation is easy

D. All of the above

4. How many type of conversion are there in c?

A. 3

B. 2

C. 1

D. 4

5. Which conversion also called Automatic Type Conversion?

A. Explicit Type Conversion

B. Implicit Type Conversion

C. All of above

D. None of the above

6. Which type of conversion is NOT accepted?

A. From char to int

B. From float to char pointer

C. From negative int to char

D. From double to char

7. Type modifiers in C are

A. Int, main

B. Sub program

C. Short, long, signed and unsigned

D. All of above

8. Which one is decision making statement in C ?

A. If statement

B. While loop

C. Switch

D. For loop

9. What will be output for the following code?

#include <stdio.h>

96

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 void main()

 {

 int x = 5;

 if (true);

 printf("hello");

 }

A. It will display hello

B. It will throw an error

C. Nothing will be displayed

D. Compiler dependent

10. Which of the following is an invalid if-else statement?

A. if (if (a == 1)){}

B. if (func1 (a)){}

C. if (a){}

D. if ((char) a){}

11. The label in goto statement is same like

A. Case in switch statement

B. Initialization in for loop

C. Continuation condition in for loop

D. All of them

12. Goto statement is also known as ________

A. If statement

B. Jumping statement

C. Loop statement

D. Above all

13. Choose a right C Statement.

A. Loops or Repetition block executes a group of statements repeatedly.

B. Loop is usually executed as long as a condition is met.

C. Loops usually take advantage of Loop Counter

D. All the above.

14. The break statement is used to exit from:

A. a DO loop.

B. a FOR loop.

C. a SWITCH statement.

D. all of above.

15. Which keyword is used to come out of a loop only for that iteration?

A. break

B. continue

97

Programming Methodology

Unit 05: Control Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. return

D. none of the mentioned

Review Questions

1. Write a program using if-else statement.

2. Explain nested-if statement with example.

3. What do you mean by switch statement? How it used

4. A five-digit number is entered through the keyboard. Write a program to obtain the reversed
number and to determine whether the original and reversed numbers are equal or not.

5. Write a program to check whether a triangle is valid or not, when the three angles of the triangle
are entered through the keyboard. A triangle is valid if the sum of all the three angles is equal to 180
degrees.

6. Given the length and breadth of a rectangle, write a program to find whether the area of the
rectangle is greater than its perimeter. For example, the area of the rectangle with length = 5 and
breadth = 4 is greater than its perimeter.

7. What is the use of if-else statement?

8. Define selection in c programming.

9. Write a program in C to enter five integer values as age of five boys and calculate the average age
of all the boys.

10. Write a program to calculate the area of a square. All values enter with the help of keyboard.

11. What do you mean by looping?

12. Describe for loop with the help of suitable example.

13. Differentiate while loop and do-while loop.

14. What is the advantage of break statement in while loop?

15. Write a program to find the factorial value of any number entered through the keyboard.

16. Write a program to print all the ASCII values and their equivalent characters using a while loop.
The ASCII values vary from 0 to 255.

Answers: -Self Assessment

1. d 2. c 3. d 4. b 5. b

6. b 7. c 8. a 9. b 10. a

11. a 12. b 13. d 14. d 15. b

Further Readings

Ashok N. Kamthane, "Programming with ANCI & Turbo C", Pearson Education,

Year of Publication, 2008.

B.W. Kernighan and D.M. Ritchie, "The Programming Language", Prentice Hall of

India, New Delhi.

Byron Gottfried, "Programming with C", Tata McGraw Hill Publishing Company

Limited, New Delhi.

98

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

Yashvant Kanetkar, Let us C

https://www.tutorialspoint.com/index.htm

www.webopedia.com

www.web-source.net

99

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit - 06: Functions

CONTENTS

Objectives

Introduction

6.1 Need for User-defined Function

6.2 A Multifunction Program

6.3 Elements of User-defined Functions

6.4 Return Value and their Types

6.5 Category of Functions

6.6 Functions that Return Multiple Values

Summary

Keywords

Self-Assessment

Review Questions

Answer: Self-Assessment

Further Readings

Objectives

After studying this unit, you will be able to:

• State the need for user defined functions

• Identify category of functions

• Describe functions that return multiple values

• Discuss recursive functions

Introduction

A function is a programming unit with a unique name that may be identified. It can be invoked by a
programme once it has been defined. When called, it may accept zero or more inputs. The code placed
inside the function specification determines what should be done with the incoming input(s). The
function generates a single output after doing the given transformation. The caller of the function
receives this output.

6.1 Need for User-defined Function

Why write separate functions at all? Why not squeeze the entire logic into one function, main()?

Two reasons:

1. Writing functions avoids rewriting the same code over and over. Suppose you have a section of
code in your program that calculates area of a triangle. If later in the program you want to calculate
the area of a different triangle, you won’t like it if you are required to write the same instructions all
over again. Instead, you would prefer to jump to a ‘section of code’ that calculates area and then jump
back to the place from where you left off. This section of code is nothing but a function.

2. Using functions it becomes easier to write programs and keep track of what they are doing. If the
operation of a program can be divided into separate activities, and each activity placed in a different
function, then each could be written and checked more or less independently. Separating the code
into modular functions also makes the program easier to design and understand.

100

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6.2 A Multifunction Program

The use of a function is one of the advantages of the C programming language. Always behave like
a standard function or method in C. One function may call another, and so on. In C, there are no
limitations on the number of functions that can be called in a programme. It is preferable to
decompose the complex problem into tiny, easily manageable parts and develop a function. The
control will be passed from the calling programme part to the called function block. If the called
function is successfully executed, control will be returned to the programme segment that called
it.There is always overhead of a transfer of the control between calling portion and a called function
block.

Example: The multifunction program segment is shown below

function1 ()

{

function2 ();

function4 ();

}

function2 ()

{

function3 ();

}

function3 ();

{

}

function4 ()

{

}

A program to demonstrate the transfer of control between the multifunction

program.

Main()

101

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

int j = 10;

printf (“Inside the main() function\n”);

function1 ();

printf (“after the function 1\n”);

printf (“main function () \n”);

printf (“j = %d\n”, j);

}

function1 ()

{

int i,n;

n = 3;

for(i = 0; i<=n-1; ++){

printf(“inside a function 1\n”);

printf(“i = %d\n”, i);

function2 ();

}

}

function2 ()

{

printf (“transfer of control\n);

printf (“inside a function 2\n”);

}

6.3 Elements of User-defined Functions

Functions are classified as one of the derived data types in C. We can therefore define functions and
use them like any other variables in C programs. It is therefore not a surprise to note that there exist
some similarities between functions and variables in C.

1. Both function names and variable names are considered identifiers and therefore they must adhere
to the rules for identifiers.

2. Like variables, functions have types associated with them. 3. Like variables, function names and
their must be declared and defined before they are used in a program.

In order to make use of a user-defined function, we need to establish three elements that are related
to functions.

1. Function definition.

2. Function call

3. Function declaration.

The function definition is an independent program, module that is specially written to implement
the requirements if the function. In order to use this function we need to invoke it is a required place
in the program. This is known as the function call. The program that calls the function is referred to
as calling program or calling function.

Definition of Functions

A function is a standalone piece of executable code that can be called from any other function. The
idea of functions comes to mind in many systems when a group of statements must be executed
repeatedly at various points in the programme and possibly with different sets of data. Those

102

 LOVELY PROFESSIONAL UNIVERSITY

Notes

repeating statements are stored in a function and called as needed. When a function is called, control
is sent to the called function, which is then run, before being returned to the calling function (to the
statement following the function call). Let us see an example as shown below:

Example:

/* Program to illustrate a function*/

#include <stdio.h>

main ()

{

void sample();

printf(“\n You are in main”);

}

void sample()

{

printf(“\n You are in sample”);

}

Output:

You are in sample

You are in main

Here we are calling a function sample () through main() i.e. control of execution transfers from main(
) to sample() , which means main() is suspended for some time and sample() is executed. After its
execution the control returns back to main(), at the statement following function call and the
execution of main() is resumed.

The syntax of a function is:

return data type function_name (list of arguments)

{

datatype declaration of the arguments;

executable statements;

return (expression);

}

where,

1. Return data type is the same as the data type of the variable that is returned by the function using
return statement.

2. A function_name is formed in the same way as variable names/identifiers are formed.

3. The list of arguments or parameters are valid variable names as shown below, separated by c

4. Arguments give the values which are passed from the calling function.

5. The body of function contains executable statements.

6. The return statement returns a single value to the calling function.ommas: (data type1 var1,data
type2 var2,…….. data type n var n) for example (int x, float y, char z).

103

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Example: Let us write a simple function that calculates the square of an integer.

/*Program to calculate the square of a given integer*/

/* square() function */

{

int square (int no) /*passing of argument */

int result ; /* local variable to function square */

result = no*no;

return (result); /* returns an integer value */

}

/*It will be called from main()as follows */

main()

{

int n ,sq; /* local variable to function main */

printf (“Enter a number to calculate square value”);

scanf(“%d”,&n);

sq=square(n); /* function call with parameter passing */

printf (”\nSquare of the number is : %d”, sq);

} /* program ends */

Output:

Enter a number to calculate square value: 5

Square of the number is: 25

6.4 Return Value and their Types

If a function has to return a value to the calling function, it is done through the return statement.

It may be possible that a function does not return any value; only the control is transferred to the

calling function. The syntax for the return statement is:

return (expression);

We have seen in the square() function, the return statement, which returns an integer value.

Important Points

1. You can pass any number of arguments to a function but can return only one value at a

time.

Example: The following are the valid return statements

(a) return (5);

(b) return (x*y);

Example: The following are the invalid return statements

(a) return (2, 3);

(b) return (x, y);

2. If a function does not return anything, void specifier is used in the function declaration.

Example:

void square (int no)

104

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

int sq;

sq = no*no;

printf (“square is %d”, sq);

}

3. All the function’s return type is by default is “int”, i.e. a function returns an integer value,

if no type specifier is used in the function declaration.

Examples:

(a) square (int no); /* will return an integer value */

(b) int square (int no); /* will return an integer value */

(c) void square (int no); /* will not return anything */

4. What happens if a function has to return some value other than integer? The answer is very

simple: use the particular type specifier in the function declaration.

Example: Consider the code fragments of function definitions below:

(a) Code Fragment – 1:

char func_char(……..)

{

char c;

……………

……………

……………

}

(b) Code Fragment – 1:

float func_float (……..)

{ fl

oat f;

…………..

…………..

…………..

return(f);

}

Thus from the above examples, we see that you can return all the data types from a function, the only
condition being that the value returned using return statement and the type specifier used in function
declaration should match.

5. A function can have many return statements. This thing happens when some condition

based returns are required.

Example:

/*Function to find greater of two numbers*/

int greater (int x, int y)

{

if (x>y)

105

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

return (x);

else

return (y);

}

6. And finally, with the execution of return statement, the control is transferred to the calling function
with the value associated with it.

In the above example, if we take x = 5 and y = 3, then the control will be transferred to the calling
function when the first return statement will be encountered, as the condition (x > y) will be satisfied.
All the remaining executable statements in the function will not be executed after this returning.

Function Calls

A function can be called by supplying its name followed by a list of arguments separated by commas
and surrounded in parentheses. If a function call does not require any parameters, it must be followed
by an empty pair of parenthesis.

The arguments appearing in the function call are referred to as actual arguments, in contrast to the
formal arguments that appear in the first line of function definition.

e.g.: /* Program to find square of given number */

main()

{

float square (float); /* function prototype dec/n*/

float a, b;

printf (“\n Enter the number:”);

scanf (“%f”, &a);

b = square (a); /* calling of function with */

/ * actual arguments */

printf (“Square of entered no. is = %f” , b);

}

float square (x) / * function definition with format l argument * /

float x; /* format l argument declaration * /

{

float y; /* Local variable declaration

y = x * x;

return (y);

}

Output:

Enter the number: 2

Square of the entered number is = 4

Function Declaration

A function is declared in the following manner:

<return_data_type> <function_name>(arg1, arg2, arg3)

<data_type_1> arg1; <data_type_2> arg2; <data_type_3> arg3;

106

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

statement-1;

statement-2

:

:

statement-n;

return(<expression of return_data_type>);

}

Example: The following function (name being getsq) returns the square of the input

number of float type. Clearly the <return_data_type> will also be float type.

float getsq(x)

float x;

{

return(x*x);

}

Another form of a function definition is:

<return_data_type><function_name>(formal argument list)

{

statement-1;

statement-2;

statement-n;

return (<expression of return_data_type>);

}

Where formal argument list is a comma separated list of variables and their corresponding data

types.

The following function, addthem, takes two int type arguments and returns the sum of the two.

int addthem(int a, int b)

{

return(a+b);

}

The <return_data_type> always represents the data type of the value which is returned. The type
specification can be omitted if the function returns an integer or a character.

 An empty pair of parenthesis must follow the function name if the function definition does not
include any arguments.

The argument declarations follow the first line. Each formal argument must have the same data type
as its corresponding actual argument.

The remainder of the function definition is a compound statement that defines the action to be taken
by the function. It is referred to as the body of the function.

The last statement in the body of function is return (expression). It is used to return the computed
result, if any, to the calling program.

107

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6.5 Category of Functions

We categorize a function’s invoking (calling) depending on arguments or parameters and their
returning a value. In simple words, we can divide a function’s invoking into four types

depending on whether parameters are passed to a function or not and whether a function returns
some value or not.

The various types of calling functions are:

1. With no arguments and with no return value.

2. With no arguments and with return value.

3. With arguments and with no return value.

4. With arguments and with return value.

11.9 No Argument and no Return Values

Any function which has no arguments and does not return any values to the calling function, falls in
this category. These type of functions are confined to themselves i.e. neither do they receive any data
from the calling function nor do they transfer any data to the calling function.

So there is no data communication between the calling and the called function are only program
control will be transferred.

/* Program for illustration of the function with no arguments and no return

value*/

/* Function with no arguments and no return value*/

#include <stdio.h>

main()

{

void message();

printf(“Control is in main\n”);

message(); /* Type 1 Function */

printf(“Control is again in main\n”);

}

108

 LOVELY PROFESSIONAL UNIVERSITY

Notes

void message()

{

printf(“Control is in message function\n”);

} /* does not return anything */

Output:

Control is in main

Control is in message function

Control is again in main

Argument but no Return Values

If a function includes arguments but does not return anything, it falls in this category. One way
communication takes place between the calling and the called function.

Before proceeding further, first we discuss the type of arguments or parameters here. There are two
types of arguments:

1. Actual arguments

2. Formal arguments

Let us take an example to make this concept clear:

Example: Write a program to calculate sum of any three given numbers.

#include <stdio.h>

main()

{

int a1, a2, a3;

void sum(int, int, int);

printf(“Enter three numbers: “);

scanf (“%d%d%d”,&a1,&a2,&a3);

sum (a1,a2,a3); /* Type 3 function */

}

/* function to calculate sum of three numbers */

void sum (int f1, int f2, int f3)

{

int s;

s = f1+ f2+ f3;

printf (“\nThe sum of the three numbers is %d\n”,s);

}

Output

Enter three numbers: 23 34 45

The sum of the three numbers is 102

Here f1, f2, f3 are formal arguments and a1, a2, a3 are actual arguments.

Thus we see in the function declaration, the arguments are formal arguments, but when values are
passed to the function during function call, they are actual arguments.

109

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Arguments with Return Values

In this category, two-way communication takes place between the calling and called function i.e. a
function returns a value and also arguments are passed to it. We modify above example according to
this category.

Write a program to calculate sum of three numbers.

/*Program to calculate the sum of three numbers*/

#include <stdio.h>

main ()

{

int a1, a2, a3, result;

int sum(int, int, int);

printf(“Please enter any 3 numbers:\n”);

scanf (“%d %d %d”, & a1, &a2, &a3);

result = sum (a1,a2,a3); /* function call */

printf (“Sum of the given numbers is : %d\n”, result);

}

/* Function to calculate the sum of three numbers */

int sum (int f1, int f2, int f3)

{

return(f1+ f2 + f3); /* function returns a value */

}

Output

Please enter any 3 numbers:

3 4 5

Sum of the given numbers is: 12

6.6 Functions that Return Multiple Values

The compiler will raise a compilation error if a function is not called with the required number of
properly typed arguments. When calling a function, there are two methods for passing arguments to
it: call by value and call by reference.

Call by Value

Call by value means sending the values of the arguments to functions. When a single value is passed
to a function via an actual argument, the value of the actual argument is copied into the function.
Therefore, the value of the corresponding formal argument can be altered within the function, but
the value of the actual argument within the calling routine will not change. This procedure for
passing the value of an argument to a function is known as passing by value or call by value.

e.g.: /* A simple C program containing a function that alters the

value of its argument. */

#include <stdio.h>

main()

{

110

 LOVELY PROFESSIONAL UNIVERSITY

Notes

int a = 2;

printf(“\na = %d (from main, before calling the function)”,a);

modify(a);

printf(“\na = %d (from main, after calling the function)”,a);

}

modify (int a)

{

a * = 3;

printf(“\na = %d (from the function, after being modified)”,a);

return;

}

output: a = 2 (from main, before calling the function)

a = 6 (from the function, after being modified)

a = 2 (from main, after calling the function)

The original value of a (i.e.=2) is displayed when main is executed. This value is then passed to the
function modify, where it is multiplied by three and the new value of the formal argument that is
displayed within the function. Finally, the value of a within main (i.e., the actual argument) is again
displayed, after control is transferred back to function main from function modify.

These results show that a is not altered within main, even though the corresponding value of a is
changed within modify.

Passing an argument by value has certain advantages and disadvantages.

On the positive side, it allows a single valued actual argument to be written as an expression rather
than being restricted to a single variable. Moreover, if the actual argument is expressed as a single
variable, it protects the value of this variable from alterations within the function.

On the negative side, it prevents information from being transferred back to the calling portion of the
program via arguments. Thus, passing by value is restricted to a one-way transfer of

information.

Call by Reference

Call by reference means sending the addresses of the arguments to the called function. In this method
the addresses of actual arguments in the calling function are copied into formal arguments of the
called functions. Thus using these addresses we would have an access to the actual arguments and
hence we would be able to manipulate them. Using a call by reference intelligently, it is possible to
make a function return more than one value at a time, which involves the study of pointer.

Function Prototype

Before defining the function, it is desired to declare the function along with its prototype. In function
prototype, the return value of function, type, and number of arguments are specified.

The declaration of all functions statement should be first statement in

main().

The general form of function declaration using ANSI Prototype is

data_type function_name (type1 arg1, type2 arg2 - - - -);

where arg1, arg2. . . are the list of arguments.

Function prototypes are desirable because they facilitate error checking between calls to a function
and corresponding function definition. They also help the compiler to perform automatic type
conversions on function parameters. When a function is called, actual arguments are automatically
converted to the types in function definition using normal rules of assignment.

111

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Recursive Functions

Recursion is a process by which a function calls itself repeatedly, until some specified condition has
been satisfied. The process is used for repetitive computation in which each action is stated in terms
of previous result.

In order to solve a problem recursively, two conditions must be satisfied:

1. The problem must be written in recursive form.

2. The problem statement must include a stopping condition.

Example: /*To calculate the factorial of an integer recursively * /

include <stdio.h>

main()

{

int n;

long int fact (int);

printf (“\n n = “);

scanf (“%d”, &n);

printf (“\n n! = % ld” fact (n));

}

long int fact (int n)

{

if (n < = 1)

return 1;

else

return (n * factorial (n-1));

}

Library functions

The C programming language comes with a set of standard library functions that perform a variety
of useful tasks. Library functions implement all input and output operations (e.g., writing to the
terminal) as well as all math operations (e.g., sine and cosine evaluation).

It is important to call the proper header file at the start of the programme in order to use a library
function. All of the functions in the library in question have a header file that tells the programme
their name, type, and number and type of arguments. The preprocessor statement calls a header
file.#include <filename>

where filename represents the name of the header file.

A library function is accessed by simply writing the function name, followed by a list of arguments,
which represent the information being passed to the function. The arguments must be enclosed in
parentheses, and separated by commas: they can be constants, variables, or more complex
expressions. Note that the parentheses must be present even when there are no arguments.

Library Functions in Different Header Files

C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

112

 LOVELY PROFESSIONAL UNIVERSITY

Notes

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

Summary

• In this unit, we learnt about “Functions”: definition, declaration, prototypes, types, function

calls datatypes and storage classes, types function invoking and lastly Recursion.

• All these subtopics must have given you a clear idea of how to create and call functions

from other functions, how to send values through arguments, and how to return values to

the called function.

• We have seen that the functions, which do not return any value, must be declared as “void”,

return type.

• A function can return only one value at a time, although it can have many return

statements.

• A function can return any of the data type specified in ‘C’.

Keywords

Call by Reference: It means sending the addresses of the arguments to the called function.

Data types: It refers to the type of information while storage class refers to the life-time of a variable

and its scope within the program.

Function Call: A function can be called by specifying its name followed by a list of arguments

enclosed in parentheses and separated by commas.

Return Statement: Information is returned from the function to the calling portion of the program

via return statement.

Self-Assessment

1. Which one is not a library function

A. printf ()

B. scanf ()

C. gets ()

D. abc ()

2. Function call is _____________

A. Print the statement

B. Use header file in program

C. calling a function whenever it is required in a program

D. None of these

3. Functions are used to __

A. Enhances the logical clarity of the program.

B. Helps to avoid repeated programming across programs.

C. Helps to avoid repeating a set of statements many times.

113

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. All of above

4. Scope of variable in C is______

A. local

B. global

C. intermediate

D. both a and b

5. Variable used inside function is called _____________

A. Global variable

B. Local variable

C. Both a and b

D. None of these

6. In program a and b is a_______

int sum()

{

int a=15, b =20;

return x+y;

}

A. Global variable

B. Local variable

C. Intermediate variable

D. None of above

7. int x and int y is a______

add(int x,int y)

{

 int z;

 z=x+y;

 printf(“result is= %d",z);

}

A. formal Parameter

B. actual Parameter

C. intermediate

D. both a and b

8. Actual parameter is_______

A. parameters that appear in function calls.

B. parameters that appear in function definition.

C. local to the function definition

D. above all

9. Call by value and call by reference is part of ______

A. pointers

B. array

C. functions

114

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. loops

10. In program we can modify original value in

A. Call by value

B. Call by reference

C. above all

11. A function is called indirect recursive ______

A. if it calls the same function.

B. if it calls the another function.

C. Execute other function

D. Above all

12. Function which call itself is called______

A. Static function

B. Auto function

C. Recursive function

D. above all

Review Questions

1. Takes two integer inputs and produces the remainder when the larger is divided by the

smaller.

2. Swaps the two given integers.

3. What do you mean by function call.

4. Describe return value and their types.

5. Evaluates the following series for a specified n: 12 + 22 + 32 + 42 + ……..n2

6. A positive integer is entered through the keyboard. Write a function to obtain the prime

factors of this number.

7. Write a function which receives a float and an int from main(), finds the product of these

two and returns the product which is printed through main().

8. Write a function that receives marks received by a student in 3 subjects and returns the

average and percentage of these marks. Call this function from main() and print the results

in main().

9. Given three variables x, y, z write a function to circularly shift their values to right. In

other words if x = 5, y = 8, z = 10 after circular shift y = 5, z = 8, x =10 after circular shift y =

5, z = 8 and x = 10. Call the function with variables a, b, c to circularly shift values.

10. Write a function to compute the distance between two points and use it to develop

another function that will compute the area of the triangle whose vertices are A(x1, y1), B(x2,

y2), and C(x3, y3). Use these functions to develop a function which returns a value 1 if the

point (x, y) lines inside the triangle ABC, otherwise a value 0.

11. Write a function to find the binary equivalent of a given decimal integer and display it.

Answer: Self-Assessment

1. d 2. c 3. d 4. d

5. b 6. c 7. a 8. a

9. c 10. b 11. b 12. c

115

Programming Methodology

Unit -06:Functions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company
Limited, New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

www.programiz.com

116

http://www.webopedia.com/

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 07: Arrays

CONTENTS

Objectives

Introduction

7.1 Arrays

7.2 Types of Arrays

7.3 Array Declaration

7.4 Array Initialization

7.5 Accessing Elements of an Array

7.6 Passing array as an argument to function

Summary

Keywords

Self Assessment

Review Questions

Further Readings

Objectives

• After studying this unit, you will be able to:

• Explain arrays

• Describe two dimensional array

• Describe array initialization

Introduction

An array is a group of data items of same data type that share a common name. Ordinary variables
are capable of holding only one value at a time. If we want to store more than one value at a time in
a single variable, we use arrays.

An array is a collective name given to a group of similar quantities. Each member in the group is
referred to by its position in the group.

Arrays are alloted the memory in a strictly contiguous fashion. The simplest array is one dimensional
array which is simply a list of variables of same data type. An array of one dimensional arrays is
called a two dimension array.

7.1 Arrays

Arrays are allocated the memory in a strictly contiguous fashion. The simplest array is one
dimensional array which is a list of variables of same data type. An array of one dimensional arrays
is called a two dimensional array; array of two dimensional arrays is three dimensional array and so
on.

The members of the array can be accessed using positive integer values (indicating their order in the
array) called subscript or index. Look at an array of integers as shown below:

a[0] a[1] a[2] a[3] a[4]

The description of this array is listed below:

117

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Name of the array : a

Data type of the array : integer

Number of elements : 5

Valid index values : 0, 1, 2, 3, 4

Value stored at the location a[0] : 200

Value stored at the location a[1] : 120

Value stored at the location a[2] : -78

Value stored at the location a[3] : 100

Value stored at the location a[4] : 0

Advantages of Arrays

Arrays offer a number of advantages, some of which are elucidated below:

1. If only a limited number of variables of a particular data type is required ion a program, one can
choose the variable names to suite the situation. Let us say we require five integer type variables, we
can define them as follows:

int v_one, v_two, v_three, v_four, v_five;

Now, consider if we require hundred integer type variables, is the above approach convenient?
Obviously not. We can, instead, use an array of integer type having 100 elements as shown below:

int num[100];

2. Array elements can be accessed using index. Therefore, all the elements can be processed in a
desired manner in a single for loop that runs for each element, as shown below:

for(i=0; i<100; i++)

num[i]=num[i]+10;

In a single for loop, all the elements have been incremented by 10.

3. Since array elements are physically created contiguously in the memory, they can be accesses using
pointers (as you will learn later). Therefore, there are more than one way to reference array elements.

7.2 Types of Arrays

According the number of subscripts required to access an array element, arrays can be of

following types:

1. One-dimensional array

2. Multi-dimensional array

One-dimensional Array

A list of items can be given one variable name using only one subscript and such a variable is called
a one dimensional array.

Example: If we want to store a set of five numbers by an array variable number. Then it will be
accomplished in the following way:

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

118

Programming Methodology

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Two-dimensional and Multi-dimensional Array

It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is an
array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_type array_name [row_size] [colum_size];

Example: int marks [4] [2];

It will declare an integer array marks of four rows and two columns. An element of this array can be
accessed by the manipulation of both the indices. printf (“%d”, marks [2] [1]) will print the element
present in third row and second column.

C allows arrays of three or more dimensions. Multi-dimensional arrays are defined in much the same
manner as one-dimensional arrays, except that a separate pair of square brackets is required for each
subscript.

The general form of a multi-dimensional array is

data_type array_name [s1] [s2] [s3] . . . [sm];

E.g.: int survey [3] [5] [12];

float table [5] [4] [5] [3];

Here, survey is a 3-dimensional array declared to contain 180 integer type elements. Similarly, table
is a 4-dimensional array containing 300 elements of floating point type.

Let us consider some applications of multidimensional array programming.

1. Sorting an integer array.

include <stdio.h>

void main()

{

int arr [5];

int i, j; temp;

printf (“\n Enter the elements of the array:”};

scanf (“%d”, & arr [i]);

for (i = 0; i < = 4; i ++);

{

for (J = 0; J < = 3; J ++)

if (arr [J] > arr [J+1])

{

temp = arr [J];

arg [J] = arr [J+1];

arr [J+1] = temp;

119

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

}

printf (“\ n The Sorted array is:”);

for (i = 0; i < 5; i++)

printf (“\ t %d”, arr [i]);

}

2. To insert an element into an existing sorted array (Insertion Sort).

include <stdio.h>

main()

{

int i, k, y, x [20], n;

for (i = 0; i < 20; i++)

x [i] = 0;

printf (“\ Enter the number of items to be inserted:\n”);

scanf (“%d”, &n);

printf (“\n Input %d values \n”, n);

for (k = 0; k < n; k++)

{

scanf (“%d”, &x [k]);

y = x [x]

for (i = k-1; i > = 0 && y < x [i]; i - -)

x [i+1] = x[i];

x [i+1] = y;

}

printf (“\n The sorted numbers are:”);

for (i = 0; i < n; i++)

printf (“\n %d”, x [i]);

}

3. Accept character string and find its length.

We will solve this question by looping instead of using Library function strlen().

include <stdio.h>

void main()

{

char name [20];

int i, len;

printf (“\n Enter the name:”);

scanf (“%s”, name);

for (i = 0; name [i] ! = ‘\0’; i++);

Len = i - 1;

print f(“\n Length of array is % d”, len);

120

Programming Methodology

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Character Arrays

Just as a group of integers can be stored in an integer array, group of characters can be stored in a
character array or “strings”. The string constant is a one dimensional array of characters terminated
by null character (‘\0’). This null character ‘\0’ (ASCII value0) is different from ‘O’

(ASCII value 48).

The terminating null character is important because it is the only way the function that works with
string can know where the string ends.

Example: Static char name [] = {‘K’, ‘R’, ‘I’, ‘S’, ‘H’, ‘\0’};

This example shows the declaration and initialization of a character array. The array elements of a
character array are stored in contiguous locations with each element occupying one byte of memory.

7.3 Array Declaration

Arrays are defined in the same manner as ordinary variables, except that each array name must be
accompanied by the size specification.

The general form of array declaration is:

data_type array_name [size];

data-type specifies the type of array, size is a positive integer number or symbolic constant that
indicates the maximum number of elements that can be stored in the array.

121

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Example: float height [50];

This declaration declares an array named height containing 50 elements of type float. The compiler
will interpret first element as height [0]. As in C, the array elements are induced

for 0 to [size-1].

Two dimensional arrays can be declared similarly, as shown below:

data_type array_name[size1][size2];

For instance, the following array (named b) is array of 2 arrays of integer type of size 5

elements:

int b[2][5];

The array b has 10 (2 * 5) elements, each capable of storing an integer type data, referenced as:

b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

Multidimensional arrays can be declared on the similar lines. A three dimensional array (named

c) of int type has been declared below:

Int c[2][2][5];

The array c has 20 (2 * 2 * 5) elements, each capable of storing an integer type data, referenced

as:

c[0][0][0] c[0][0][1] c[0][0][2] c[0][0][3] c[0][0][4]

c[0][1][0] c[0][1][1] c[0][1][2] c[0][1][3] c[0][1][4]

c[1][0][0] c[1][0][1] c[1][0][2] c[1][0][3] c[1][0][4]

c[1][1][0] c[1][1][1] c[1][1][2] c[1][1][3] c[1][1][4]

7.4 Array Initialization

One-dimensional Array

The elements of an array can be initialized in the same way as the ordinary variables, when they are
declared. Given below are some examples which show how the arrays are initialized.

static int num [6] = {2, 4, 5, 45, 12};

static int n [] = {2, 4, 5, 45, 12};

static float press [] = {12.5, 32.4, -23.7, -11.3};

In these examples note the following points:

1. Till the array elements are not given any specific values, they contain garbage value.

2. If the array is initialized where it is declared, its storage class must be either static or extern.

If the storage class is static, all the elements are initialized by 0.

3. If the array is initialized where it is declared, mentioning the dimension of the array is optional.

Two-dimensional Arrays

Two dimensional arrays may be initialized by a list of initial values enclosed in braces following their
declaration.

E.g.: static int table[2][3] = {0, 0, 0, 1, 1, 1};

initializes the elements of the first row to 0 and the second row to one. The initialization is done by
row.

The aforesaid statement can be equivalently written as

static int table[2][3] = {{0, 0, 0}, {1, 1, 1}};

122

Programming Methodology

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

by surrounding the elements of each row by braces.

We can also initialize a two dimensional array in the form of a matrix as shown below:

static int table[2][3] = {{0, 0, 0},

{1, 1, 1}};

The syntax of the above statement. Commas are required after each brace that closes off a row, except
in the case of the last row.

If the values are missing in an initializer, they are automatically set to 0. For instance, the statement

static int table [2] [3] = {{1, 1},

{2}};

will initialize the first two elements of the first row to one, the first element of the second row to two,
and all the other elements to 0.

When all the elements are to be initialized to 0, the following short cut method may be used.

static int m [3] [5] = {{0}, {0}, {0}};

The first element of each row is explicitly initialized to 0 while other elements are automatically
initialized to 0.

While initializing an array, it is necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional. Thus, the following declarations are acceptable.

static int arr [2] [3] = {12, 34, 23, 45, 56, 45};

static int arr [] [3] = {12, 34, 23, 45, 56, 45 };

Multi-dimensional Array

Example: Example of initializing a 4-dimensional array:

static int arr [3] [4] [2] = {{{2, 4}, {7, 8}, {3, 4}, {5, 6},},

{{7, 6}, {3, 4}, {5, 3}, {2, 3}, },

{{8, 9}, {7, 2}, {3, 4}, {6, 1}, } };

In this example, the outer array has three elements, each of which is a two dimensional array of

four rows, each of which is a one dimensional array of two elements.

7.5 Accessing Elements of an Array

Once an array is declared, individual elements of the array are referred using subscript or index
number. This number specifies the element’s position in the array. All the elements of the array are
numbered starting from 0. Thus number [5] is actually the sixth element of an array.

Consider the program given above. It has entered 6 values in the array num. Now to read values
from this array, we will again use for Loop to access each cell. The given program segment explains
the retrieval of the values from the array.

for (count = 0; count < 6; count ++)

{

printf (“\n %d value =”, num [count]);

}

Data can be inserted into array by treating the array elements just like any other variable. If an integer
value is to be read from keyboard into an array element (say c[2][3][0]), the following code snippet
would do the job:

Scanf(“%d”, &c[2][3][0]);

In order to read values in the entire array for loop may be used as explained by the following
examples:

main()

123

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

int num [6];

int count;

for (count = 0; count < 6; count ++)

{

printf (“\n Enter %d element:” count+1);

scanf (“%d”, &num [count]);

}

}

In this example, using the for loop, the process of asking and receiving the marks is accomplished.
When count has the value zero, the scanf() statement will cause the value to be stored at num [0].

This process continues until count has the value greater than 5.

Each element of the array has a memory address. The following program prints an array limit value
and an array element address.

Program:

#include <stdio.h>

void printarr(int a[]);

main()

{

int a[5];

for(int i = 0;i<5;i++)

{

a[i]=i;

}

printarr(a);

}

void printarr(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d\n”,a[i]);

}

}

void printdetail(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d and address is %16lu\n”,a[i],&a[i]);

\\ A

124

Programming Methodology

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

}

Explanation

1. The function printarr prints the value of each element in arr.

2. The function printdetail prints the value and address of each element as given in statement A. Since
each element is of the integer type, the difference between addresses is 2.

3. Each array element occupies consecutive memory locations.

4. You can print addresses using place holders %16lu or %p.

Questions

1. Write a program to add two 6 x 6 matrices.

2. Write a program to multiply any two 3 x 3 matrices.

3. Write a program to sort all the elements of a 4 x 4 matrix.

4. Write a program to obtain the determinant value of a 5 x 5 matrix.

7.6 Passing array as an argument to function

If you want to pass a single-dimension array as an argument in a function, you would have to declare
a formal parameter in one of following three ways and all three declaration methods produce similar
results because each tells the compiler that an integer pointer is going to be received. Similarly, you
can pass multi-dimensional arrays as formal parameters.

Method -1

Formal parameters as a pointer −

void myFunction(int *param) {

 .

 .

 .

}

Method -2

Formal parameters as a sized array −

void myFunction(int param[10]) {

 .

 .

 .

}

Method -3

Formal parameters as an unsized array −

void myFunction(int param[]) {

 .

 .

 .

125

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

Example:

Now, consider the following function, which takes an array as an argument along with another
argument and based on the passed arguments, it returns the average of the numbers passed through
the array as follows −

double getAverage(int arr[], int size)

 {

 int i;

 double avg;

 double sum = 0;

 for (i = 0; i < size; ++i) {

 sum += arr[i];

 }

 avg = sum / size;

 return avg;

}

Now, let us call the above function as follows −

#include <stdio.h>

 double getAverage(int arr[], int size);

int main () {

 int balance[5] = {1000, 2, 3, 17, 50};

 double avg;

 avg = getAverage(balance, 5) ;

 printf("Average value is: %f ", avg);

 return 0;

}

Summary

• An array is a group of memory locations related by the fact that they all have the same name

and same data type.

• An array including more than one dimension is called a multidimensional array.

• The size of an array should be a positive number. If an array in declared without a size and

in initialized to a series of values it is implicitly given the size of number of initializers.

• Array subscript always starts with 0. Last element’s subscript is always one less than the

size of the array e.g., an array with 10 elements contains element 0 to 9. Size of an array must

be a constant number.

Keywords

Array: A user defined simple data structure which represents a group of same type of

variables having same name each being referred to by an integral index

126

Programming Methodology

Unit 07: Arrays

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Multidimensional array: An array in which elements are accessed using multiple indices

One dimensional array: An array in which elements are accessed using a single index

Subscript/Index: The integral index by which an array element is accessed

Two dimensional array: An array in which elements are accessed using two indices

Self Assessment

Choose the appropriate answers:

1. Array is a group of data items of

(a) Same data type that share a common name

(b) Same data type that share a uncommon name

(c) Not data type that never common name

(d) None of the above

2. The general form of array declaration is

(a) array_name [size];

(b) data_type array_name [size];

(c) data_type [size];

(d) None

3. What will be the output of the following program if the input is - “tomorrow never

comes!”.

main()

{

char letter [80];

int count;

for (count = 0; count < 80; count++)

letter[count] = getchar();

for (count = 0; count < 80; count++)

putchar (toupper (letter[count]));

}

Fill in the blanks:

4. The members of the array can be accessed using positive integer values called

5. While initializing a two dimensional array, it is necessary to mention the

dimension, whereas the is optional.

6. The is a one dimensional array of characters terminated by null character

(‘\0’).

State whether the following statements are true or false:

7. All the members of an array share a common name and memory location.

8. Array elements contain garbage values till the time they are initialized.

9. 3-dimensional array declared to contain 180 integer type elements.

10. Array element can be accessed using index.

Review Questions

1. Explain the usefulness of Arrays in C.

2. What do you mean by ‘Array’? How it can be declared & initialized in a C program?

3. Draw a diagram to represent the internal storage of an Array.

4. Describe the different types of Array. Give suitable programs.

127

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5. Find the smallest number in an array using pointers.

6. If an array arr contains n elements, then write a program to check if arr[0] = arr[n-1], arr[1]

 = arr[n-2] and so on.

7. Write a program to copy the contents of one array into another in the reverse order.

8. How will you initialize a three-dimensional array threed[3][2][3]? How will you refer the

first and last element in this array?

9. Write a program to pick up the largest number from any 5 row by 5 column matrix.

10. Write a program to obtain transpose of a 4 x 4 matrix. The transpose of a matrix is

obtained

by exchanging the elements of each row with the elements of the corresponding column.

11. Write a program that interchanges the odd and even components of an array.

Answers: Self Assessment

1. a 2. b 3.
tomorrow

never
comes

4. subscript 5.
second(column),first

dimesion(row)

6.
Straight
Constant

7. False 8. True 9. True 10. True

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson

Education, Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of

India, New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company

Limited, New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,

1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall

International, 1982.

Yashvant Kanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

128

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 08: Array Application

CONTENTS

Objectives

Introduction

8.1 Searching

8.2 Character Array

Summary

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• sorting techniques and its types.

• searching techniques and its types.

• Character Arrays

Introduction

One of the most important topics in DSA is sorting and searching. One of the most prevalent uses
of computers nowadays is for storing and retrieving data. The amount of data and information kept
and accessed by computer has grown over time, resulting in massive databases. To properly
manage and process information in databases, a plethora of approaches and algorithms have been
developed. Searching is the process of finding up a specific data record in a database. Sorting is the
process of arranging records in a database. Combining sorting and searching is an important topic
of research in computational algorithms. Both are crucial areas of research in data structures.

8.1 Searching

Searching is an operation or a strategy for locating a certain element or value inside a list. Whether
or not the element being searched is found determines whether a search is successful or
unsuccessful.

The practise of looking through the data in a data structure to see if a given value is present is
known as searching. (As well as perhaps returning it.) For example, the contains method of the
Array List searches the list for a given item and returns true or false.

Some of the standard searching technique that isbeing followed in data structure is listed below:

1. Linear Search

2. Binary Search

129

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Linear search

Linear search is a simple and straightforward search strategy. In linear search, we look for an
element or value in an array by traversing it from the beginning until the element or value we want
is discovered.

It compares the element to be searched with all of the items in the array and returns the index of the
element in the array if the element is successfully matched, otherwise it returns -1. When there are
fewer elements in a list, Linear Search is used on unsorted or unordered lists.

Algorithm

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Pseudo code

procedure linear_search (list, value)

for each item in the list

if match item == value

return the item’s location

end if

end for

end procedure

Features of Linear Search Algorithm

1. It is used for unsorted and unordered small list of elements.

2. It has a time complexity of O(n), which means the time is linearly dependent on thenumber of
elements, which is not bad, but not that good too.

3. It has a very simple implementation

Complexity of algorithm

130

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Complexity Best Case Average Case Worst Case

Time O(1) O(n) O(n)

Space

O(1)

Let us take an example of an array A[7]={5,2,1,6,3,7,8}. Array A has 7 items. Let us assume
we are looking for 7 in the array. Targeted item=7.

Here, we have

A[7]={5,2,1,6,3,7,8}

X=7

At first, When i=0 (A[0]=5; X=7) not matched

i++ now, i=1 (A[1]=2; X=7) not matched

i++ now, i=2(A[2])=1; X=7)not matched

…

….

i++ when, i=5(A[5]=7; X=7) Match Found

Hence, Element X=7 found at index 5.

Linear search is rarely used practically. The time complexity of above algorithm is O(n).

int linearSearch(int values[], int target, int n)

{

 for(int i = 0; i < n; i++)

 {

 if (values[i] == target)

 {

 return i;

 }

 }

 return -1;

131

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

Linear search program

#include <stdio.h>

int main()

{

 int array[100], search, c, n;

 printf("Enter number of elements in array\n");

 scanf("%d", &n);

 printf("Enter %d integer(s)\n", n);

 for (c = 0; c < n; c++)

 scanf("%d", &array[c]);

 printf("Enter a number to search\n");

 scanf("%d", &search);

 for (c = 0; c < n; c++)

 {

 if (array[c] == search) /* If required element is found */

 {

 printf("%d is present at location %d.\n", search, c+1);

 break;

 }

 }

 if (c == n)

 printf("%d isn't present in the array.\n", search);

 return 0;

}

Binary Search

Binary Search is used with sorted array or list. In binary search, we follow the followingsteps:

1. We start by comparing the element to be searched with the element in the middle ofthe
list/array.

2. If we get a match, we return the index of the middle element.

3. If we do not get a match, we check whether the element to be searched is less orgreater than in
value than the middle element.

4. If the element/number to be searched is greater in value than the middle number, then we pick
the elements on the right side of the middle element(as the list/array is sorted, hence on the right,
we will have all the numbers greater than the middle number), and start again from the step 1.

132

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5. If the element/number to be searched is lesser in value than the middle number, then we pick the
elements on the left side of the middle element, and start again from the step 1.

Binary Search is useful when there are large number of elements in an array and they are sorted. So
a necessary condition for Binary search to work is that the list/array should be sorted.

Features of Binary Search

1. It is great to search through large sorted arrays.

2. It has a time complexity of O(log n) which is a very good time complexity. It has asimple
implementation.

Binary search is a fast search algorithm with run-time complexity of Ï(log n). This search algorithm
is based on the divide-and-conquer strategy. The data collection should be in sorted form for this
algorithm to perform effectively.

By comparing the collection's middle item, binary search looks for a specific piece.

If a match is found, the item's index is returned. The item is searched in the sub-array to the left of
the middle item if the middle item is greater than the item. Otherwise, look for the item in the sub-
array to the right of the centre item. This method is repeated on the subarray until the subarray's
size is reduced to zero.

Algorithm

Step 1: Data list must be ordered list in ascending order.

Step 2: Probe middle of list

Step 3: If target equals list[mid], FOUND.

Step 4: If target < list[mid], discard 1/2 of list between list[mid] and list[last].

Step 5: If target > list[mid], discard 1/2 of list between list[first] and list[mid].

Step 6: Continue searching the shortened list until either the target is found, or there are no
elements to probe.

Pseudo code

The pseudo code of binary search algorithms

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lower Bound = 1

 Set upper Bound = n

 while x not found

 if upper Bound < lower Bound

 EXIT: x does not exists.

 set mid Point = lower Bound + (upper Bound – lower Bound) / 2

 if A[mid Point] < x

 set lower Bound = mid Point + 1

 if A[mid Point] > x

 set upper Bound = mid Point - 1

133

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 if A[mid Point] = x

 EXIT: x found at location mid Point

 end while

 end procedure

C program to implement recursive Binary Search

#include <stdio.h>

 // A recursive binary search function. It returns location of x in given array arr [l..r] is
present, otherwise -1

int binary Search(int arr[], int l, int r, int x)

{

 if (r >= l) {

 int mid = l + (r - l) / 2;

 // If the element is present at the middle

 // itself

 if (arr[mid] == x)

 return mid;

 // If element is smaller than mid, then

 // it can only be present in left subarray

 if (arr[mid] > x)

 return binarySearch(arr, l, mid - 1, x);

 // Else the element can only be present

 // in right subarray

 return binarySearch(arr, mid + 1, r, x);

 }

 // We reach here when element is not

 // present in array

 return -1;

}

int main(void)

{

 int arr[] = { 2, 3, 4, 10, 40 };

 int n = sizeof(arr) / sizeof(arr[0]);

 int x = 10;

 int result = binarySearch(arr, 0, n - 1, x);

134

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 (result == -1) ? printf("Element is not present in array")

 : printf("Element is present at index %d",

 result);

 return 0;

}

 Sorting

A sorting algorithm is an algorithm that puts elements of a list in a certain order. The mostused
orders are numerical order and lexicographical order. Efficient sorting is important tooptimizing
the use of other algorithms that require sorted lists to work correctly and for producinghuman -
readable input.

Sorting is the process of placing elements from a collection in some kind of order. For example, a
list of words could be sorted alphabetically or by length. Efficient sorting is important to optimize
the use of other algorithms that require sorted lists to work correctly.

Importance of sorting

To represent data in more readable format.

Optimize data searching to high level.

The most common sorting algorithms are:

Bubble Sort

Insertion Sort

Selection Sort

Quick Sort

Merge Sort

Heap sort

Shell Sort

25 30 15 12 16 12 15 16 25 30

Sorting algorithms are often classified by :

* Computational complexity (worst, average and best case) in terms of the size of the list (N).

For typical sorting algorithms good behaviour is O(NlogN) and worst case behavior is O(N2) and
the average case behaviour is O(N).

* Memory Utilization

* Stability - Maintaining relative order of records with equal keys.

* No. of comparisions.

* Methods applied like Insertion, exchange, selection, merging etc.

Sorting is a process of linear ordering of list of objects.

Sorting techniques are categorized into

 Internal Sorting

 External Sorting

Internal Sorting takes place in the main memory of a computer.

eg: - Bubble sort, Insertion sort, Shell sort, Quick sort, Heap sort, etc.

External Sorting, takes place in the secondary memory of a computer, Since the number ofobjects to
be sorted is too large to fit in main memory.

eg: - Merge Sort, Multiway Merge, Polyphase merge.

135

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Bubble Sort

The simplest sorting algorithm is bubble sort. It works by comparing each adjacent pair of elements
and swapping them if they are out of order. It works by stepping through the list to be sorted
multiple times, comparing two items at a time and exchanging them if they are out of order. The
process is repeated until no swaps are required, indicating that the list is sorted. For large data sets,
this approach is ineffective. This approach has an average and worst case time complexity of O(n2),
where n is the number of elements..

6 4 2 >> 4 6 2

4 6 2>> 4 2 6

4 26 >> 2 4 6

Algorithm

for i=N-1 to 2 {

set swap flag to false

for j=1 to i {

if list[j-1] > list[j]

swap list[j-1] and list[j]

set swap flag to true

}

if swap flag is false, break. The list is sorted.

}

Selection Sort

Selection Sort finds the smallest element in the array and exchanges it with the element in the first
position, it then finds the second smallest element and exchanges it with the element in the second
position and continues this process until the entire list is sorted.

Algorithm

Step 1: Set MIN to location 0

Step 2: Search the minimum element in the list

Step 3: Swap with value at location MIN

Step 4: Increment MIN to point to next element

Step 5: Repeat until list is sorted

22 10 15 18 >> 10 22 15 18

10 22 15 18 >> 1015 22 18

10 15 22 18 >> 10 15 1822

 10 15 18 22

arr[] = 64 25 12 22 11

136

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

// Find the minimum element in arr[0...4]

// and place it at beginning

11 25 12 22 64

// Find the minimum element in arr[1...4]

// and place it at beginning of arr[1...4]

11 12 25 22 64

// Find the minimum element in arr[2...4]

// and place it at beginning of arr[2...4]

11 12 22 25 64

// Find the minimum element in arr[3...4]

// and place it at beginning of arr[3...4]

11 12 22 25 64

program for implementation of selection sort

#include <stdio.h>

void swap(int *xp, int *yp)

{

 int temp = *xp;

 *xp = *yp;

 *yp = temp;

}

void selectionSort(int arr[], int n)

{

 int i, j, min_idx;

 // One by one move boundary of unsorted subarray

 for (i = 0; i < n-1; i++)

 {

 // Find the minimum element in unsorted array

 min_idx = i;

 for (j = i+1; j < n; j++)

 if (arr[j] < arr[min_idx])

 min_idx = j;

 // Swap the found minimum element with the first element

137

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 swap(&arr[min_idx], &arr[i]);

 }

}

/* Function to print an array */

void printArray(int arr[], int size)

{

 int i;

 for (i=0; i < size; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

// Driver program to test above functions

int main()

{

 int arr[] = {64, 25, 12, 22, 11};

 int n = sizeof(arr)/sizeof(arr[0]);

 selectionSort(arr, n);

 printf("Sorted array: \n");

 printArray(arr, n);

 return 0;

}

Output:

Sorted array:

11 12 22 25 64

Merge Sort

Merge sort is a recursive algorithm that involves splitting and merging the array.

Algorithm

The algorithm works as follows:

1. Divide the array in half.

2. Recursively sort both halves.

3. Merge the halves back together.

program for Merge Sort

#include <stdio.h>

#include <stdlib.h>

// Merges two subarrays of arr[].

// First subarray is arr[l..m]

138

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

// Second subarray is arr[m+1..r]

void merge(int arr[], int l, int m, int r)

{

 int i, j, k;

 int n1 = m - l + 1;

 int n2 = r - m;

 /* create temp arrays */

 int L[n1], R[n2];

 /* Copy data to temp arrays L[] and R[] */

 for (i = 0; i < n1; i++)

 L[i] = arr[l + i];

 for (j = 0; j < n2; j++)

 R[j] = arr[m + 1 + j];

 /* Merge the temp arrays back into arr[l..r]*/

 i = 0; // Initial index of first subarray

 j = 0; // Initial index of second subarray

 k = l; // Initial index of merged subarray

 while (i < n1 && j < n2) {

 if (L[i] <= R[j]) {

 arr[k] = L[i];

 i++;

 }

 else {

 arr[k] = R[j];

 j++;

 }

 k++;

 }

 /* Copy the remaining elements of L[], if there

 are any */

 while (i < n1) {

 arr[k] = L[i];

 i++;

 k++;

 }

 /* Copy the remaining elements of R[], if there

139

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 are any */

 while (j < n2) {

 arr[k] = R[j];

 j++;

 k++;

 }

}

/* l is for left index and r is right index of the

sub-array of arr to be sorted */

void mergeSort(int arr[], int l, int r)

{

 if (l < r) {

 // Same as (l+r)/2, but avoids overflow for

 // large l and h

 int m = l + (r - l) / 2;

 // Sort first and second halves

 mergeSort(arr, l, m);

 mergeSort(arr, m + 1, r);

 merge(arr, l, m, r);

 }

}

/* UTILITY FUNCTIONS */

/* Function to print an array */

void printArray(int A[], int size)

{

 int i;

 for (i = 0; i < size; i++)

 printf("%d ", A[i]);

 printf("\n");

}

/* Driver code */

int main()

{

 int arr[] = { 12, 11, 13, 5, 6, 7 };

 int arr_size = sizeof(arr) / sizeof(arr[0]);

140

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 printf("Given array is \n");

 printArray(arr, arr_size);

 mergeSort(arr, 0, arr_size - 1);

 printf("\nSorted array is \n");

 printArray(arr, arr_size);

 return 0;

}

Output

Given array is

12 11 13 5 6 7

Sorted array is

5 6 7 11 12 13

Quick Sort

Quick sort is an interesting algorithm because while its worst case is technically O(N2), in practice it
is almost always O(N log N)

Quick sort is a recursive algorithm based around the idea of choosing a pivot item and sorting
around it.

Algorithm

1. “Randomly” choose an element from the array as your pivot.

2. Partition the array around your pivot, making sure that items less than the pivot are to the

left of it and all items greater than or equal to the pivot are to the right of it.

3. Recursively sort both parts.

8.2 Character Array

Character array is collection of characters, stored under a single name.Character arrays can be
initialized using string literals (Double quotes).One dimensional array of characters also known as a
string.

Initializing Character Array

 Char abc[]= “Program”;

Data type name of character array String

char a[]=“Program”;

“Program” is a string.

String terminates with null character i.e. ‘\0’.

String “Program” has 8 characters.

char abc[] ={“hello”};

char abc[10]= {‘h’,’e’,’l’,’l’,’o’,’\0’};

Char abc[] = {‘h’,’e’,’l’,’l’,’o’,’\0’};

Char abc[10]= {“hello”};

141

 LOVELY PROFESSIONAL UNIVERSITY

Notes

#include<stdio.h>

int main(){

char a[]={'h','e','l','l','o','\0'};

for(int i=0;i<=6;i++){

 printf("%c",a[i]);

}

return 0;

}

Output:

hello

Summary

Searching is the process of looking through the data contained in a data structure and determining
if a specific value is present.

Binary Search Algorithm follows the Divide and Conquer strategy where it finds the item from the
sorted list of items

In a linear search, array is traversed sequentially and each element is checked until a match is found

A Sorting process is used to rearrange a given array or elements based upon selected algorithm/
sort function

Bubble sort, swap neighbours the larger items drop down while the smaller ones bubble up, in n-1
passes through the array

Self Assessment

1. Every element in an array is searched against some searching key, special for

A. Linear search

B. Bubble sort

C. All of them

D. Binary search

2. A binary search algorithm is an algorithm that is used for

A. Divide and conquer method

B. Linear way to search values

C. Bubble sorting technique

D. None of them

3. For finding value in an array which of the following technique is used?

A. Binary search algorithm

B. Bubble sort

C. Linear search algorithm

D. All of them

4. Very slow way of sorting is..........

A. Insertion sort

142

Programming Methodology

Unit 08: Array Applications

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. Heap sort

C. Bubble sort

D. Quick sort

5. Which of the following sorting algorithm is of divide and conquer type?

A. Bubble sort

B. Insertion sort

C. Quick sort

D. Merge sort

6. If the given input array is sorted or nearly sorted, which of the following algorithm gives the
best performance?

A. Insertion sort

B. Selection sort

C. Quick sort

D. Merge sort

7. Binary search algorithm cannot be applied to …

A. sorted binary trees

B. sorted linear array

C. sorted linked list

D. pointer array

8. Which sorting method is external sorting?

A. Bubble Sort

B. Merge Sort

C. Tree Sort

D. Insertion Sort

9. ______sorting is useful in case of large amount of data.

A. Merge

B. Bubble

C. Heap

D. Radix

10. A character constant is enclosed by?

A. Left Single Quotes

B. Right Single Quotes

C. Double Quotes

D. None of the above

11. A character array can be initialized using

A. Floats value

143

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. A string literal

C. Integer values

D. None of them

Answer for Self Assessment

1. A 2. A 3. A 4. A 5. C

6. A 7. C 8. B 9. D 10. B

11. B

Review Questions

1. Write a program to implement a Linear Search Algorithm?

2. Differentiate between linear search and binary search.

3. Write down algorithm for binary search.

4. What is significance of sorting, give an example?

5. How selection sort is different form merge sort?

6. What is complexity in algorithm?

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

www.geeksforgeeks.org

www.tutorialspoint.com

144

Programming Methodology

http://www.webopedia.com/
http://www.geeksforgeeks.org/

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 09: Strings

CONTENTS

Objectives

Introduction

9.1 Strings

9.2 Declaring and Initializing String

9.3 Reading and Writing Strings

9.4 Build-in-Library Functions to Manipulate Strings

9.5 strlen()

9.6 strcpy()

9.7 strcat()

9.8 strcmp()

9.9 Putting String Together

9.10 Comparison of two String

9.11 String Handling Functions

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Explain strings
 Describe reading and writing strings
 Explain string handling functions

Introduction
Computers process a variety of data kinds in addition to numeric data. The data to be processed is
frequently textual, such as words, names, and addresses. String type variables are used to store and
process this type of data. There is no explicit string data type in C.

Character arrays, on the other hand, can be used to simulate the same thing. In this session, we'll
look at strings and how to manipulate them in C.

9.1 Strings
In C, a string is defined as a collection of characters. The NULL character, which signifies the end of
the string, is used to end each string. Any group of characters enclosed in double-quote marks is
referred to as a string constant.

When characters in a string constant are stored, the NULL character is automatically appended to
the end of them. The escape sequence ‘0' is used to represent the NULL character within a
programme. A string constant is an array with a lower bound of 0 and an upper bound of the
string's length in characters.

145

Ashwani Kumar, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY

Notes
When choosing a data representation for a given data object, the cost of performing various
operations with that representation must be considered. Furthermore, a hidden cost resulting from
the required storage management procedures must be considered.

Strings are stored in three types of structures:

1. Fixed length structure

2. Variable length structure

3. Linked structure

4. Sequential Fixed Length Structure

In this representation successive characters of a string will be placed in consecutive character
positions. The string S = ‘x1---xn’ could then be represented as in Figure with s as a pointer to the
first character.

Now, if we want to pick a substring of size k from the string of size n, the time required to achieve
this would be O(k) plus the time needed to locate a free space big enough to hold the string.

Linked List Fixed Size Nodes
The available memory is divided into nodes of fixed size. Each node has two fields: Data andLink.
The size of a node is number of characters that can be stored in the DATA fields.

In the above figure memory is divided into nodes of size 4 with a link field that is two characters
long. Deletion of a substring can be carried out by replacing all characters in this substring by 0 and
freeing nodes in which the data fields consist of only 0’s.

Storage compaction can be carried out when there are no free nodes. String representation with
variable size is similar.

Each node in the purest version of a linked list representation of strings would be one in size.
Normally, this would be considered a huge waste of space. With a two-character link field, this
means that only 1/3 of the available Memory will be used to store string data, while the remaining
2/3 will be used exclusively for link data.

9.2 Declaring and Initializing String
In C, strings are represented as character arrays. The null character, which is just the character with
the value 0, is used to indicate the end of the string. (The null character is unrelated to the null
pointer except by name.) The null character is known as NUL in the ASCII character set.) Another
character escape sequence, 0 represents the null or string-terminating character.

Because C has no built-in facilities for manipulating entire arrays (copying them, comparing them,
etc.), it also has very few built-in facilities for manipulating strings.

146

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
In fact, C’s only truly built-in string-handling is that it allows us to use string constants (also called
string literals) in our code. Whenever we write a string, enclosed in double quotes, C automatically
creates an array of characters for us, containing that string, terminated by the \0 character.

We can declare and define an array of characters, and initialize it with a stringconstant:

char string[] = “Hello, world!”;

In this situation, we may omit the array's dimension because the compiler will figure it out for us
based on the size of the initializer. The compiler will only size a string array for us in this scenario;
in all other circumstances, we will have to decide how big the arrays and other data structures we
employ to house strings are

To do anything else with strings, we must typically call functions. The C library contains a fewbasic
string manipulation functions, and to learn more about strings, we’ll be looking at howthese
functions might be implemented.

Since C never lets us assign entire arrays, we use the strcpy function to copy one string toanother:

#include <string.h>

char string1[] = “Hello, world!”;

char string2[20];

strcpy(string2, string1);

The destination string is strcpy’s first argument, so that a call to strcpy mimics an
assignmentexpression (with the destination on the left-hand side). Notice that we had to allocate
string2 big enough to hold the string that would be copied to it. Also, at the top of any source file
where we’re using the standard library’s string-handling functions (such as strcpy) we must
include the line

#include <string.h>

which contains external declarations for these functions.

Since C won’t let us compare entire arrays, either, we must call a function to do that, too. The
standard library’s strcmp function compares two strings, and returns 0 if they are identical, or a
negative number if the first string is alphabetically “less than’’ the second string, or a positive
number if the first string is ”greater.” (Roughly speaking, what it means for one string to be “less
than’’ another is that it would come first in a dictionary or telephone book, although there are a few
anomalies.) Here is an example:

char string3[] = “this is”;

char string4[] = “a test”;

if(strcmp(string3, string4) == 0)

printf(“strings are equal\n”);

elseprintf(“strings are different\n”);

This code fragment will print “strings are different’’. Notice that strcmp does not return a
Boolean,

true/false, zero/nonzero answer, so it’s not a good idea to write something like

if(strcmp(string3, string4))

...

because it will behave backwards from what you might reasonably expect. (Nevertheless, if you
start reading other people’s code, you’re likely to come across conditionals like if(strcmp(a, b)) or
even if(!strcmp(a, b)). The first does something if the strings are unequal; the second does
something if they’re equal. You can read these more easily if you pretend for a moment that
strcmp’s name were strdiff, instead.)

Another standard library function is strcat, which concatenates strings. It does not concatenate two
strings together and give you a third, new string; what it really does is append one string onto the
end of another. (If it gave you a new string, it would have to allocate memory for it somewhere, and
the standard library string functions generally never do that for you automatically.) Here’s an
example:

147

LOVELY PROFESSIONAL UNIVERSITY

Notes
char string5[20] = “Hello, “;

char string6[] = “world!”;

printf(“%s\n”, string5);

strcat(string5, string6);

printf(“%s\n”, string5);

The first call to printf prints ``Hello, ‘’, and the second one prints “Hello, world!”, indicating that
the contents of string6 have been tacked on to the end of string5. Notice that we declared string5
with extra space, to make room for the appended characters.

If you have a string and you want to know its length (perhaps so that you can check whether it will
fit in some other array you’ve allocated for it), you can call strlen, which returns the length of the
string (i.e. the number of characters in it), not including the \0:

char string7[] = “abc”;

intlen = strlen(string7);

Printf (“%d\n”, len);

Finally, you can print strings out with printf using the %s format specifier, as we’ve been doingin
these examples already (e.g. printf(“%s\n”, string5);).

Since a string is just an array of characters, all of the string-handling functions we’ve just seen can
be written quite simply, using no techniques more complicated than the ones we already know. In
fact, it’s quite instructive to look at how these functions might be implemented. Here is a version of
strcpy:

mystrcpy(char dest[], char src[])

{

inti = 0;

while(src[i] != ‘\0’)

{

dest[i] = src[i];

i++;

}

dest[i] = ‘\0’;

}

We’ve called it mystrcpy instead of strcpy so that it won’t clash with the version that’s already in
the standard library. Its operation is simple: it looks at characters in the src string one at a time, and
as long as they’re not \0, assigns them, one by one, to the corresponding positions in the dest
string. When it’s done, it terminates the dest string by appending a \0. (After exiting the while loop,
i is guaranteed to have a value one greater than the subscript of the last character in src.) For
comparison, here’s a way of writing the same code, using a for loop:

for(i = 0; src[i] != ‘\0’; i++)

dest[i] = src[i];

dest[i] = ‘\0’;

Yet a third possibility is to move the test for the terminating \0 character out of the for loop header
and into the body of the loop, using an explicit if and break statement, so that we can perform the
test after the assignment and therefore use the assignment inside the loop to copy

the \0 to dest, too:

for(i = 0; ; i++)

{

dest[i] = src[i];

if(src[i] == ‘\0’)

148

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
break;

}

(There are in fact many, many ways to write strcpy. Many programmers like to combine the
assignment and test, using an expression like (dest[i] = src[i]) != ‘\0’. Here is a version of

strcmp:

mystrcmp(char str1[], char str2[])

{

inti = 0;

while(1)

{

if(str1[i] != str2[i])

return str1[i] - str2[i];

if(str1[i] == ‘\0’ || str2[i] == ‘\0’)

return 0;

i++;

}

}

Characters are compared one at a time. If two characters in one position differ, the strings are
different, and we are supposed to return a value less than zero if the first string (str1) is
alphabetically less than the second string. Since characters in C are represented by their numeric
character set values, and since most reasonable character sets assign values to characters in
alphabetical order, we can simply subtract the two differing characters from each other: the
expression str1[i] - str2[i] will yield a negative result if the i’th character of str1 is less than the
corresponding character in str2. (As it turns out, this will behave a bit strangely when comparing
upper- and lower-case letters, but it’s the traditional approach, which the standard versions of
strcmp tend to use.) If the characters are the same, we continue around the loop, unless the
characters we just compared were (both) \0, in which case we’ve reached the end of both strings,
and they were both equal. Notice that we used what may at first appear to be an infinite loop—the
controlling expression is the constant 1, which is always true. What actually happens is that the
loop runs until one of the two return statements breaks out of it (and the entire function).

Finally, here is a version of strlen:

intmystrlen(char str[])

{

inti;

for(i = 0; str[i] != ‘\0’; i++)

{}

returni;

}

In this case, all we have to do is find the \0 that terminates the string, and it turns out that the three
control expressions of the for loop do all the work; there’s nothing left to do in the body.

Therefore, we use an empty pair of braces {} as the loop body. Equivalently, we could use a null
statement, which is simply a semicolon:

for(i = 0; str[i] != ‘\0’; i++)

Empty loop bodies can be a bit startling at first, but they’re not unheard of.Everything we’ve looked
at so far has come out of C’s standard libraries. As one last example,let’s write a substr function, for
extracting a substring out of a larger string. We might call it likethis:

char string8[] = “this is a test”;

149

LOVELY PROFESSIONAL UNIVERSITY

Notes
char string9[10];

substr(string9, string8, 5, 4);

printf(“%s\n”, string9);

The idea is that we’ll extract a substring of length 4, starting at character 5 (0-based) of string8,
andcopy the substring to string9. Just as with strcpy, it’s our responsibility to declare the
destinationstring (string9) big enough. Here is an implementation of substr. Not surprisingly, it’s
quitesimilar to strcpy:

substr(char dest[], char src[], int offset, intlen)

{

inti;

for(i = 0; i<len&&src[offset + i] != ‘\0’; i++)

dest[i] = src[i + offset];

dest[i] = ‘\0’;

}

If you compare this code to the code for mystrcpy, you’ll see that the only differences are
thatcharacters are fetched from src[offset + i] instead of src[i], and that the loop stops when
lencharacters have been copied (or when the src string runs out of characters, whichever
comesfirst).

In this unit, we’ve been careless about declaring the return types of the string functions, and(with
the exception of mystrlen) they haven’t returned values. The real string functions do returnvalues,
but they’re of type ``pointer to character,’’ which we haven’t discussed yet.When working with
strings, it’s important to keep firmly in mind the differences betweencharacters and strings. We
must also occasionally remember the way characters are represented,and about the relation
between character values and integers.

As we have had several occasions to mention, a character is represented internally as a
smallinteger, with a value depending on the character set in use. For example, we might find
that‘A’ had the value 65, that ‘a’ had the value 97, and that ‘+’ had the value 43. (These are, in
fact,the values in the ASCII character set, which most computers use. However, you don’t need
tolearn these values, because the vast majority of the time, you use character constants to referto
characters, and the compiler worries about the values for you. Using character constants
inpreference to raw numeric values also makes your programs more portable.)

As we may also have mentioned, there is a big difference between a character and a string, evena
string which contains only one character (other than the \0).

‘A’ is not the same as “A”. To drive home this point, let’s illustrate it with a fewexamples.

If you have a string:

char string[] = “hello, world!”;

you can modify its first character by saying

string[0] = ‘H’;

(Of course, there’s nothing magic about the first character; you can modify any character in
thestring in this way. Be aware, though, that it is not always safe to modify strings in-place like this;
we’ll say more about the modifiability of strings in a later unit on pointers.) Since you’re replacing a
character, you want a character constant, ‘H’. It would not be right to write

string[0] = “H”; /* WRONG */

because “H” is a string (an array of characters), not a single character. (The destination of the
assignment, string[0], is a char, but the right-hand side is a string; these types don’t match.) On the
other hand, when you need a string, you must use a string. To print a single newline, you could call

printf(“\n”);

It would not be correct to call

printf(‘\n’); /* WRONG */

150

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
printf always wants a string as its first argument. (As one final example, putchar wants a single
character, so putchar(‘\n’) would be correct, and putchar(“\n”) would be incorrect.) We must also
remember the difference between strings and integers. If we treat the character ‘1’ as an integer,
perhaps by saying

inti = ‘1’;

we will probably not get the value 1 in i; we’ll get the value of the character ‘1’ in the machine’s
character set. (In ASCII, it’s 49.) When we do need to find the numeric value of a digit character (or
to go the other way, to get the digit character with a particular value) we can make use of the fact
that, in any character set used by C, the values for the digit characters, whatever they are, are
contiguous. In other words, no matter what values ‘0’ and ‘1’ have, ‘1’ - ‘0’ will be 1 (and, obviously,
‘0’ - ‘0’ will be 0). So, for a variable c holding some digit character, the expression

c - ‘0’

gives us its value. (Similarly, for an integer value i, i + ‘0’ gives us the corresponding digit character,
as long as 0 <= i<= 9.)

Just as the character ‘1’ is not the integer 1, the string “123” is not the integer 123. When we have a
string of digits, we can convert it to the corresponding integer by calling the standard function

atoi:

char string[] = “123”;

inti = atoi(string);

int j = atoi(“456”);

9.3 Reading and Writing Strings
Character String Input Function
% ws or % wc can be used as the specification for reading character strings. The specifier %
terminates reading a string at the encounter of blank space. Some versions of scanf() support the
following conversion specification for strings.

% [characters] and % [^characters]

The specification % [characters] means that only the characters specified within the brackets are
permissible in the input string. If the input string contains any other character, the string will be
terminated at the first encounter of such a character.

The specification % [^character] does exactly the reverse, i.e., characters specified after circumflex
(^) are not permitted.

gets() function is used to read a character entered at the keyboard and places it at the address
pointed to by its character pointer argument.

Characters are entered until the enter key is pressed.

syntax: char * gets (char *a);

where a is the character array.

Character String Output Function
puts() function writes its string argument to the screen followed by the new line.

syntax: char * puts (const char * a);

puts() function takes less space thenprintf(). It is faster than printf(). It does not output numbers

or does format conversions as puts() outputs character string only.

Example:

include <stdio.h>

include <conio.h>

main()

{

151

LOVELY PROFESSIONAL UNIVERSITY

Notes
charstr [50]

gets (str);

puts (str);

}

9.4 Build-in-Library Functions to Manipulate Strings
With every C compiler a large set of useful string handling library functions are provided.

Table lists the more commonly used functions along with their purpose.

Out of the above list, We shall discuss the functions strlen(), strcpy(), strcat() and strcmp(), since
these are the most commonly used functions. This will also illustrate how the library functions in
general handle strings. Let us study these functions one by one.

9.5 strlen()
This function counts the number of characters present in a string. Its usage is illustrated in the
following program.

main()

{

chararr[] = “Bamboozled” ;

int len1, len2 ;

len1 = strlen(arr) ;

len2 = strlen(“Humpty Dumpty”) ;

printf(“\nstring = %s length = %d”, arr, len1) ;

printf(“\nstring = %s length = %d”, “Humpty Dumpty”, len2) ;

LOVELY PROFESSIONAL UNIVERSITY

Notes
charstr [50]

gets (str);

puts (str);

}

9.4 Build-in-Library Functions to Manipulate Strings
With every C compiler a large set of useful string handling library functions are provided.

Table lists the more commonly used functions along with their purpose.

Out of the above list, We shall discuss the functions strlen(), strcpy(), strcat() and strcmp(), since
these are the most commonly used functions. This will also illustrate how the library functions in
general handle strings. Let us study these functions one by one.

9.5 strlen()
This function counts the number of characters present in a string. Its usage is illustrated in the
following program.

main()

{

chararr[] = “Bamboozled” ;

int len1, len2 ;

len1 = strlen(arr) ;

len2 = strlen(“Humpty Dumpty”) ;

printf(“\nstring = %s length = %d”, arr, len1) ;

printf(“\nstring = %s length = %d”, “Humpty Dumpty”, len2) ;

LOVELY PROFESSIONAL UNIVERSITY

Notes
charstr [50]

gets (str);

puts (str);

}

9.4 Build-in-Library Functions to Manipulate Strings
With every C compiler a large set of useful string handling library functions are provided.

Table lists the more commonly used functions along with their purpose.

Out of the above list, We shall discuss the functions strlen(), strcpy(), strcat() and strcmp(), since
these are the most commonly used functions. This will also illustrate how the library functions in
general handle strings. Let us study these functions one by one.

9.5 strlen()
This function counts the number of characters present in a string. Its usage is illustrated in the
following program.

main()

{

chararr[] = “Bamboozled” ;

int len1, len2 ;

len1 = strlen(arr) ;

len2 = strlen(“Humpty Dumpty”) ;

printf(“\nstring = %s length = %d”, arr, len1) ;

printf(“\nstring = %s length = %d”, “Humpty Dumpty”, len2) ;

152

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY 9

Notes
}

The output would be...

string = Bamboozled length = 10

string = Humpty Dumpty length = 13

9.6 strcpy()
This function copies the contents of one string into another. The base addresses of the
source and target strings should be supplied to this function. Here is an example of strcpy(
) in action...

main()

{

char source[] = “Sayonara” ;

char target[20] ;

strcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Sayonara

target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the characters in source string into the
target string till it doesn’t encounter the end of source string (‘\0’). It is our responsibility to see to it
that the target string’s dimension is big enough to hold the string being copied into it.

Thus, a string gets copied into another, piece-meal, character by character. There is no short cut for
this. Let us now attempt to mimic strcpy(), via our own string copy function, which we will call
xstrcpy().

main()

{

char source[] = “Sayonara” ;

char target[20] ;

xstrcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

xstrcpy(char *t, char *s)

{

while (*s != ‘\0’)

{

*t = *s ;

s++ ;

t++ ;

}

*t = ‘\0’ ;

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY 9

Notes
}

The output would be...

string = Bamboozled length = 10

string = Humpty Dumpty length = 13

9.6 strcpy()
This function copies the contents of one string into another. The base addresses of the
source and target strings should be supplied to this function. Here is an example of strcpy(
) in action...

main()

{

char source[] = “Sayonara” ;

char target[20] ;

strcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Sayonara

target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the characters in source string into the
target string till it doesn’t encounter the end of source string (‘\0’). It is our responsibility to see to it
that the target string’s dimension is big enough to hold the string being copied into it.

Thus, a string gets copied into another, piece-meal, character by character. There is no short cut for
this. Let us now attempt to mimic strcpy(), via our own string copy function, which we will call
xstrcpy().

main()

{

char source[] = “Sayonara” ;

char target[20] ;

xstrcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

xstrcpy(char *t, char *s)

{

while (*s != ‘\0’)

{

*t = *s ;

s++ ;

t++ ;

}

*t = ‘\0’ ;

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
}

The output would be...

string = Bamboozled length = 10

string = Humpty Dumpty length = 13

9.6 strcpy()
This function copies the contents of one string into another. The base addresses of the
source and target strings should be supplied to this function. Here is an example of strcpy(
) in action...

main()

{

char source[] = “Sayonara” ;

char target[20] ;

strcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Sayonara

target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the characters in source string into the
target string till it doesn’t encounter the end of source string (‘\0’). It is our responsibility to see to it
that the target string’s dimension is big enough to hold the string being copied into it.

Thus, a string gets copied into another, piece-meal, character by character. There is no short cut for
this. Let us now attempt to mimic strcpy(), via our own string copy function, which we will call
xstrcpy().

main()

{

char source[] = “Sayonara” ;

char target[20] ;

xstrcpy(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

xstrcpy(char *t, char *s)

{

while (*s != ‘\0’)

{

*t = *s ;

s++ ;

t++ ;

}

*t = ‘\0’ ;

153

LOVELY PROFESSIONAL UNIVERSITY

Notes
}

The output of the program would be...

source string = Sayonara

target string = Sayonara

9.7 strcat()
This function concatenates the source string at the end of the target string. For example,
“Bombay”and “Nagpur” on concatenation would result into a string “BombayNagpur”. Here is an
exampleof strcat() at work.

main()

{

char source[] = “Folks!” ;

char target[30] = “Hello” ;

strcat(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks!

9.8 strcmp()
This is a function which compares two strings to find out whether they are same or different. The
two strings are compared character by character until there is a mismatch or end of one of the
strings is reached, whichever occurs first. If the two strings are identical, strcmp() returns a value
zero. If they’re not, it returns the numeric difference between the ASCII values of the first non-
matching pairs of characters. Here is a program which puts strcmp() in action.

main()

{

char string1[] = “Jerry” ;

char string2[] = “Ferry” ;

inti, j, k ;

i = strcmp(string1, “Jerry”) ;

j = strcmp(string1, string2) ;

k = strcmp(string1, “Jerry boy”) ;

printf(“\n%d %d %d”, i, j, k) ;

}

And here is the output...

0 4 -32

9.9 Putting String Together
#include <string.h>

#include <stdio.h>

int main()

LOVELY PROFESSIONAL UNIVERSITY

Notes
}

The output of the program would be...

source string = Sayonara

target string = Sayonara

9.7 strcat()
This function concatenates the source string at the end of the target string. For example,
“Bombay”and “Nagpur” on concatenation would result into a string “BombayNagpur”. Here is an
exampleof strcat() at work.

main()

{

char source[] = “Folks!” ;

char target[30] = “Hello” ;

strcat(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks!

9.8 strcmp()
This is a function which compares two strings to find out whether they are same or different. The
two strings are compared character by character until there is a mismatch or end of one of the
strings is reached, whichever occurs first. If the two strings are identical, strcmp() returns a value
zero. If they’re not, it returns the numeric difference between the ASCII values of the first non-
matching pairs of characters. Here is a program which puts strcmp() in action.

main()

{

char string1[] = “Jerry” ;

char string2[] = “Ferry” ;

inti, j, k ;

i = strcmp(string1, “Jerry”) ;

j = strcmp(string1, string2) ;

k = strcmp(string1, “Jerry boy”) ;

printf(“\n%d %d %d”, i, j, k) ;

}

And here is the output...

0 4 -32

9.9 Putting String Together
#include <string.h>

#include <stdio.h>

int main()

LOVELY PROFESSIONAL UNIVERSITY

Notes
}

The output of the program would be...

source string = Sayonara

target string = Sayonara

9.7 strcat()
This function concatenates the source string at the end of the target string. For example,
“Bombay”and “Nagpur” on concatenation would result into a string “BombayNagpur”. Here is an
exampleof strcat() at work.

main()

{

char source[] = “Folks!” ;

char target[30] = “Hello” ;

strcat(target, source) ;

printf(“\nsource string = %s”, source) ;

printf(“\ntarget string = %s”, target) ;

}

And here is the output...

source string = Folks!

target string = HelloFolks!

9.8 strcmp()
This is a function which compares two strings to find out whether they are same or different. The
two strings are compared character by character until there is a mismatch or end of one of the
strings is reached, whichever occurs first. If the two strings are identical, strcmp() returns a value
zero. If they’re not, it returns the numeric difference between the ASCII values of the first non-
matching pairs of characters. Here is a program which puts strcmp() in action.

main()

{

char string1[] = “Jerry” ;

char string2[] = “Ferry” ;

inti, j, k ;

i = strcmp(string1, “Jerry”) ;

j = strcmp(string1, string2) ;

k = strcmp(string1, “Jerry boy”) ;

printf(“\n%d %d %d”, i, j, k) ;

}

And here is the output...

0 4 -32

9.9 Putting String Together
#include <string.h>

#include <stdio.h>

int main()

154

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
{

char first[100];

char last[100];

charfull_name[200];

strcpy(first, “firstName”);

strcpy(last, “secondName”);

strcpy(full_name, first);

strcat(full_name, “ “);

strcat(full_name, last);

printf(“The full name is %s\n”, full_name);

return (0);

}

9.10 Comparison of two String
#include <string.h>

i = strcmp(s1, s2);

Where:

const char *s1, *s2;

are the strings to be compared.

inti;

gives the results of the comparison. “i” is zero if the strings are identical. “i” is positive if
string “s1” is greater than string “s2”, and is negative if string “s2” is greater than string
“s1”. Comparisons of “greater than” and “less than” are made according to the ASCII
collating sequence.

9.11 String Handling Functions
A close analysis of the essential string-handling facilities required of any text creation and
editing system (formal or otherwise) should lead to the following list of primitive
functions:

1. Create a string of test

2. Concatenate two strings to form another string

3. Search and replace (if desired) a given substring within a string

4. Test for the identity of a string

5. Compute the length of a string

String related functions are grouped into string.h header file. It contains the following
functions among others:

1. char * strcat(char *dest, const char *src): This function appends one string to another
returning a pointer to concatenated string. It appends a copy of src to the end of dest. The
length of the resulting string is strlen(dest) + strlen(src). strings.

2. intstrcmp(const char *s1, const char *s2): This function compares two strings. The string
comparison starts with the first character in each string and continues with subsequent
characters until the corresponding characters differ or until the end of the strings is
reached.

The returned values are integers as follows:

< 0 if s1 < s2

= 0 if s1 = = s2

> 0 if s1 > s2

155

LOVELY PROFESSIONAL UNIVERSITY

Notes
3. char *strcpy(char *dest, const char *src): This function copies string src to dest stopping
after the terminating null character has been moved. The return value is dest.

4. intstrlen(const char *s): This function returns the length of a string (i.e., the number of
characters in s), not counting the terminating null character.

5. intstrncmp(const char *s1, const char *s2, intmaxlen): This function compares portions of
two strings s1 and s2 looking at no more than maxlen characters. The string comparison
starts with the first character in each string and continues with subsequent characters until
the corresponding characters differ or until maxlen characters have been examined. It
returns an int value based on the result of comparing s1 (or part of it) to s2 (or part of it) as

given below:

< 0 if s1 < s2

= 0 if s1 == s2

> 0 if s1 > s2

Summary

 A string is defined in C as an array of characters. Each string is terminated by the NULL
character, which indicates end of the string.

 A string constant is denoted by any set of characters included in double-quote marks.
 The NULL character is automatically appended to the end of the characters in a string

constant when they are stored. Within a program, the NULL character is denoted by the
escape sequence ‘\ 0’.

 A string constant represents an array whose lower bound is 0 and whose upper bound is
the number of characters in the string.

 Strings are stored in three types of structures - Fixed length structure, Variable length
structure, and Linked structure.

Keywords
gets(): A C library function used to read a character entered at the keyboard and to place
it at theaddress pointed to by its character pointer argument

puts(): A C library function that writes its string argument to the screen followed by the
newline

strcat(): The C library function that appends one string to another returning a pointer to
concatenated string

strcmp(): The C library function that compares two strings

string.h: A C header file that contains string manipulating library functions

String: An array of characters terminated by the NULL character

Self Assessment
1. Which one is correct method for Initializing string?

A. char abc[] =“hello”;
B. char abc[10]= {‘h’,’e’,’l’,’l’,’o’,’\0’};
C. Char abc[] = {‘h’,’e’,’l’,’l’,’o’,’\0’};
D. above all

2. Which method is use to read string ?

A. Puts ()
B. Gets ()
C. Print ()
D. None of above

156

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
3. Which method is use to write string?

A. Scanf()
B. Gets ()
C. Puts ()
D. Printf()

4. String is an______________

A. an array of characters
B. sequence of characters terminated with a null character
C. both a and b
D. none of above

5. Which of the following function is more appropriate for reading in a multi-word string?

A. gets ()
B. Puts ()
C. Printf()
D. Sizeo()

6. Format specifier is used to print a string is ___________

A. % d
B. % c
C. % s
D. % f

7. Is there any difference between the two statements?

char *ch = "string ";

charch[] = "String";

A. Yes
B. No

8. Function of strcat() is_______________

A. compares two strings
B. converts string to lowercase
C. concatenates (joins) two strings
D. none of above

9. If the two strings are identical, then strcmp() function returns

A. 1
B. 0
C. 2
D. -1

10. The library function used to computes string's length

A. strlwr()
B. strcpy()
C. strlen()
D. strpr()

11. What will strupr() function do?

A. compares two strings

157

LOVELY PROFESSIONAL UNIVERSITY

Notes

B. converts string to uppercase
C. computes string's length
D. none of above

12. Function of strcpy() is_______________

A. converts string to uppercase
B. sequence of characters terminated with a null character
C. copies a string to another
D. none of above

13. What is the maximum length of a C String?

A. 16 characters
B. 8 characters
C. 32 characters
D. None of above

14. What will strlwr() function do?

A. converts string to lowercase
B. converts string to uppercase
C. computes string's length
D. none of above

15. Find incorrect statement _______

A. char input[100];
B. puts(‘Input string’);
C. gets(input);
D. puts("Entered string is");

Answers for Self Assessment

1. D 2. B 3. C 4. C 5. C

6. C 7. A 8. C 9. B 10. C

11. B 12. C 13. D 14. A 15. B

Review Questions
1. Write a C program that reads a sentence from the keyboard and prints the frequency of each
letter.

2. How can you create a string type C variable? Can they be assigned to each other in the same way
as other data types? Explain.

3. Write a program that converts a string like “124” to an integer 124.

4. Write a program that replaces two or more consecutive blanks in a string by a single blank.

For example, if the input is

Grim return to the planet of apes!!

the output should be

158

Programming Methodology

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY 15

Notes
Grim return to the planet of apes!!

5. Can an array of pointers to strings be used to collect strings from the keyboard? If not, why not?

6. Write a program to sort a set of names stored in an array in alphabetical order.

7. Write a program to delete all vowels from a sentence. Assume that the sentence is not more than
80 characters long.

8. Write a program that takes a set of names of individuals and abbreviates the first, middle and
other names except the last name by their first letter.

Further Readings
Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education, Year of
Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY 15

Notes
Grim return to the planet of apes!!

5. Can an array of pointers to strings be used to collect strings from the keyboard? If not, why not?

6. Write a program to sort a set of names stored in an array in alphabetical order.

7. Write a program to delete all vowels from a sentence. Assume that the sentence is not more than
80 characters long.

8. Write a program that takes a set of names of individuals and abbreviates the first, middle and
other names except the last name by their first letter.

Further Readings
Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education, Year of
Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

Unit 09: Strings

LOVELY PROFESSIONAL UNIVERSITY

Notes
Grim return to the planet of apes!!

5. Can an array of pointers to strings be used to collect strings from the keyboard? If not, why not?

6. Write a program to sort a set of names stored in an array in alphabetical order.

7. Write a program to delete all vowels from a sentence. Assume that the sentence is not more than
80 characters long.

8. Write a program that takes a set of names of individuals and abbreviates the first, middle and
other names except the last name by their first letter.

Further Readings
Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education, Year of
Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

159

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 10: Storage Classes

CONTENTS

Objectives

Introduction

10.1 Storage Classes and their Usage

10.2 Automatic Variable

10.3 External Variable

10.4 External Declaration

10.5 Static Variable

10.6 Register Variable

10.7 Const Qualifier

Summary

Keywords

Self Assessment

Review Questions

Answers for Self Assessment

Further Readings

Objectives

After studying this unit, you will be able to:

• storage classes

• Scope of a variable

• Auto, Static, Extern and Register

Introduction

Storage Classes are used to characterise a variable's or function's characteristics. These
characteristics include scope, visibility, and life-time, which allow us to track the presence of a
variable through the course of a program's execution. The following items are described by a
storage class in C:

The variable scope.

The location where the variable will be stored.

The initialized value of a variable.

A lifetime of a variable.

Who can access a variable?

10.1 Storage Classes and their Usage

There are two different ways to characterize variables:

1. by data types

2. by storage class

Data types refers to the type of information while storage class refers to the life-time of a variable
and its scope within the program.

160

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A variable in C can have any one of the four storage classes.

1. Automatic variable

2. External variable

3. Static variable

4. Register variable

10.2 Automatic Variable

An automatic variable's scope is limited to the function in which it is declared. When the function is
called, it is formed, and when the function is exited, it is automatically deleted. As a result, the
name Automatic was chosen.

Local variables are variables defined with the auto storage class. The term "auto" refers to the
automatic storage class. If a variable is not explicitly declared, it is in the auto storage class by
default.

The scope of an auto variable is restricted to a single block. The access is destroyed once the control
leaves the block. This means that the auto variable can only be accessed from the block in which it
is declared.

A keyword auto is used to define an auto storage class. By default, an auto variable contains a
garbage value.

By default, a variable declared inside a function with storage class specification is an automatic
variable. Automatic variable values cannot be changed accidently by what happens in some other
functions in the program.

main()

{

int m = 1000;

function 2();

printf (“%d \n”, m);

}

function 1()

{

int m = 10;

printf (“%d \n”, m);

}

function 2()

{

int m = 100;

function 1();

printf (“%d \n”, m);

}

output: 10

100

1000

161

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

10.3 External Variable

An external variable is also known as a global variable. It is not confined to a single function. Its
scope extends from the point of definition through the remainder of the program.

External variables can be accessed from any function that falls within their scope. They are declared
outside a function. If a local variable and a global variable have the same name, local variable will
have precedence over global in the function where it is declared.

: int count; main

{

count = 10;

- - - - - -

 - - - - -

- - - - -

}

Notes

function ()

{

int count = 0;

- - - - - - -

- - - - - - -

count ++;

}

When the function references the variable count, it will be referencing only its local variable, not the
global one. The value of count in main() will not be affected.

/* illustration of working of global variable int x;

illustration of working of global variable

int x;

main()

{

x = 10;

printf (“x = %d \n”, x);

printf (“x = %d \n”, fun1());

printf (“x = %d \n”, fun2());

printf (“x = % d \n”, func3());

}

fun1()

162

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

x = x + 10;

return x;

}

fun2()

{

int x = 1;

return x;

}

fun3()

{

x = x+10;

return (x);

}

Output: x = 10

x = 20

x = 1

x = 30

10.4 External Declaration

In the program segment discussed just previously, the main cannot access the variable y as it has
been declared after the main function. This problem can be solved by declaring the variable with
the storage class extern.

Example:

main()

{

externint y; /* external declaration */

}

fun1()

{

externint y; /* external declaration */

}

int y; /*definition */

The external declaration of y inside the functions informs the compiler that y is an integer type
defined somewhere else in the program.

10.5 Static Variable

Static variables are defined within a function in the same manner as automatic variables, except
that the variable declaration must begin with the static storage class designation.

163

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 static int x; or static float y;

A static variable is initialized only once, when the program is compiled. It is never initialized again.

A static variable may be either an internal type or an external type, depending on the place of
declaration. Internal static variables are those which are declared inside a function. The scope of
internal static variables extends upto the end of the function in which they are defined. Therefore,
internal static variables are similar to auto variables, except that they remain in existence (alive)
throughout the remaining program. Therefore, internal static variables can be used to retain values
between function calls.

 /* Illustration of static variable */

main()

{

inti;

for(i=1; i<=3; i++) stat();

}

stat()

{

staticint x = 0;

x = x+1;

printf(“x = %d;\t”, x);

}

Output: x = 1; x = 2; x = 3

An external static variable is declared outside of all functions and is available to all the functions in
that program. The difference between a static external variable and a simple external variable is that
the static external variable is available only within the file where it is defined while the simple
external variable can be accessed by other files also.

10.6 Register Variable

We can tell the compiler that a variable should be kept in one of the machine’s registers, instead of
keeping in the memory (where normal variables are stored) since a register access is much faster
than a memory access and keeping the frequently accessed variables in the register will lead to
faster execution of programs.

For example, Loop control variables. This is done as given below:

registerint count;

Since only a few variables can be placed in the register, it is important to carefully select the
variables for this purpose. However, C will automatically convert register variables into non-
register variables once the limit is reached.

When a function is written before main it can be called in the body of main. If it is written after
main then in the declaration of main you have to write the prototype of the function. The prototype
can also be written as a global declaration.

Program:

Case 1:

#include <stdio.h>

main ()

{

inti;

164

 LOVELY PROFESSIONAL UNIVERSITY

Notes

void (int *k) // D

i = 0;

printf (“ The value of i before call %d \n”, i);

f1 (&i); // A

printf (“ The value of i after call %d \n”, i);

}

void (int *k) // B

{

*k = *k + 10; // C

}

Case 2:

#include <stdio.h>

void (int *k) // B

{

*k = *k + 10; // C

}

main ()

{

inti;

i = 0;

printf (“ The value of i before call %d \n”, i);

f1 (&i); // A

printf (“ The value of i after call %d \n”, i);

}

Case 3:

#include <stdio.h>

void f1(int *k) // B

{

*k = *k + 10; // C

} .

main ()

{

inti;

i = 0;

printf (“The value of i before call %d \n”, i);

f1 (&i); // A

printf (“The value of i after call %d \n”, i);

}

Explanation

In Case 1, the function is written after main, so you have to write the prototype definition in main
as given in statement D.

165

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

In Case 2, the function is written above the function main, so during the compilation of main the
reference of function f1 is resolved. So it is not necessary to write the prototype definition in main.

In Case 3, the prototype is written as a global declaration. So, during the compilation of main, all
the function information is known.

Questions

1. Write a function which receives a float and an int from main(), finds the product of these
two and returns the product which is printed through main().

2. Write a function that receives 5 integers and returns the sum, average and standard
deviation of these numbers. Call this function from main() and print the results in main().

Write a function that receives marks received by a student in 3 subjects and returns the average and
percentage of these marks. Call this function from main() and print

Program to demonstrate different storageclasses

#include <stdio.h>

// declaring the variable which is to be made extern

// an initial value can also be initialized to x

int x;

voidautoStorageClass()

{

 printf("\nDemonstrating auto class\n\n");

 // declaring an auto variable (simply

 // writing "int a=32;" works as well)

 autoint a = 32;

 // printing the auto variable 'a'

 printf("Value of the variable 'a'"

 " declared as auto: %d\n",

 a);

 printf("--------------------------------");

}

voidregisterStorageClass()

{

 printf("\nDemonstrating register class\n\n");

 // declaring a register variable

 register char b = 'G';

166

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 // printing the register variable 'b'

 printf("Value of the variable 'b'"

 " declared as register: %d\n",

 b);

 printf("--------------------------------");

}

voidexternStorageClass()

{

 printf("\nDemonstrating extern class\n\n");

 // telling the compiler that the variable

 // z is an extern variable and has been

 // defined elsewhere (above the main

 // function)

 externint x;

 // printing the extern variables 'x'

 printf("Value of the variable 'x'"

 " declared as extern: %d\n",

 x);

 // value of extern variable x modified

 x = 2;

 // printing the modified values of

 // extern variables 'x'

 printf("Modified value of the variable 'x'"

 " declared as extern: %d\n",

 x);

 printf("--------------------------------");

}

voidstaticStorageClass()

{

 inti = 0;

 printf("\nDemonstrating static class\n\n");

167

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 // using a static variable 'y'

 printf("Declaring 'y' as static inside the loop.\n"

 "But this declaration will occur only"

 " once as 'y' is static.\n"

 "If not, then every time the value of 'y' "

 "will be the declared value 5"

 " as in the case of variable 'p'\n");

 printf("\nLoop started:\n");

 for (i = 1; i< 5; i++) {

 // Declaring the static variable 'y'

 staticint y = 5;

 // Declare a non-static variable 'p'

 int p = 10;

 // Incrementing the value of y and p by 1

 y++;

 p++;

 // printing value of y at each iteration

 printf("\nThe value of 'y', "

 "declared as static, in %d "

 "iteration is %d\n",

 i, y);

 // printing value of p at each iteration

 printf("The value of non-static variable 'p', "

 "in %d iteration is %d\n",

 i, p);

 }

 printf("\nLoop ended:\n");

 printf("--------------------------------");

}

int main()

168

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

 printf("A program to demonstrate"

 " Storage Classes in C\n\n");

 // To demonstrate auto Storage Class

 autoStorageClass();

 // To demonstrate register Storage Class

 registerStorageClass();

 // To demonstrate extern Storage Class

 externStorageClass();

 // To demonstrate static Storage Class

 staticStorageClass();

 // exiting

 printf("\n\nStorage Classes demonstrated");

 return 0;

}

10.7 Const Qualifier

To declare a variable constant, we use the const qualifier. That is, after the variable has been
initialised, we cannot modify its value. Const offers a lot of advantages. If you have a constant
value for PI, for example, you don't want any element of the programme to change that value. As a
result, you should declare it as a const.

The compiler may store objects defined with const-qualified types in read-only memory, and if the
address of a const object is never used in a programme, it may not be stored at all.

Summary

• Auto, extern, register, static are the four different storage classes in a C program.

• In this unit, we learnt about “storage classes”. A keyword auto is used to define an auto

storage class.

• Extern storage class is used when we have global functions or variables which are shared

between two or more files

• The static variables are used within function/ file as local static variables. They can also be

used as a global variable

• Register is used to store the variable in CPU registers rather memory location for quick

access.

• Storage class represents the scope and lifespan of a variable.

• It also tells who can access a variable and from where?

169

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Keywords

Auto Register

Extern Static

Self Assessment

1. What is the initial value of register storage class specifier?

A. 0

B. Null

C. Garbage

D. Infinite

2. What is the scope of extern class specifier?

A. Within block

B. Within Program

C. Global Multiple files

D. None of the above

3. What is the scope of static class specifier?

A. Within block

B. Within Program

C. Global Multiple files

D. None of the above

4. Which is not a storage class?

A. Auto

B. Struct

C. Typedef

D. Static

5. What is the output of the following program?

#include<stdio.h>

int main()

{

staticint a = 3;

printf(“%d”, a --);

return 0;

}

A. 0

B. 1

C. 2

D. 3

170

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6. What will be the output of the following program?

#include <stdio.h>

staticint y = 1;

int main()

{

staticint z;

printf(“%d %d”, y, z);

return 0;

}

A. Garbage value

B. 0 0

C. 1 0

D. 1 1

7. In case of a conflict between the names of a local and global variable what happens?

A. The global variable is given a priority.

B. The local variable is given a priority.

C. Which one will get a priority depends upon which one is defined first.

D. The compiler reports an error.

8. Where will the space be allocated for an automatic storage class variable?

A. In CPU register

B. In memory as well as in CPU register

C. In memory

D. On disk.

9. What is the output of the program?

staticint k;

int main()

{

 printf("%d", k);

 return 50;

}

A. -1

B. 50

C. 0

D. Compiler error

10. The statement below is a __________?

externint a;

A. Declaration

171

Programming Methodology

Unit 10: Storage Classes

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. Definition

C. Initialization

D. None of the above

11. An external variable is one-

A. Which is globally accessible by all functions

B. Which is declared outside the body of any function

C. Which resides in the memory till the end of a program

D. All of the above

12. Functions in C are always _________

A. Internal

B. External

C. External and Internal are not valid terms for functions

D. Both Internal and External

13. Global variables are __________

A. External

B. Internal

C. Both internal and external

D. None of above

14. Which storage class is used for faster execution?

A. Register

B. Auto

C. Extern

D. Static

15. Which of the following is default storage class?

A. Register

B. Auto

C. Extern

D. Static

Review Questions

1. Write a program to demonstrate static storageclasses

2. What is significance of storageclasses.

3. Write a program to demonstrate auto storage classes

4. Write a program to demonstrate extern storage classes

5. Write a program to demonstrate register storage classes

172

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Answers for Self Assessment

1. C 2. C 3. A 4. B 5. D

6. C 7. B 8. C 9. B 10. A

11. D 12. B 13. A 14. A 15. B

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson
Education,Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall ofIndia,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing CompanyLimited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,1997.

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

173

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 11: Pointers

CONTENTS

Objectives

Introduction

11.1 Pointers

11.2 Accessing the Address of a Variable

11.3 Pointer Declaration

11.4 Address Operator - &

11.5 Indirection Operation - *

11.6 Pointer Variables

11.7 Initialization of Pointer Variables

11.8 Accessing a Variable through its Pointer

11.9 Pointer Expression

11.10 Pointer arithmetic

11.11 Pointer and Arrays

11.12 Array of Pointers

11.13 Pointers and functions

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Discuss the concepts of pointers

• Identify pointer increment and scale factors

• Pointer expressions

• Pointers and arrays

Introduction

Computers use their memory for storing instructions of the programs as well as the values of the
variables. Since memory is a sequential collection of storage cells each cell has an address
associated with it. Whenever we declare a variable, the system allocates, somewhere in the
memory, a memory location and a unique address is assigned to this location. Whenever a value is
assigned to this variable the value gets stored in the location having a unique address in the
memory associated with that variable. Therefore, the values stored in memory can be manipulated
using their addresses. Pointer is an extremely powerful mechanism to write efficient programs.
Incidentally, this feature makes C stand out as the most powerful programming language. Pointers
are the topic of this unit.

174

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

11.1 Pointers

A memory variable is merely a symbolic reference given to a memory location. Now let us consider
that an expression in a C program is as follows:

int a = 10, b = 5, c;

c = a + b;

The above expression implies that a, b and c are the variables which can hold the integer data. Now
from the above mentioned statement let us assume that the variable ‘a’ occupies the address3000 in
the memory, ‘b’ occupies 3020 and the variable ‘c’ occupies 3040 in the memory. Then the compiler
will generate the machine instruction to transfer the data from the location 3000 and3020 into the
CPU, add them and transfer the result to the location 3040 referenced as c. Hence

we can conclude that every variable holds two values:

Address of the variable in the memory (l-value)

Value stored at that memory location referenced by the variable. (r-value)

Pointer is nothing but a simple data type in C programming language, which has a special
characteristic to hold the address of some other memory location as its r-value. C programming
language provides ‘&’ operator to extract the address of any object. These addresses can be stored
in the pointer variable and can be manipulated.

The syntax for declaring a pointer variable is,

<data type> *<identifier>;

 int n;

 int *ptr; /* pointer to an integer*/

The following statement assigns the address location of the variable n to ptr, and ptr is a pointer to
n.

ptr=&n;

Since a pointer variable points to a location, the content of that location is obtained by prefixing the
pointer variable by the unary operator * (also called the indirection or dereferencing operator)like,
*<pointer_variable>.

 # include<stdio.h>

main()

{

int a=10, *ptr;

ptr=&a; /* ptr points to the location of a */

printf(“The value of a pointed by the pointer ptr is: %d”, *ptr);

/* printing the value of a pointed by ptr through the pointer ptr*/

}

A null value can be assigned to a pointer when it does not point to any data or in the other words,
as a good programming habit every pointer should be initialized with the null value. A pointer
with a null value assigned to it is nothing but a pointer which contains the address zero.

The precedence of the unary operators ‘&’ and ‘*’ are same in C language. Here as a special casewe
can mention that ‘&’ operator cannot be used or applied to any arithmetic expression, it canonly be
used with an operand which has unique address.

Pointer is a variable which can hold the address of a memory location. The value stored in apointer
type variable is interpreted as an address. Consider the following declarative statement:

intnum = 197;

175

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

This statement instructs the compiler to reserve a 2-byte memory location (assuming that thetarget
machine stores an int type in two bytes) and to put the value 84 in that location. Assumethat a
system allocates memory location 1001 for num. diagrammatically it can be shown as:

As the memory addresses are numbers, they can be assigned to some other variable. Let ptr bethe
variable which holds the address of variable num. We can access the value of num by thevariable
ptr. Thus, we can say “ptr points to num”. Diagrammatically, it can be shown as:

11.2 Accessing the Address of a Variable

The actual location of a variable in the memory is system dependent and therefore, the address of a
variable is not known to us immediately. How can we then determine the address of a variable?

This can be done with the help of the operator & available in C. The operator & immediately
preceding a variable return the address of the variable associated with it.

Example: The statement

P = &quantity;

Would assign the address 5000 to the variable p. The & operator can be remembered as ‘address of’.

The & operator can be used only with a simple variable or an array element. The following are
illegal use of address operator:

& 125 (pointing at constant).

Intx[10];

&x (pointing at array names).

&(x+y) (pointing at expressions).

If x is an array, then expression such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x

11.3 Pointer Declaration

Since pointer variables contain address that belongs to a separate data type, they must be declared
as pointers before we use them. Pointers can be declared just a any other variables. The declaration
of a pointer variable takes the following form:

data_type *pt_name;

The above statement tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

The statement

176

 LOVELY PROFESSIONAL UNIVERSITY

Notes

int *p;

declares the variable p as a pointer variable that points to an integer data type (int). The type
intrefers to the data type of the variable being pointed to by p and not the type of the value of the
pointer.

Given below are some more examples of pointer declaration

Pointer declaration Interpretation

Int *rollnumber;
Create a pointer variable rollnumber capable of pointing to an integer type vari
able or capable of holding the address of an integer type variable

char *name;
Create a pointer variable name capable of pointing to a character type variable
or capable of holding the address of a character type variable

float *salary;
Create a pointer variable salary capable of pointing to a float type variable or
capable of holding the address of a float type variable

11.4 Address Operator - &

Once a pointer variable has been declared, it can be made to point to a variable by assigning the
address of that variable to the pointer variable. The address of a variable can be extracted using
address operator - &.

An expression having & operator generates the address of the variable it precedes. Thus, for
example,

&num

produces the address of the variable num in the memory. This address can be assigned to any
pointer variable of appropriate type (i.e., the data type of variable num) using an assignment
statement such as p = # which causes p to point to num. That is, p now contains the address
of num.

The assignment shown above is known as pointer initialization. Before a pointer is initialized, it
should not be used. A pointer variable can be initialized in its declaration itself.

int x;

int *p = &x;

statement declares x as an integer variable and p as a pointer variable and then initializes p to the
address of x. This is an initialization of p, not *p. On the contrary, the statement

int *p = &x, x;

is invalid because the target variable x is not declared before the pointer.

11.5 Indirection Operation - *

Since a pointer type variable contains an assigned address of another variable the value stored in
the target variable can be obtained using this address. The value store in a variable can be referred
to using a pointer variable pointing to this variable using indirection operator (*).

Example: Consider the following code.

int x = 109;

int *p;

p = &x;

Then the following expression

*p

represents the value 109.

177

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

11.6 Pointer Variables

The actual address of a variable is not known immediately. We can determine the address of a
variable using ‘address of’ operator (&). We have already seen the use of ‘address of’ operator inthe
scanf() function.

Another pointer operator available in C is “*” called “value a address” operator. It gives the value
stored at a particular address. This operator is also known as ‘indirection operator’.

 main()

{

inti = 3;

printf (“\n Address of i: = %u”, &i); /* returns the address * /

printf (“\t value i = %d”, * (&i)); /* returns the value of address of i */

}

11.7 Initialization of Pointer Variables

Since pointer variables contain address that belong to a separate data type, they must be declaredas
pointers before we use them.

The declaration of a pointer variable takes the following form:

data_type *pt_name

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

int *p; declares the variable p as a pointer variable that points to an integer datatype. The type int
refers to the data type of the variable being pointed to by p and not the type of the value of the
pointer.

Once a pointer variable has been declared, it can be made to point to a variable using an assignment
statement such as p = &quantity; which causes p to point to quantity. That is, p now contains the
address of quantity. This is known as pointer initialization. Before a pointer is initialized, it should
not be used. A pointer variable can be initialized in its declaration itself.

: int x, *p=&x; statement declares x as an integer variable and p as a pointer variable and then
initializes p to the address of x. This is an initialization of p, not *p. On the contrary, the statement
int *p = &x, x; is invalid because the target variable x is declared first.

11.8 Accessing a Variable through its Pointer

Consider the following statements:

int q, * i, n;

q = 35;

i = & q;

n = * i;

i is a pointer to an integer containing the address of q. In the fourth statement we have assigned the
value at address contained in i to another variable n. Thus, indirectly we have accessed the variable
q through n. using pointer variable i.

178

 LOVELY PROFESSIONAL UNIVERSITY

Notes

11.9 Pointer Expression

Like other variables, pointer variables can be used in expressions. Arithmetic and comparison
operations can be performed on the pointers. For example, if p1 and p2 are properly declared and
initialized pointers, then following statements are valid.

y = *p1 * *p2; /multiply values stored in variables pointed to by *p1/and *p2

sum = sum + *p1; /increment sum by the value stored in the variable/pointed to by p1

The pointer may point to any location in the memory therefore you should be careful while using
pointers in your programs.

11.10 Pointer arithmetic

A pointer in c is an address, which is a numeric value. Therefore, you can perform arithmetic
operations on a pointer just as you can on a numeric value. There are four arithmetic operators that
can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to the
address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation on the
pointer

Following arithmetic operations are possible on the pointer in C language:

Increment

Decrement

Addition

Subtraction

Comparison

Increment:

 It is a condition that also comes under addition. When a pointer is incremented, it actually
increments by the number equal to the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is incremented, then it will increment by 2(size of an
int) and the new address it will points to 1002. While if a float type pointer is incremented then it
will increment by 4(size of a float) and the new address will be 1004.

Decrement:

 It is a condition that also comes under subtraction. When a pointer is decremented, it actually
decrements by the number equal to the size of the data type for which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is decremented, then it will decrement by 2(size of an
int) and the new address it will points to 998. While if a float type pointer is decremented then it
will decrement by 4(size of a float) and the new address will be 996.

program to illustratepointer increment/decrement

#include <stdio.h>

// Driver Code

int main()

{

 // Integer variable

179

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 int N = 4;

 // Pointer to an integer

 int *ptr1, *ptr2;

 // Pointer stores

 // the address of N

 ptr1 = &N;

 ptr2 = &N;

 printf("Pointer ptr1 "

 "before Increment: ");

 printf("%p \n", ptr1);

 // Incrementing pointer ptr1;

 ptr1++;

 printf("Pointer ptr1 after"

 " Increment: ");

 printf("%p \n\n", ptr1);

 printf("Pointer ptr1 before"

 " Decrement: ");

 printf("%p \n", ptr1);

 // Decrementing pointer ptr1;

 ptr1--;

 printf("Pointer ptr1 after"

 " Decrement: ");

 printf("%p \n\n", ptr1);

 return 0;

}

Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and p2 point to
variables that are related to each other, such as elements of the same array, then p1 and p2 can be
meaningfully compared.

The following program modifies the previous example − one by incrementing the variable pointer
so long as the address to which it points is either less than or equal to the address of the last
element of the array, which is &var[MAX - 1]

180

 LOVELY PROFESSIONAL UNIVERSITY

Notes

11.11 Pointer and Arrays

When an array is declared, the compiler allocates a base address and sufficient amount of storage to
contain all the elements of the array in contiguous memory locations. The base address is the
location of the first element (index 0) of the array. The compiler also defines the array name as a
constant pointer to the first element.

The array declared as:

staticint x[5] = {1, 2, 3, 4, 5};is stored as follows:

Elements x[0] x[1] x[2] x[3] x[4]

Value 1 2 3 4 5

Address 1000 1002 1004 1006 1008

The name x is defined as a constant pointer pointing to the first element, x[0] and therefore the
value of x is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the

assignment statement

p = x ;

which is equivalent to

p = &x[0];

Now we can access every value of x using p++ to move from one element to another. The
relationship between p and x is shown below:

p = &x[0] (=1000)

p+1 = &x[1] (=1002)

p+2 = &x[2] (=1004)

p+3 = &x[3] (=1006)

The address of an element is calculated using its index and the scale factor of the data type, i.e.,
Address of x[3] = Base Address + (3 × Scale Factor of int) = 1000 + (3 × 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access array
elements, as *(p+3) gives the value of x[3]. The pointer accessing method is much faster than array
indexing. &x[i] and (x+i) both represent the address of the ith element of x. x[i] and *(x+i)both
represent the contents of that address, the value of the ith element of x. The two terms are inter
changeable.

When assigning a value to an array element such as x[i], the left side of the assigned statement may
be written as either x[i] or as *(x+i). Thus, a value may be assigned directly to an array element, or it
may be assigned to the memory area whose address is that of the array element. While assigning an
address to an identifier, a pointer variable must appear on the left side of the assignment statement.
Expressions such as x, (x+1) and &x[i] cannot appear on the left side of an assignment statement
because it is not possible to assign an arbitrary address to an array name or an array element.

11.12 Array of Pointers

A multi-dimensional array can be expressed in terms of an array of pointers rather than as a pointer
to a group of contiguous arrays. In such situations the newly defined array will have one less
dimension than the original multi-dimensional array. Each pointer will indicate the beginning of a
separate (n - 1) dimensional array.

In general terms, a two dimensional array can be defined as one dimensional array of pointers by
writing

data_type *array[expression1];

rather than the conventional array definition data_type array[expression1] [expression2];Similarly,
a n dimensional array can be defined as a (n-1) dimensional array of pointers by writing

181

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

data_type *array[expression1][expression2]...[expressionn-1];

rather than the conventional array definition data_type array[expression1] [expression2]...

[expression];

In these declarations data_type refers to the data type of the original n dimensional array, array is
the array name, and expression1, expression2, . . ., expression n are positive-valued integer
expressions that indicate the maximum number of elements associated with each subscript.

The array name and its preceding asterisk are not enclosed in parentheses in this type of
declaration. Thus, a right-to-left rule first associates the pairs of square brackets with array,
defining the named object as an array. The preceding asterisk then establishes that the array will
contain pointers.

Moreover, note that the last (the rightmost) expression is omitted when defining an array of
pointers, whereas the first (the leftmost) expression is omitted when defining a pointer to a group
of arrays.

When a n dimensional array is expressed in this manner, an individual array element within then
dimensional array can be accessed by a single use of the indirection operator. The following
example illustrates how this is done.

Suppose that x is a two dimensional integer array having 10 rows and 20 columns, we can define x
as a one dimensional array of pointers by writing int *x[10];

Hence, x[0] points to the beginning of the first row, x[1] points to the beginning of the second row,
and so on. The number of elements within each row is not explicitly specified.

An individual array element, such as x[2][5], can be accessed by writing *(x[2] + 5). In this
expression, x[2] is a pointer to the first element in row 2, so that (x[2] + 5) points to element
5(actually, the sixth element) within row 2. The object of this pointer, *(x[2] + 5), therefore, refersto
x[2] [5].

These relationships are illustrated below:

11.13 Pointers and functions

We can use function pointers to avoid code redundancy. For example a simple qsort() function can
be used to sort arrays in ascending order or descending or by any other order in case of array of
structures. Not only this, with function pointers and void pointers, it is possible to use qsort for any
data type.

C programming allows passing a pointer to a function. To do so, simply declare the function
parameter as a pointer type. Following is a simple example where we pass an unsigned long
pointer to a function and change the value inside the function which reflects back in the calling
function.

#include <stdio.h>

#include <time.h>

182

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Void getSeconds(unsigned long *par);

int main () {

unsigned long sec;

getSeconds(&sec);

 /* print the actual value */

printf("Number of seconds: %ld\n", sec);

return 0;

}

voidgetSeconds(unsigned long *par) {

 /* get the current number of seconds */

 *par = time(NULL);

return;

}

Summary

• Pointers are often passed to a function as arguments by reference. This allows data items

within the calling function to be accessed, altered by the called function, and then returned

to the calling function in the altered form.

• There is an intimate relationship between pointers and arrays as an array name is really a

pointer to the first element in the array.

• Access to the elements of array using pointers is enabled by adding the respective

subscript to the pointer value (i.e. address of zeroth element) and the expression

proceeded with an indirection operator.

• As pointer declaration does not allocate memory to store the objects it points at, therefore,

memory is allocated at run time known as dynamic memory allocation.

• The library routine malloc can be used for this purpose.

Keywords

Array of Pointer: A multi-dimensional array can be expressed in terms of an array of

pointers rather than as a pointer to a group of contiguous arrays.

Pointer: It is a variable which can hold the address of a memory location rather than the

value at the location.

Pointer Expression: Like other variables, pointer variables can be used in expressions.

Arithmetic and comparison operations can be performed on the pointers

Self Assessment

1 What are the correct statements about pointers?

A. pointer is a variable that stores the address of another variable

183

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. pointer can also be used to refer to another pointer function

C. Pointers assign and releases the memory as well

D. all of above.

2. What are the applications of pointers?

A. Implement data structure

B. Dynamic memory allocation

C. Accessing array and functions

D. Above all

3. Which symbol is used during pointer declaration?

A. +

B. -

C. *

D. /

4. What format specifier is used for pointers?

A. %c

B. %d

C. %p

D. %s

5. Which statements are true about NULL pointers

A. NULL pointer pointing to nothing

B. The value of null pointer is 0

C. Both a and b

D. None of above

6. What is the output of following program?

#include<stdio.h>

int main(){

int *ptr=NULL;

printf(“Value of null pointer is= %d”,ptr);

return 0;

}

A. 1

B. 2

C. 0

D. 4

7. Which one is incorrect statement?

A. int x=90;

B. int *ptr1,*ptr2;

C. ptr1=@x;

D. ptr2=ptr1;

8. What type of arithmetic operations can performed on pointers?

A. Addition

184

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. Subtraction

C. Multiply

D. Above all

9. What is the output of following program?

#include<stdio.h>

int main(){

int x=90,y=10,result;

int *ptr1,*ptr2;

 ptr1=&x;

 ptr2=&y;

result=*ptr1**ptr2;

printf("Product of x and y using pointers is %d\n",result);

return 0;

}

A. 100

B. 80

C. 900

D. 10

10. Which one is incorrect statement?

A. int a=10,*ptr;

B. ptr=/a;

C. ptr--;

D. above all

Answer for Self Assessment

1. D 2. D 3. C 4. C 5. C

6. C 7. C 8. D 9. C 10. C

Review Questions

1. Define ‘Pointer’. List down the various advantages of using pointers in a C program.

2. How pointer are initialized and implemented in C? Write a program to explain the concept.

3. Explain with the help of a C program, the concept of Pointer Arithmetic in C.

4. How printer in C incorporates the concept of Arrays? Write a suitable program to demonstrate
the concept.

5. Differentiate the followings:

(a) Pointer and arrays

(b) Pointer to a variable and pointer to a pointer

(c) Pointer and variable

(d) Value in a function and address in a function

185

Programming Methodology

Unit 11: Pointers

 LOVELY PROFESSIONAL UNIVERSITY

Notes

6. Twenty-five numbers are entered from the keyboard into an array. Write a program to find out
how many of them are positive, how many are negative, how many are even and how many odd.

7. Write a function to calculate the factorial value of any integer entered through the keyboard.

8. Write a function power (a, b), to calculate the value of a raised to b.

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson
Education,Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall ofIndia,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing CompanyLimited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-
HallInternational, 1982.

YashvantKanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

186

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 12: Dynamic Memory Management

CONTENTS

Introduction

12.1 Dynamic Memory Allocation

12.2 malloc() - memory allocation, sizeof, and free

12.3 calloc and realloc

12.4 free

Summary

Keywords

Self-Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Dynamic Memory Management functions

• malloc() and calloc()

• realloc() and free()

Introduction

The Dynamic Memory Allocation concept is utilised to solve the array problem. An array is a set of
values with a fixed number of elements. You can't adjust the size of an array once it's been declared.
Programmers can use Dynamic Memory Allocation to allocate memory during runtime.

Because the static representation of a linear ordered list using an array wastes resources and, in
some situations, causes overflows. We no longer want to pre-allocate memory to any linear list;
instead, we want to allocate memory to elements as they are added to the list. This necessitates
memory allocation that is dynamic.

12.1 Dynamic Memory Allocation

There are several limitations in static memory allocation:

This is done in RAM dedicated solely to a programme, which is frequently limited in capacity. The
size of a static array is fixed. We won't be able to expand it to accommodate situations that require
more elements. As a result, we'll likely to declare larger arrays than necessary, resulting in memory
waste. We also can't lower array size to conserve memory when fewer array elements are
necessary. Advanced data structures such as linked lists, trees, and graphs, which are needed in
most real-world programming situations, are not possible (or efficient) to develop.

C has a feature called dynamic allocation that is quite unique (amongst high level languages). It
allows us to design data types and structures of any size and duration to meet the needs of our
programmes. Dynamic memory allocation occurs when memory is allocated at runtime, that is,
when a programme is running. Pointers and four common library functions are used in dynamic
memory management.

Programming language (C) provides several functions for memory allocation and management,
namely, malloc, calloc, realloc and free.Functions are defined in the <stdlib.h> header file.

187

Ashwani Kumar, Lovely Professional University

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Static Memory Allocation Dynamic Memory Allocation

variables get allocated permanently variables get allocated only if your program
unit gets active

Allocation is done before program execution Allocation is done during program execution

It uses the data structure called stack for
implementing static allocation

It uses the data structure called heap for
implementing dynamic allocation

Less efficient More efficient

There is no memory reusability There is memory reusability and memory can
be freed when not required

Memory is allocated at compile time. memory is allocated at run time

12.2 malloc() - memory allocation, sizeof, and free

It's used to allocate a single block of memory with the specified size dynamically. It returns a void
pointer that can be cast into any type of pointer. It does not perform memory initialization during
execution. Initially, it has garbage value. If memory is insufficient, it returns NULL.

The Function malloc is most commonly used to attempt to “grab’’ a continuous portion of

memory. It is defined by:

void *malloc(size_tnumber_of_bytes)

Syntax

ptr = (cast-type*) malloc(byte-size)

 Example

ptr = (int*) malloc(20 * sizeof(int));

That is to say it returns a pointer of type void * that is the start in memory of the reserved portion of
size number_of_bytes. If memory cannot be allocated a NULL pointer is returned.

Since a void * is returned the C standard states that this pointer can be converted to any type. The
size_t argument type is defined in stdlib.h and is an unsigned type.

So:

char *cp;

cp = malloc(100);

attempts to get 100 bytes and assigns the start address to cp.

Also it is usual to use the sizeof() function to specify the number of bytes:

int *ip;

ip = (int *) malloc(100*sizeof(int));

Some C compilers may require to cast the type of conversion. The (int *) means coercion to
aninteger pointer. Coercion to the correct pointer type is very important to ensure pointer
arithmeticis performed correctly.

It is good practice to use sizeof() even if you know the actual size you want – it makes for
deviceindependent (portable) code.

188

Notes

Static Vs Dynamic memory allocation

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Size of can be used to find the size of any data type, variable or structure. Simply supply one
ofthese as an argument to the function.

So:

inti;

struct COORD {float x,y,z};

typedefstruct COORD PT;

sizeof(int), sizeof(i),

sizeof(struct COORD) and

sizeof(PT) are all ACCEPTABLE

In the above, we can use the link between pointers and arrays to treat the reserved memory like

an array, i.e, we can do things like:

ip[0] = 100;

or

for(i=0;i<100;++i) scanf(“%d”,ip++);

When you have finished using a portion of memory you should always free() it. This allows the
memory freed to be available again, possibly for further malloc() calls.

The function free() takes a pointer as an argument and frees the memory to which the pointer
refers.

#include <stdlib.h>

 int main(){

 int *ptr;

 ptr = malloc(10 * sizeof(*ptr));

 if (ptr != NULL) {

 *(ptr + 7) =80;

printf("Value of the 8th integer is %d\n",*(ptr + 7));

printf("Address of 8th integer is %d\n",(ptr+7));

 }

return 0;

}

#include <stdio.h>

#include <stdlib.h>

int main()

{

int* ptr;

int n, i;

 // Get the number of elements for the array

 n = 5;

189

 LOVELY PROFESSIONAL UNIVERSITY

Notes

printf("Enter number of elements: %d\n", n);

 // Dynamically allocate memory using malloc()

ptr = (int*)malloc(n * sizeof(int));

 // Check if the memory has been successfully

 // allocated by malloc or not

if (ptr == NULL) {

printf("Memory not allocated.\n");

exit(0);

 }

else {

 // Memory has been successfully allocated

printf("Memory successfully allocated using malloc.\n");

 // Get the elements of the array

for (i = 0; i< n; ++i) {

ptr[i] = i + 1;

 }

 // Print the elements of the array

printf("The elements of the array are: ");

for (i = 0; i< n; ++i) {

printf("%d, ", ptr[i]);

 }

 }

return 0;

}

Output:

Enter number of elements: 5

Memory successfully allocated using malloc.

The elements of the array are: 1, 2, 3, 4, 5,

12.3 calloc and realloc

calloc

It is used to dynamically allocate the specified number of blocks of memory of the specified type.
The malloc() function allocates memory and leaves the memory uninitialized. but, the calloc()
function allocates memory and initializes all bits to zero.It returns NULL if memory is not
sufficient.

realloc

190

Programming Methodology

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

If already allocated dynamically memory is insufficient or more than required, in program we can
change the size of previously allocated memory using the realloc() function.

It is used to dynamically change the memory allocation of a previously allocated memoryre-
allocation of memory maintains the already present value and new blocks will be initialized with
default garbage value. re-allocation of memory maintains the already present value and new blocks
will be initialized with default garbage value.

There are two allocation functions, calloc() and realloc(). Their prototypes

are given below:

void *calloc(size_tnum_elements, size_telement_size};

void *realloc(void *ptr, size_tnew_size);

malloc does not initialise memory (to zero) in any way. If you wish to initialise memory then
usecalloc. calloc there is slightly more computationally expensive but, occasionally, more
convenient than malloc. Also note the different syntax between calloc and malloc in that calloc
takes the number of desired elements, num_elements, and element_size, element_size, as two
individualarguments.

Thus to assign 100 integer elements that are all initially zero you would do:

int *ip;

ip = (int *) calloc(100, sizeof(int));

realloc is a function which attempts to change the size of a previous allocated block of memory.The
new size can be larger or smaller. If the block is made larger then the old contents
remainunchanged and memory is added to the end of the block. If the size is made smaller then the
remaining contents are unchanged.

If the original block size cannot be resized then realloc will attempt to assign a new block ofmemory
and will copy the old block contents. Note a new pointer (of different value) willconsequently be
returned. You must use this new value. If new memory cannot be reallocated then realloc returns
NULL.

Thus to change the size of memory allocated to the *ip pointer above to an array block of 50integers
instead of 100, simply do:

ip = (int *) calloc(ip, 50);

C language requires the number of elements in an array to be specified at compile time. But it isnot
practically possible with arrays. In arrays we allocate the memory first and then start usingit. This
may result in failure of a program or wastage of memory space.

The concept of dynamic memory location can be used to eradicate this problem. In this
technique,the allocation of memory is done at run time. C language provides four library functions
knownas memory management functions that can be used for allocating and freeing memory
duringprogram execution. These functions help us to build complex application programs that use
theavailable memory intelligently.

: Calloc

#include <stdio.h>

int main() {

int * ptr;

ptr = calloc(10, sizeof(int));

if (ptr == NULL) {

printf("Error! memory not allocated.");

exit(0);

 }

printf("Dynamically Building 10 Blocks ");

return 0;

191

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 }

: realloc

#include<stdio.h>

int main()

{

char *ptr;

ptr = NULL;

ptr = realloc(ptr,10);

if(ptr != NULL)

printf("Memory created successfully\n");

return 0;

}

12.4 free

The memory allocated using functions malloc() and calloc() is not de-allocated on their ownIt is
used to dynamically de-allocate the memory.

Syntax :free(ptr);

: free

#include <stdio.h>

int main() {

int* ptr = malloc(10 * sizeof(*ptr));

if (ptr != NULL){

 *(ptr + 4) = 50;

printf("Value of the 4th integer is %d\n",*(ptr + 4));

}

free(ptr);

return 0;

}

#include <stdio.h>

#include <stdlib.h>

int main()

{

int *ptr, *ptr1;

int n, i;

 // Get the number of elements for the array

192

Programming Methodology

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

 n = 5;

printf("Enter number of elements: %d\n", n);

 // Dynamically allocate memory using malloc()

ptr = (int*)malloc(n * sizeof(int));

 // Dynamically allocate memory using calloc()

 ptr1 = (int*)calloc(n, sizeof(int));

 // Check if the memory has been successfully

 // allocated by malloc or not

if (ptr == NULL || ptr1 == NULL) {

printf("Memory not allocated.\n");

exit(0);

 }

else {

 // Memory has been successfully allocated

printf("Memory successfully allocated using malloc.\n");

 // Free the memory

free(ptr);

printf("Malloc Memory successfully freed.\n");

 // Memory has been successfully allocated

printf("\nMemory successfully allocated using calloc.\n");

 // Free the memory

free(ptr1);

printf("Calloc Memory successfully freed.\n");

 }

return 0;

}

Output:

Enter number of elements: 5

Memory successfully allocated using malloc.

Malloc Memory successfully freed.

Memory successfully allocated using calloc.

Calloc Memory successfully freed.

193

Programming Methodology

 LOVELY PROFESSIONAL UNIVERSITY

Function Typical call Description

malloc malloc (sz) Allocate a block of size sz bytes from memory heap and return a pointer
to the allocated block

e.g., ptr = (cast.type*) malloc (byte_size);

calloc calloc in (sz) Allocate a block of size n x sz bytes from memory heap, initialize it to
zero and return a pointer to the allocated block

e.g., ptr = (cast_type*) calloc (n, elem_size);

realloc realloc (bl,; sz) Adjust the size of the memory block blk allocated on the heap
to sz, copy the contents to a new location if necessary and return a
pointer to the allocated block

e.g., ptr = realloc (ptr, newsize);

free free (blk) Free block of memory blk allocated from memory heap

e.g., free (ptr);

Advantages of Dynamic Memory allocation

• When we don't know how much memory will be required for the software ahead of time.

• When we need data structures that don't have a memory restriction.

• When you wish to make better use of your memory space.

• For example, if you allocate memory space for a 1D array like array[20] and only use 10

memory spaces, the remaining 10 memory spaces will be squandered, and this wasted

memory will be unavailable to other programme variables.

• Insertions and deletions in dynamically constructed lists may be done quickly and easily

by manipulating addresses, whereas insertions and deletions in statically allocated

memory result in additional movements and memory waste.

• Dynamic memory allocation is required when using the concepts of structures and linked

lists in programming.

Summary

Dynamic memory allocation is to allocate memory at “run time”.

Dynamically allocated memory must be referred to by pointers.

Dynamic Memory Allocation can be defined as a procedure in which the size of a data structure
(like Array) is changed during the runtime.

mallocmethod in C is used to dynamically allocate a single large block of memory with the
specified size.

free method in C is used to dynamically de-allocate the memory.

realloc method in C is used to dynamically change the memory allocation of a previously allocated
memory.

Keywords

Dynamic memory allocation

Static Memory Allocation

Malloc free calloc realloc

194

Notes

Dynamic Memory Management Functions

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Self-Assessment

1. Among 4 header files, which should be included to use the memory allocation functions
like malloc(), calloc(), realloc() and free()?

A. #include<string.h>

B. #include<stdlib.h>

C. #include<memory.h>

D. All of above

2. Which of the following statement is correct prototype of the malloc() function in c ?

A. int* malloc(int);

B. Char* malloc(char);

C. unsignedint* malloc(unsigned int);

D. void* malloc(size_t);

3. malloc() returns a float pointer if memory is allocated for storing float's and a double
pointer if memory is allocated for storing double's. A.

A. TRUE

B. FALSE

C. May Be

D. Can't Say

4. DMA stands for

A. Dynamite Memory Access

B. Dynamic Memory Available

C. Direct Memory Access

D. None of Above

5. Which of the following is memory allocation technique

A. Static Memory Allocation

B. Dynamic Memory Allocation

C. All of above

D. None of above

6. There is no memory reusable in

A. Static Memory Allocation

B. Dynamic Memory Allocation

C. All of above

D. None of above

7. Dynamic memory allocation is

A. More efficient

B. Less efficient

C. Don’t know

D. None of above

8. Which function is used to delete the allocated memory space?

A. Dealloc()

B. free()

C. Both A and B

195

 LOVELY PROFESSIONAL UNIVERSITY

Notes

D. None of the above

9. Which of the following is/are true

A. calloc() allocates the memory and also initializes the allocates memory to zero,

while memory allocated using malloc() has random data.

B. malloc() and memset() can be used to get the same effect as calloc()

C. Both malloc() and calloc() return 'void *' pointer

D. All of the above

10. Specify the 2 library functions to dynamically allocate memory?

A. malloc() and memalloc()

B. alloc() and memalloc()

C. malloc() and calloc()

D. memalloc() and faralloc()

11. calloc() returns a storage that is initialized to.

A. Zero

B. Null

C. Nothing

D. One

12. Which one is used during memory de allocation in C?

A. remove(p);

B. delete(p);

C. free(p);

D. terminate(p);

13. In which technique memory allocated at run time

A. Static Memory Allocation

B. Dynamic Memory Allocation

C. All of above

D. None of above

14. Syntax of calloc() is

A. ptr = (castType*)calloc(n, size);

B. ptr =calloc(n, size);

C. ptr = (castType*) (n, size);

D. ptr = (castType*)calloc();

15. In this program the allocated memory block can store

#include<stdio.h>

 #include<stdlib.h>

int main()

 {

int *ptr;

ptr = malloc(10);

return 0;

 }

A. int

196

Programming Methodology

Unit 12: Dynamic Memory Management

 LOVELY PROFESSIONAL UNIVERSITY

Notes

B. char

C. float

D. all of above

Answer for Self Assessment

1. B 2. D 3. A 4. C 5. C

6. A 7. A 8. B 9. D 10. C

11. A 12. A 13. A 14. A 15. D

Review Questions

1. What are the disadvantages of static memory allocation?

2. Differentiate between static memory allocation and dynamic memory allocation.

3. Write a program to demonstrate the malloc function.

4. Differentia between free and realloc function.

5. What are the advantages of dynamic memory allocation?

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming with C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

www.geeksforgeeks.org

197

http://www.webopedia.com/

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 13: Structures and Unions

CONTENTS

Objectives

Introduction

13.1 Structure Definition

13.2 Structure Initialization

13.3 Comparison of Structure Variables

13.4 Array within Structures

13.5 Structures within Structures / nested structures

13.6 Passing Structures to Functions

13.7 Structure Pointers

13.8 Union – Definition and Declaration

13.9 Accessing a Union Member

13.10 Union of Structures

13.11 Initialization of a Union Variable

13.12 Differences between Union and Structure

Summary

Keywords

Self-Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Define structure

• Identify array within structure

• Define union and deceleration

• Explain union of structures

• Differentiate between union and structure

Introduction

Arrays can be used to aggregate groups of variables of the same type, as you've seen. The difficulty
now is how to combine data that isn't typed in the same way. The explanation is that C is a
language that can be easily extended. It can be extended by defining data types that are built from
the basic types. That example, you can use a data type called a structure to organize variables of
various types.

The following topics are concerned in this unit:

1. Declaring and defining structures

2. Assigning values to structure members

3. Array within structures

4. Structure within structures

198

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

5. Passing structures to functions

13.1 Structure Definition

A structure is a collection of variables referenced under one name providing a convenient means of
keeping related information together. The structure definition creates a format that may be used to
declare structure variables in a program later on.

The general format of structure definition is as follows:

structtag_name

{

data_type member1;

data_type member2;

- - - - - - -

- - - - - - -

};

A keyword struct declares a structure to hold the details of fields of different datatypes. At this
time, no variable has actually been created. Only a format of a new data type has been defined.

Consider the following example:

structaddr

{

char name [30];

char street [20];

char city [15];

char state [15];

intpincode;

};

The keyword struct declares a structure to hold the details of fine fields of address, namely, #name,
street, city, state, pin code. The first four members are character array and fifth one is an integer.

Creating Structure Variables

The structure declaration does not actually create variables. Instead, it defines data type only. For
actual use a structure variable needs to be created. This can be done in two ways:

1. Declaration using tagname anywhere in the program.

: struct book

{

char name [30];

char author [25];

float price;

}

struct book book1, book2;

2. It is also allowed to combine structure declaration and variable declaration in one statement.

This declaration is given below:

struct person

199

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

char * name;

int age;

char *address;

}

p1, p2, p3;

While declaring structure variables along with their definition, the use of tag name is optional.

struct

{

char *name;

int age;

char *address;

}

p1, p2, p3;

Giving Values to Members

As the members are not themselves variables they should be linked to the structure variables. The
Link between a member and a variable is established using member operator ‘.’ which is also
known as dot operator.

This can be explained using following example:

Example: / * Program to define a structure and assign value to members*/

struct book

{

char * name;

int pages;

char *author;

};

main()

{

struct book b1;

printf (“\n Enter Values:”);

scanf (“%s %d %s”, b1.name, &b1.page, b1.author);

printf (“%s, %d, %s, b1.name, b1.page, b1.author);

}

13.2 Structure Initialization

A structure variable can be initialized as any other data type.

main()

{

staticstruct

{

int weight;

float height;

}

200

 LOVELY PROFESSIONAL UNIVERSITY

Notes

student = {60, 180.75};

This assigns the value 60 to student.weight and 180.75 student.height. There is a one-to-one
correspondence between the members and their initializing values.

A structure must be declared as static if it is to be initialized inside a function (similar to arrays).
The following statements initialize two structure variables. Here, it is essential to use a tag

name.

main()

{

structst_record

{

int weight;

float height;

}

staticstructst_record student1 = {60, 180.75};

staticstructst_record student2 = {53, 170.60};

- - - - - -

- - - - - - -

}

Another method is to initialize a structure variable outside the function as shown below:

structst_record / * No static word */

{

int weight;

int height;

}

student1 = {60, 180.75};

}

main()

{

Staticstructst_record student 2 = {53, 170.60}

- - - - - -

- - - - - -

}

The initialization of individual structure members within the template is permitted. The
initialization must be done only in the declaration of the actual variables.

13.3 Comparison of Structure Variables

Two variables of the same structure type can be compared the same way as ordinary
variables.

If person1 and person2 belong to the same structure, then the following operations are
valid.

Operation Meaning

person1 = person2 Assign person2 to person1.

person1 = = person2 Compare all members of person1 and person2 and return 1

201

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

if they are equal, 0 otherwise.

Example:

struct class

{

int number;

char name [20];

float marks;

}

main()

{

int x;

Staticstruct class student1 = {111, “Rao”, 72.50};

Staticstruct class student2 = {222, “Reddy”, 67.00};

Static class student 3;

Student 3 = student 2;

x = ((student3.number = = student. number) && (student3.marks = =

student2.marks)) ? 1:0;

if (x = = 1)

{

printf (“\nStudent2 and Student2 are same \n”);

printf (“%d %s %f\n”, student3.number, student3.name,

student3.marks);

}

else

printf (“\nStudent2 and Student3 are different\n”);

}

Output: Student2 and Student3 are same.

222 Reddy 67.000000

Arrays of Structures

The most common use of structures is in arrays of structures. To declare an array
of structures, first the structure is defined then an array variable of that structure
is declared. In such a declaration, each element of the array represents a structure
variable.

struct class student [100];

It defines an array called student which consists of 100 elements of structure
named class.

An array of structures is stored inside the memory in the same way as a multi-
dimensional array.

/ * Program to implement an array of structure * /

struct marks

{

202

 LOVELY PROFESSIONAL UNIVERSITY

Notes

int sub1;

int sub2;

int sub3;

int total;

};

main()

{

inti;

staticstruct marks student [3] = {{45, 67, 81, 0},
{75,

53, 69, 0},

{75, 53, 69, 0}, {57, 36, 71, 0}};

staticstruct marks total;

for (i = 0; i< = 2; i++)

{

student [i].total = student [i].sub1 + student
[i].sub2+student[i] sub3;

total.sub1 = total.sub1 + student [i].sub1;

total.sub2 + = student [i].sub2;

total.sub3 + = student [i].sub3;

total.total = total.total + student [i].total;

}

printf (“STUDENT \t\t TOTAL \n”);

for (i = 0; i< = 2; i++)

printf (“Student]%d] \t \t %d \n”, i+1, student [i].total);

printf (“\n SUBJECT \t\t %d \n %s \t\t %d \n %s\t\t %d”, “Subject1”,

total.sub1,

“Subject2”, total.sub2. “Subject3”, total.sub3);

printf (“\n GRAND TOTAL = \t\t %d \n”, total.total.);

}

13.4 Array within Structures

Single or multi-dimensional arrays of type int or float can be defined as structure members.

struct marks

{

int number;

float subject [3];

}

student [2];

203

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Here the member subject contains three elements, subject [0], subject [1],
and subject [2]. These elements can be accessed using appropriate
subscripts. For instance, the name student [1].subject [2];would refer to
the marks obtained in the third subject by the second student.

 /* Program to implement arrays within a structure. * /

main()

{

struct marks

{

int sub [3];

int total;

};

staticstruct marks student [3] = {45, 76, 81, 0, 75, 53, 69, 0, 57, 36,

71,

0};

staticstruct marks total;

inti, j;

for (i = 0; i< = 2; i++)

{

student [i].total + = student [i].sub[j]

total.sub[j] + = student [i].sub [j];

}

total.total + = student [i].sub[j];

}

total.total + = student [i].total;

}

printf (“STUDENT\t\tTOTAL \n”);

}

for (i = 0; i< = 2; i++)

printf (“Student [%d]\t\t%d\n”, i + 1, student [i].total);

printf(“SUBJECT\t\td\n”)

for (j = 0; j < = 2; j++)

printf (“Subject %d\t\t %d\n”, j+1, total.sub[j]);

printf(“GRAND TOTAL = \t\t%d\n”, total.total);

}

Output: Student Total

Student[1] 193

Student[2] 197

Student[3] 164

Subject Total

Subject1 177

Subject2 156

204

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Subject3 221

GRAND TOTAL 554

13.5 Structures within Structures / nested structures

Structures within a structure means nesting of structures. Let us consider the following structure
defined to store information about the salary of employees.

struct salary

{

char name [20];

char department [10];

intbasic_pay;

intdearness_allowance;

inthouse_rent_allowance;

intcity_allowance;

}

employee;

This structure defines name, department, basic pay and three kinds of allowances. All the items
related to allowance can be grouped together and declared under a sub-structure as shown below:

struct salary

{

char name [2];

char department [10];

struct

{

int dearness;

inthouse_rent;

int city;

}

allowance;

}

employee;

The salary structure contains a member named allowance which itself is a structure with three
members. The members contained in the inner structure, namely, dearness, house_rent and city can
be referred to as:

employee.allowance.dearness

employee.allowance.house_rent

employee.allowance.city

Then inner most member in a nested structure can be accessed by chaining all the concerned
structure variables (from outermost to inner most) with the member using dot operator.

The following statements are invalid:

employee.allowance (actual member is missing)

employee.house_rent (inner structure variable is missing)

An inner structure can have more than one variable. The following form of declaration is legal:

struct salary

205

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

struct

{

int dearness;

- - - - -

}

allowance, arrears;

}

employee [100];

The inner structure has two variables, allowance and arrears. This implies that both of them have
the same structure template.

A base member can be accessed as follows:

employee[1].allowance.dearness

employee[1].arrears.dearness

Tag names can also be used to define inner structures.

: struct pay

{

int dearness;

inthouse_rent;

int city;

};

struct salary

{

char name [20];

char department [10];

struct pay allowance;

struct pay arrears;

}

struct salary employee [100];

The pay template is defined outside the salary template and is used to define the structure of
allowance and arrears inside the salary structure.

It is also permissible to nest more than one type of structures:

structpersonal_record

{

structname_part name;

struct date date_of_birth;

- - - - - -

- - - - - -

};

structpersonal_record person1;

The first member of the structure is name which is of the type structname_part. Similarly, other
members have their structure types.

206

 LOVELY PROFESSIONAL UNIVERSITY

Notes

13.6 Passing Structures to Functions

The values of a structure can be passed from one function to another using one of three approaches.

The first way is to pass each element of the structure as a function call's actual argument. The actual
arguments are then processed as ordinary variables on their own.

The second way entails providing the full structure to the called function as a copy. Changes to the
original structure are not reflected in the called function since the function works on a copy of the
complete structure (in the calling function). As a result, it is required that the function return the
full structure to the calling function.

The third approach employs a concept called pointers to pass the structure as an argument. In this
case, the address location of the structure is passed to the called function. The function can access
indirectly the entire structure and work on it.

The general format of sending a copy of a structure to the called function is:

function_name (structure_variable_name)

The called function takes the following form:

data_typefunction_name (st_name)

struct_typest_name;

{

- - - - - -

- - - - - -

return (expression);

}

1. The called function be declared for its type, appropriate to the data type is expected to

return. For example, if it is performing a copy of the entire structure, then it must be

declared as struct with an appropriate tag name.

2. The structure variable used as the actual argument and the corresponding formal

argument in the called function must be of the same struct type.

3. The return statement is necessary only when the function is returning some data. The

expression may be any simple variable or structure or an expression using simple

variables.

4. When a function returns a structure, it must be assigned to a structure of identical type in

function.

5. The called function must be declared in calling function for its type if it is placed after the

calling function.

e.g.: /* Program showing passing of structure member as function parameters * /

struct stores

{

char name [20];

float price;

int quantity;

};

main()

{

struct stores update();

floatmul(), p_increment, value;

207

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

intq_increment;

staticstruct stores item = {“XYZ”, 25.75, 12};

printf (“\nInput Increment Values:”);

printf (“\nPrice Increment and Quantity Increment\n”);

scanf (“%f %d”, &p_increment, &q_increment);

item = update item, pincrement, qincrement);

printf (“\nUpdated values of item”);

printf (“\nName : %s\n”, item.name);

printf (“\nPrice : %f\n”, item.price);

printf (“\nQuantity : %d\n”, item.quantity);

value = mul (item);

printf (“\nValue of the item: %d\n”, value);

}

struct stores update (struct stores product, float p, int q)

{

product.price += p;

product.quantity += q;

return (product);

} fl

oatmul (struct stores stock)

{

return (stock.price *stock.quantity);

}

Output: Input Increment Values: Price Increment and Quantity Increment

10 12

Updated values of item

Name : XYZ

Price : 35.750000

Quantity : 24

Value of the item : 858.000000

In case of structures having numerous structure elements passing these individual
elements would be tedious. In such cases an entire structure can be passed to a function.

e.g.: /* Program passing entire structure as function parameter. * /

structemp

{

charempname [25];

char company [25];

intempno;

}

main()

208

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

staticstructemp emp1 = {“Prashant”, SOCEM”, 101};

display (emp1);

}

display (e)

structemp e;

{

printf (“%s\n%s\n%d”, emp.empname, emp.company,

emp.empno);

}

Output: Prashant

SOCEM

101

13.7 Structure Pointers

A complete structure can be transferred to a function by passing a structure-type pointer as
anargument. In principle, this is similar to the procedure used to transfer an array to a function.

However, we must use explicit pointer notation to represent a structure that is passed as
anargument. A structure passed in this manner will be passed by reference rather than by value.

Hence, if any of the structure members are altered within the function, the alterations will be
recognized outside the function.

:

#include <stdio.h>

typedefstruct

{

char *name;

intacct_no;

characcttype;

float balance;

}

record;

/* transfer a structure-type pointer to a function */

main()

{

void adjust (record *pt); /* function declaration * /

static record customer = {“Smith”, 3333, ‘C’, 33.33};

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

customer.acct_type, customer.balance);

adjust (&customer);

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

customer.acct_type, customer.balance);

209

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

}

void adjust (record *pt)

{

pt->name = “Jones”;

pt->acct_not = 9999;

pt->acct_type = ‘R’;

pt->balance = 99.99;

return;

}

This program illustrates the transfer of a structure to a function by passing the structure’s address
(a pointer) to the function. In particular, customer is a static structure of type record, whose
members are assigned an initial set of values. These initial values are displayed when the program
begins to execute. The structure’s address is then passed to the function adjust where different
values are assigned to the member of the structure.

Within adjust, the formal argument declaration defines pt as a pointer to a structure of type record.
Also, nothing is explicitly returned from adjust to main. Within main, the current values assigned
to the members of customer are again displayed after adjust has been accessed. Thus, the program
illustrates whether or not the changes made in adjust carry over to the calling portion of the
program.

Executing the program results in the following output:

Smith 3333 C 33.33

Jones 9999 r 99.99

The value assigned to the members of customer within adjust are recognized within main. A
pointer to a structure can be returned from a function to the calling portion of the program. This
feature may be useful when several structures are passed to a function, but only one structure is
returned.

As we define a pointer pointing to int, or a pointer pointing to a char, similarly, we can have a
pointer pointing to a struct. Such pointers are known as ‘structure pointers’. The program given
below demonstrates the usage of structure pointer.

main()

{

structemp

{

charempname [25];

char company [25];

intempno;

};

staticstructemp emp1 = {“Prashant”, “SOCEM’, 101};

structemp *ptr;

ptr = &emp1;

printf (“%s %s %d\n”, emp1.empname,emp1.company,emp1.empno);

printf (“%s %s %d\n”, ptr->company, ptr->empno);

}

In the above program, two types of operators are used to refer to structure elements:

1. Dot Operator

2. Arrow Operator

210

 LOVELY PROFESSIONAL UNIVERSITY

Notes

When the structure is referred to by its name, the structure elements are addressed using
dot

operators.

b1.name

When the structure is referred to by the pointer to structure, the structure elements are
addressed

using arrow operators.

ptr->name

On the left hand side of ‘.’ structure operator, there must always be a structure variable,
whereas on the right hand side of the ‘->’ operator there must always be a pointer to a
structure.

The following program demonstrates the passing of address of a structure variable to a
function.

structemp

{

charempname [25];

intempno;

}

main()

{

staticstructemp emp1 = {Prashant”,”socem”, 101};

display (&emp1);

}

display (e)

structemp *e; /*pointer to a structure */

{

printf (“%s \n%s\n%d”, e->empname, e->empno);

}

Output: Prashant

SOCEM

101

In the above example, -> operator is used to access the structure elements using pointer to
structure.

13.8 Union – Definition and Declaration

Unions follow the same syntax as structures but differ in terms of storage. In structures,
eachmember has its own storage location, whereas all the members of a union use the same
location.

This implies that, although a union may contain many members of different types, it can
handleonly one member at a time.

Like structures, a union can be declared using the keyword union as follows:

union item

{

int m;

211

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

float x;

char c;

} code;

This declaration declares a variable code of type union item. The union contains three
members,each with a different data type. However, only one can be used at a time. This is due to
the factthat only one location is allocated for a union variable, irrespective of its size.

The compiler allocates a piece of storage that is large enough to hold the largest variable type in the
union. As shown in the example declaration, the member x requires 4 bytes which is the largest
among the members. It is assumed that a float variable requires 4 bytes of storage and the figure
above shows how all the three variables share the same address.

13.9 Accessing a Union Member

To access a union member, you can use the same syntax that you use for structure members.

code.m, code.x, code.c are all valid member variables.

During accessing, you should make sure that you are accessing the member whose value is
currently stored.

: The statements such as

code.m = 150;

code.x = 785;

printf (“%d”, code.m);

would produce erroneous output (which is machine dependent). The user must keep track of what
type of information is stored at any given time.

Thus, a union creates a storage location that can be used by any one of its members at a time. When
a different member is assigned a new value, the new value supersedes the previous member’s
value.

Unions may be used in all places where a structure is allowed. The notation for accessing a union
member which is nested inside a structure remains the same as for the nested structures.

13.10 Union of Structures

Just as one structure can be nested within another, a union too can be nested in another union. Not
only that, there can be a union in a structure, or a structure in a union. Here is an example of
structures nested in a union.

main()

{

struct a

{

inti;

char c[2];

};

struct b

212

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

int j;

char d[2];

};

union z

{

struct a key;

struct b data;

}strange;

strange.key.i = 512;

strange.data.d[0] = 0;

strange.data.d[1] = 32;

printf(“%d\n”, strange.key.i);

printf(“%d\n”, strange.data.j);

printf(“%d\n”, strange.key.c[0];

printf(“%d\n”, strange.data.d[0];

printf(“%d\n”, strange.key.c[1]);

printf(“%d\n”, strange.data.d[1];

}

Output: 512

512

0

0

32

32

Structures and unions may be freely mixed with arrays.

union id

{

char color[12];

int size;

};

struct clothes

{

char manufacturer[20];

float cost;

union id description;

} shirt, trouser;

Now shirt and trouser are structure variable of type clothes. Each variable will contain the
following members: a string (manufacturer), a floating-point quantity (cost), and a union
(description). The union may represent either a string (color), or an integer quantity (size). Another
way to declare the structure variable shirt and trouser is to combine the above two declarations.
This is shown as follows:

struct clothes

213

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

char manufacturer[20];

float cost;

union {

char color[12];

int size;

} description;

} shirt, trouser;

This declaration is more concise, though perhaps less straightforward than the originaldeclarations.

An individual union member can be accessed in the same manner as an individual
structuremember, using the operators “ . “ and “ -> “. Thus, if variable is a union variable, then
variable.member refers to a member of the union. Similarly, if ptvar is a pointer variable that points
to aunion, then ptvar->member refers to a member of that union.

:

#include <stdio.h>

main()

{

union id

{

char color;

int size;

};

struct

{

char manufacturer[20];

float cost;

union id description;

} shirt, trouser;

printf(“%d\n”, sizeof(union id));

shirt.description.color = ‘ w ‘ ; /* assigns a value to color */

printf(“%c %d\n”, shirt.description.color, shirt. description. size);

shirt.description.size = 12; /* assigns a value to size */

printf(“%c %d\n”, shirt.description.color, shirt.description. size);

}

13.11 Initialization of a Union Variable

A union variable can be initialized, provided its storage class is either external or static.
Only one member of a union can be assigned a value at any one time. The initialization
value is assigned to the first member within the union.

Example:

 Program to demonstrate initialization of union variables.

#include <stdio.h>

main()

214

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

union id

{

char color[12];

int size;

};

struct clothes

{

char manufacturer[20];

float cost;

union id description;

};

staticstruct clothes shirt = {“American”, “25.00”, “White”};

printf(“%d\n”, sizeof(union id));

printf(“%s %5.2f”, shirt.manufacturer, shirt.cost);

printf(“%s %d\n”, shirt.description.color, shirt.description.size);

shirt.description.size = 12;

printf(“%s %5.2f”, shirt.manufacturer, shirt.cost);

printf(“%s %d\n”, shirt.description.color, shirt.description.size);

}

Output: 12

American 25.00 White 26743

American 25.00 ~ 12

Uses of Union

Unions, like structures, contain members whose individual data types may differ from one another.
But the members that compose a union share the same storage area within the computer’s memory,
whereas each member within a structure is assigned its own unique storage area. Thus, unions are
used to conserve memory.

Unions are useful for applications involving multiple members, where values need not be assigned
to all of the members at any one time. Unions are also used wherever the requirement is to access
the same memory locations in more than one way. This is often required while calling Basic
Input/Output System functions (often simply called BIOS routines) present in the read only
memory (ROM) of the computer.

Many DOS based application software’s need to access DOS internal data structures. The breakup
of these internal data structures however, is not consistent and often changes from one version of
DOS to another. Therefore, to make the application programs compatible with different versions of
DOS, these programs create unions which take into account the variations in the breakup of these
DOS data structures. These programs when executed first test the version member of DOS being
used on the machine and then access the appropriate part of the union.

13.12 Differences between Union and Structure

The differences between structure and union are:

1. Union allocates the memory equal to the maximum memory required by the member of the
union but structure allocates the memory equal to the total memory required by the members.

2. In union, one block is used by all the member of the union but in case of structure, each member
have their own memory space.

215

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

3. Union is best in the environment where memory is less as it shares the memory allocated. But
structure cannot implemented in shared memory.

4. As memory is shared, ambiguity are more in union, but less in structure.

5. Self referencial union cannot be implemented in any data structure ,but self referencial structure
can be implemented.

Summary

• Structure is a derived data type used to store the instances of variables of different data

types.

• Structure definition creates a format that may be used to declare structure variables in the

program later on.

• The structure operators like dot operator “.” are used to assign values to structure

members.

• Structure variable can be initialized as any other data type. An array of structure can be

declared as any other array. In such an array, each element is a structure. Structures may

contain arrays as well as structures.

• Union is a memory location that is shared by two or more variables.

• When union variable is declared, compiler automatically allocates enough storage to hold

to largest member of union. Only the unions with storage class external or static can be

initialized.

• Unions are useful for applications involving multiple members. They are also used in

many

• DOS based application softwares. typedef and enum are two user defined data types.

 Keywords

Random access file: A file, which allows accessing its records without restriction on the order of
access.

Sequential file: A file, which allows accessing its records only from the first record onwards.

Structure: A grouped data type created by user.

Structure: A structure is a collection of variables referenced under one name providing a
convenient means of keeping related information together. Structures within structure: It means
nesting of structures.

Union: A data type that allows more than one variable to share the same memory area. User

defined data types: The way you are not creating any new data type but are referring to an existing
data type by a different name. Such data types are known as user defined data types.

Self-Assessment

1. A structure is a __

A. collection of variables (different types) represented by single name

B. A structure is a user defined data type in C

C. Keyword ‘struct’ is used to define structure in C

D. All of above

2. Structure members are accessed using___

A. :

B. .

C. >

D. <

3. Which keyword is used to define structure in C__

216

 LOVELY PROFESSIONAL UNIVERSITY

Notes

A. structure

B. struct

C. structC

D. none of above

4. Passing structure in function using___

A. function by value

B. function by reference

C. both function by reference and function by value

D. none of above

5. How to access members using Pointer__

A. Using indirection (*) operator and dot (.) operator

B. Using arrow (->) operator or membership operator

C. Both using (.) (*) and (->)

D. none of above

6. Which of the following operation is illegal in structures?

A. Pointer to a variable of the same structure

B. Dynamic allocation of memory for structure

C. Typecasting of structure

D. All of the mentioned

7. Self Referential Structures are_____

A. have one or more pointers which point to the same type of structure, as their

member.

B. can dynamically be expanded or contracted

C. both of them

D. none of above

8. What are the types of Self Referential Structures?

A. Structure with Single Link

B. Structure with Multiple Links

C. Both Structure with Single Link and Structure with Multiple Links

D. None of the above

9. Union is _____

A. user define data type available in C

B. only one member of the union can occupy the memory

C. the size of the union in any instance is equal to the size of its largest element

D. all of above

10. How to access union member?

A. (->)

B. (+)

C. (:)

D. (:)

11. Union differs from structure in the following way

A. All members are used at a time

B. Union cannot have more members

217

Programming Methodology

Unit 13:Structures and Unions

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. Only one member can be used at a time

D. Union initialized all members as structure

Answers for Self Assessment

1. D 2. B 3. B 4. C 5. C

6. C 7. C 8. C 9. D 10. A

11. C

Review Questions

1. What do you mean by ‘Structure’? How it can be declared and initialized in a C program?

2. Draw a diagram to represent the internal storage of a structure.

3. What do you mean by ‘Union’? How it can be declared and initialized in a C program?

4. Differentiate the followings:

(a) Arrays and structures

(b) Local and global structure

(c) Array of structure and structure within array

(d) Structure and union

5. Write short note on:

(a) Internal storage of union

(b) Function returning structures

(c) Structure within a structure

6. Write a program that compares two given dates. To store date use structure say date that
contains three members namely date, month and year. If the dates are equal then display message
as “Equal” otherwise “Unequal”.

8. Explain the usefulness of structures and unions in C.

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming With C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

218

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 14: File Structure

CONTENTS

Objectives

Introduction

14.1 What is a File?

14.2 Defining and Opening a File

14.3 Input/Output Operations on Files

14.4 Errors during Input /Output

14.5 Types of Files: Text and Binary files

14.6 Reading, writing and append in file

14.7 Header files

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

• Know how to define and opening a file

• Perform input/output operation on files

• Appending in files

• Preprocessor Directives and Macros

Introduction

Data is only stored in variables and arrays for a limited time. When a programme ends, all of this
data is lost. Files are used to store enormous volumes of data indefinitely. Secondary storage
devices, particularly disc storage devices, are used by computers to store files. We'll go through
how C programmes edit, update, and process data files in this unit.

A file is a set of data or characters that can be text or a programme. In the C programming
language, there are two sorts of files: sequential and random access. Random access files are more
difficult to create than sequential ones. The data or text will be stored or read back sequentially. In
random access file, the data can be accessed and processed randomly

14.1 What is a File?

Wherever there is a need to handle large volumes of data, it is advantageous to store data on the
disks and read whenever necessary. This method employs the concept of files to store data. A file is
a place on disk where a group of related data is stored. C supports a number of functions that have
the ability to perform basic file operations, which include:

1. Naming a file

2. Opening a file

3. Reading data from a file

219

Ashwani Kumar, Lovely Professional University

 LOVELY PROFESSIONAL UNIVERSITY

Notes

4. Writing data to a file

5. Closing a file

There are two distinct ways to perform file operations in C.

1. Low level I/O Operation (It uses operating system calls)

2. High level I/O Operation (It uses functions in C’s Standard I/O library)

List of High Level I/O Functions

14.2 Defining and Opening a File

Before storing data in a file in the secondary memory, certain things about the file must be specified
to the operating system. These include:

1. Filename

2. Data Structure

3. Purpose

Filename

It is a string of characters that makes up a valid filename for an operating system. It may contain
two parts, a primary name and an optional period with an extension.

Example:

Input.dat

Store

PROG.C

Student.C

Text.out

Data Structure

Data structure of a file is defined as file in the library of standard I/O function definitions. All files
should be declared as of type file before they are used.

Purpose: When we open a file, we must specify what we want to do with the file.

Following is the general format for declaring and opening a file:

File *fp;

fp = fopen (“filename”, “mode”);

The first statement declares the variable fp as a “pointer to the data type file”.

The second statement opens the file named filename and assigns an identifier to the file type
pointer fp. This pointer which contains all the information about the file is subsequently used as a
communication link between the system and the program.

220

Programming Methodology

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The second statement also specifies the purpose of opening this file. The mode does this job.

Mode can be one of the following:

r Opens the file for reading only.

w Opens the file for writing only.

A Opens the file for appending (or adding) data to it.

Both the filename and mode are specified as string. They should be enclosed in double quotation
marks.

Depending on the mode specified, one of the following actions may be performed:

1. When the mode is ‘writing’, a file with the specified name is created, if the file does not exist. The
contents are deleted, if the file already exists.

2. When the purpose is ‘appending’, the file is opened with the current contents safe. A file with the
specified name is created if the file does not exist.

3. If the purpose is ‘reading’, and if it exists, then the file is opened with the current contents safe,
otherwise an error occurs.

Other additional modes of operation are:

File opening modes

Modes Description

r opens a text file in reading mode

w opens or create a text file in writing mode.

a opens a text file in append mode

r+ opens a text file in both reading and writing mode

w+ opens a text file in both reading and writing mode

a+ opens a text file in both reading and writing mode

rb opens a binary file in reading mode

Whenever a file is opened using fopen function, a file pointer is returned. If the file cannot be
opened for some reason, then the function returns a null pointer.

This facility can be used to test whether a file has been opened or not.

if (fp == NULL)

printf (“File could not be opened.\n”);

13.3 Closing a File

Once all the operations on a file have been completed, the file is closed. This is done to clear the
buffers and flush all the information associated with the file. It also prevents any accidental misuse
of the file. In case there is a limit to the number of files that can be kept open simultaneously,
closing of unwanted files might help open the required files. When there is a need to use a file in a
different mode, the file has to be first closed and then reopened in a different mode.

221

 LOVELY PROFESSIONAL UNIVERSITY

Notes

The I/O library supports a function for this of the following form:

fclose (file_pointer);

This would close the file associated with the file pointer file_pointer.

.........

FILE *p1, *p2;

p1 = fopen (“INPUT”, “w”);

p2 = fopen (“OUTPUT”, “r”);

.........

fclose(p1);

fclose(p2);

This program opens two files and closes them after all operations on them are completed.

Once a file is closed, its file pointer can be reused for another file. All files are closed automatically
whenever a program terminates. However, closing a file as soon as all operations related to it have
been completed is a good programming habit.

#include<stdio.h>

int main(){

FILE *fp;

fp=fopen(“abc.txt",“r");

if(fp==NULL)

{

printf("Error, In opening file");

exit(1);

}

fclose(fp);

return 0;

}

14.3 Input/Output Operations on Files

Getc & putc Functions

These are analogous to getchar and putchar functions and can handle only one character at a time.

putc can be used to write a character in a file opened in write mode.

A statement like putc (ch, fp1); writes the character contained in the character variable ch to the file
associated with file pointer fp1.

Similarly, getc is used to read a character from a file that has been opened in read mode.

The statement c = getc(fp2); would read a character from the file whose file pointer is fp2.

The file pointer moves by one character position for every operation of getc or putc. The getc will
return an end-of-file marker EOF, when end of the file has been reached. The reading should be
terminated when EOF is encountered. Testing for the end-of-file condition is important. Any
attempt to read past the end of file might either cause the program to terminate with an error or
result in an infinite loop situation.

222

Programming Methodology

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

getw&putw Functions

The getw and putw are integer-oriented functions. They are similar to the getc and putc functions
and are used to read and write integer values on unix systems.

The general forms of getw and putw are:

putw (integer, fp); &getw (fp);

fprintf&fscanf Functions

The functions fprintf and fscanf perform I/O operations that are identical to the familiar printf and
scanf functions.

The general syntax of fprintf is

fprintf (fp, “control string”, list);

wherefp is a file pointer associated with a file that has been opened for writing. The control string
contains output specifications for items in the list. The list may include variables, constants and
strings.

Example: fprintf (f1,”%s %d %f”, name, age, 7.5); here name is an array variable of type char and

age in an int variable.

The general syntax of fscanf is

fscanf (fp, “control string”, list);

This statement would cause the reading of the items in the list from the file specified by fp,
according to the specifications contained in the control string.

Example: fscanf (f2, “%s %d”, item, &quantity);

fscanf also returns the number of items that are successfully read. When the end of file is reached, it
returns the value EOF.

feof() Function

The feof function can be used to test for an end of file condition. It takes a file pointer as its only
argument and returns a non-zero integer value if all of the data from the specified file has been
read, and returns zero otherwise. If fp is a pointer to the file that has just been opened for reading,
then the statement

if (feof (fp))

printf (“End of data.\n”);

would display the message “End of data.” on reaching the end of file condition.

14.4 Errors during Input /Output

It is possible that an error may occur during Input/Output operations on a file. Typical error
situations include:

1. Trying to read beyond the end-of-file mark.

2. Device overflow.

3. Trying to use a file that has not been opened.

4. Trying to perform an operation on a file, when the file is opened for another type of operation.

5. Opening a file with an invalid filename.

6. Attempting to write to a write-protected file.

The ferror function reports the status of the file indicated. It also takes a file pointer as its argument
and returns a non-zero integer if an error has been detected upto that point, during processing.

It returns zero otherwise.

The statement

if (ferror (fp)! = 0)

223

 LOVELY PROFESSIONAL UNIVERSITY

Notes

printf (“An error has occurred. \n”);

Would print the error message, if the reading is not successful.

14.5 Types of Files: Text and Binary files

When dealing with files, there are two types of files you should know about:

Text files: - Text files are the normal .txt files. You can easily create text files using any simple text
editors such as Notepad.

Binary files: -Binary files are mostly the .bin files in your computer.

Text file vs. binary file

Text File Binary File

Bits represent character. Bits represent a custom data.

Less prone to get corrupt as
changes reflect as soon as the file
is opened and can easily be
undone.

Can easily get corrupted, even a single bit change may
corrupt the file.

Can store only plain text in a file.
Can store different types of data (image, audio, text) in a
single file.

Widely used file format and can
be opened using any simple text
editor.

Developed especially for an application and may not be
understood by other applications.

Mostly .txt and .rtf are used as
extensions to text files.

Can have any application defined extension.

14.6 Reading, writing and append in file

Reading in file

In C Programming reading data block from a file is process of reading from file.

Syntax

fp=fopen(“filename", “r");

while(fscanf(fp, "%s", str)!=EOF)

 {

printf("%s",str);

 }

Example:

#include<stdio.h>

int main()

224

Programming Methodology

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

{

charstr[50];

 FILE *fp;

fp=fopen(“abc.txt","r");

if(fp==NULL){

printf("-Error");

exit(1);

 }

while(fscanf(fp, "%s", str)!=EOF)

{

printf("%s",str);

}

fclose(fp);

return 0;

}

Writing in file

In C programming writing data block in file is possible.

Syntax

fp=fopen(“filename", “w");

#include<stdio.h>

int main()

{

char name[20]=“this is C";

FILE *fp;

fp=fopen("abc.txt","w");

fprintf(fp, "%s",name);

printf("Contents written");

fclose(fp);

return 0;

}

Append in file

In C Programming appends the content of file at the end of another is possible with append mode
of file.

Syntax

fp=fopen(“filename", "a");

Example:

#include<stdio.h>

int main()

{

225

 LOVELY PROFESSIONAL UNIVERSITY

Notes

FILE *fp;

fp=fopen(“abc.txt","a");

fprintf(fp, "\n of programming");

printf("contents added in file");

fclose(fp);

return 0;

}

14.7 Header files

Header files provide predefined functions to make programming easier. header files contain the set
of predefined standard library functions

A header file is a file with extension .h which contains C function declarations and macro
definitions to be shared between several source files.

The C Preprocessor is not a part of the compiler, but is a separate step in the compilation process.

Before a C program is compiled in a compiler, source code is processed by a program called
preprocessor. This process is called preprocessing.

Commands used in preprocessor are called preprocessor directives and they begin with “#”
symbol.

Preprocessor

Preprocessor Syntax/Description

Macro
Syntax: #define

This macro defines constant value and can be any of the basic data
types.

Header file inclusion
Syntax: #include <file_name>
The source code of the file “file_name” is included in the main
program at the specified place.

Conditional compilation
Syntax: #ifdef, #endif, #if, #else, #ifndef
Set of commands are included or excluded in source program before
compilation with respect to the condition.

Other directives
Syntax: #undef, #pragma
#undef is used to undefine a defined macro variable. #Pragma is used
to call a function before and after main function in a C program.

Header Files Types

 Standard library

 User-defined

Pre-existing header files: already available in C/C++ compiler user need to import them.

User-defined header files: defined by the user and can be imported using “#include”.

Standard Header Files:

#include<stdio.h>: functions scanf() and printf().

#include<math.h>: sqrt(), pow(), etc.

226

Programming Methodology

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

#include<iostream>: cin and cout.

#include<string.h>: strlen(), strcmp(), strcpy(), size()

#include<time.h> : date() and time()

Syntax of Header File

For Standard library: #include<filename>

For user defined: #include”filename”

For Standard library

#include<stdio.h>

#include<string.h>

For user defined

#include”myheader.h”

#include<stdio.h>

#include"header.h"

int main(){

printf("%d",fact(5));

return 0;

}

Macros

A macro is a segment of code which is replaced by the value of macro. Macro is defined by #define
directive.

C Macros

Predefined

User-defined

: Predefine

#include<stdio.h>

int main(){

printf("File name : %s\n",__FILE__);

printf("File name : %s\n",__DATE__);

printf("File name : %s\n",__TIME__);

return 0;

}

: User define

#include<stdio.h>

#define pi 3.14

int main(){

int r=10,area;

area=pi*r*r;

227

 LOVELY PROFESSIONAL UNIVERSITY

Notes

printf("Area of circle is %d",area);

return 0;

}

Summary

• File is a collection of data or set of characters may be a text or program.

• There are two types of files used in the C language: sequential file and random access file.

• While creating a file, fopen() function is used which opens a stream for use and link it with

program and file. fopen() function has two string arguments which represent the name of

the file and the type of I/O to be performed. fclose() function closes a stream that was

opened by a call to fopen(). putc() is used to transfer one character into file. getc()

functions allows you to read data from a file.

• Similarly to read or write strings, fgets and fputs functions are used.

• The fgets() function reads a string from the file and copies it in a string variable lying in

memory.

• fputs() is used to write a string in a data file.

• getw() function is used to read an integer from a file.

• putw() is used to write as integer value in a file. fprintf() and fscanf() are similar to printf()

and scanf()

Keywords

Data Structure: Data structure of a file is defined as file in the library of standard I/O

function definitions.

NULL: A system-defined value (not 0) that indicates various exceptional conditions such

as end of a string, a pointer referencing nothing, etc.

Random access file: A file, which allows accessing its records without restriction on the

order of access. You can access 60th record without accessing the 59th record, and so on.

Macros

User Define

Predefine

Self Assessment

1. Text files are______

A. Can store only plain text in a file.

B. Bits represent character

C. .txt and .rtf are used as extensions

D. All of above

2. What are the different file operations?

A. Creating a new file

B. Opening an existing file

C. Closing a file

D. Above all

3. Putc() is used for_______

A. reads a integer from a file

B. set the position to desire point

228

Programming Methodology

Unit 14: File Structure

 LOVELY PROFESSIONAL UNIVERSITY

Notes

C. writes a character to a file

D. none of above

4. fseek() is used for_______

A. set the position to desire point

B. reads a integer from a file

C. writes a character to a file

D. none of above

5. r+ mode is used for

A. opens a binary file in reading mode

B. opens a text file in both reading and writing mode

C. opens or create a text file in writing mode.

D. All of above

6. EOF indicates ______

A. function closes the file and returns zero on success.

B. if there is an error in closing the file

C. gives current position in the file

D. none of above

7. Find incorrect statement

A. fp=fopen(“abc*txt","a");

B. fprintf(fp, "\n of programming");

C. printf("contents added in file");

D. fclose(fp);

8. Which one is used for append mode_______

A. r

B. a

C. rb

D. none of above

9. Header files are ______

A. A header file is a file with extension .h

B. Header files provide predefined functions to make programming easier

C. header files contain the set of predefined standard library functions

D. all of above

10. What are the part of Conditional compilation

A. #endif

B. #define

C. #undef

D. None of above

Answers for Self Assessment

1. D 2. D 3. C 4. A 5. B

6. B 7. A 8. B 9. D 10. A

229

 LOVELY PROFESSIONAL UNIVERSITY

Notes

Review Questions

1. What do you mean by the “File Handling”? Explain the concept of file handling in C.

2. Explain the various type of files and their access mechanisms.

3. Write in detail about any five file-handling functions in C.

4. What do mean by random file access? How C implements the concept of random file access?

5. Write a program to read a file and display contents with its line numbers.

6. What is significance of Macros in programming?

7. Differentiate between user define and predefine Macros.

Further Readings

Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

B.W. Kernighan and D.M. Ritchie, “The Programming Language”, Prentice Hall of India,
New Delhi

Byron Gottfried, “Programming with C”, Tata McGraw Hill Publishing Company Limited,
New Delhi

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

www.en.wikipedia.org

www.web-source.net

www.webopedia.com

230

Programming Methodology

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP172 - U01 - D - Finlized.pdf
	ECAP172 - U02 - D - Finalized.pdf
	ECAP172 - U03 - D - Finalized.pdf
	ECAP172 - U04 - D - Finalized.pdf
	ECAP172 - U05 - D - Finalized.pdf
	ECAP172 - U06 - D - Finalized.pdf
	ECAP172 - U07 - D - Finalized.pdf
	ECAP172 - U08 - D - Finalized.pdf
	ECAP172 - U09 - D - Finalized.pdf
	ECAP172 - U10 - D - Finalized.pdf
	ECAP172 - U11 - D - Finalized.pdf
	ECAP172 - U12 - D - Finalized.pdf
	ECAP172 - U13 - D - Finalized.pdf
	ECAP172 - U14 - D - Finalized.pdf

